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Abstract

Gallbladder mucocele formation is an emerging disease in dogs characterized by increased

secretion of condensed granules of gel-forming mucin by the gallbladder epithelium and for-

mation of an abnormally thick mucus that can culminate in obstruction of the bile duct or rup-

ture of the gallbladder. The disease is associated with a high morbidity and mortality and its

pathogenesis is unknown. Affected dogs have a significantly increased likelihood of concur-

rent diagnosis of hyperadrenocorticism, hypothyroidism, and hyperlipidemia. Whether these

endocrinopathies represent coincidental primary disease processes that exacerbate gall-

bladder mucocele formation in predisposed dogs or reflect a concurrent disruption of endo-

crine and lipid metabolism is unclear. In this study, we investigated a hypothesis that dogs

with gallbladder mucocele formation would have a high prevalence of occult and atypical

abnormalities in adrenal cortical and thyroid gland function that would suggest the presence

of endocrine disruption and provide deeper insight into disease pathogenesis. We per-

formed a case-control study of dogs with and without ultrasonographic diagnosis of gallblad-

der mucocele formation and profiled adrenal cortical function using a quantitative mass

spectrometry-based assay of serum adrenal-origin steroids before and after administration

of synthetic cosyntropin. We simultaneously profiled serum thyroid hormone concentrations

and evaluated iodine sufficiency by measurement of urine iodine:creatinine ratios (UICR).

The studies were complemented by histological examination of archival thyroid tissue and

measurements of thyroid gland organic iodine from dogs with gallbladder mucocele forma-

tion and control dogs. Dogs with gallbladder mucocele formation demonstrated an exagger-

ated cortisol response to adrenal stimulation with cosyntropin. A prevalence of 10% of dogs

with gallbladder mucocele formation met laboratory-based criteria for suspect or definitive

diagnosis of hyperadrenocorticism. A significantly greater number of dogs with gallbladder

mucocele formation had basal serum dehydroepiandrosterone (DHEAS) increases
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compared to control dogs. A high percentage of dogs with gallbladder mucocele formation

(26%) met laboratory-based criteria for diagnosis of hypothyroidism, but lacked detection of

anti-thyroglobulin antibodies. Dogs with gallbladder mucocele formation had significantly

higher UICRs than control dogs. Examination of thyroid tissue from an unrelated group of

dogs with gallbladder mucocele formation did not demonstrate histological evidence of thy-

roiditis or significant differences in content of organic iodine. These findings suggest that

dogs with gallbladder mucocele formation have a greater capacity for cortisol synthesis and

pinpoint DHEAS elevations as a potential clue to the underlying pathogenesis of the dis-

ease. A high prevalence of thyroid dysfunction with absent evidence for autoimmune thy-

roiditis suggest a disrupted thyroid hormone metabolism in dogs with gallbladder mucocele

formation although an influence of non-thyroidal illness cannot be excluded. High UICR in

dogs with gallbladder mucocele formation is of undetermined significance, but of interest for

further study.

Introduction

Gallbladder mucocele formation is an emerging disease in dogs. The disease is characterized

by increased secretion of condensed granules of gel-forming mucin[1] by the gallbladder epi-

thelium and formation of an abnormally thick mucus that can result in impaired gallbladder

motility, extrahepatic biliary tract obstruction, and gallbladder rupture with bile peritonitis [2–

13]. For clinically affected dogs, surgery to remove the gallbladder can be life-saving. However,

retrospective studies report that a median of 27% (range from 7 to 45%)[3–10] of dogs will die

or be euthanized within 2 weeks of hospitalization due to post-operative complications. Diag-

nosis of gallbladder mucocele formation was rare as recently as 15 years ago[14, 15]. Gallblad-

der mucocele formation is now regarded as one of the most common and poorly understood

biliary diseases of dogs[3–13].

The cause of gallbladder mucocele formation in dogs is unknown and likely multifactorial.

There are no reported gallbladder diseases in humans that match the gross or histological

description of gallbladder mucocele formation in dogs. The disease has a strong predilection

for purebred dog such as the Shetland Sheepdog, Border Terrier, Cocker Spaniel, Miniature

Schnauzer, Pomeranian, Chihuahua, and others[5–7, 16–18] but is diagnosed in older-aged

dogs which suggests an influence of both genetic predisposition and time. An interesting

observation in dogs with gallbladder mucocele formation is an increased likelihood for con-

current diagnosis of hyperadrenocorticism, hypothyroidism, and hyperlipidemia [5, 13, 16, 17,

19]. These diagnoses are not uncommon in dogs, however their association with gallbladder

mucocele formation is recognized as new [5, 13, 16, 17]. It is possible that hyperadrenocorti-

cism, hypothyroidism, and hyperlipidemia are coincidental primary disease processes that

exacerbate gallbladder mucocele formation in predisposed dogs. On the other hand, the

underlying cause of gallbladder mucocele formation may be responsible for concurrent dis-

ruption of endocrine and lipid metabolism in these dogs. Efforts to determine if dogs with gall-

bladder mucocele formation have some form of endocrine disruption has important

implications for explaining the as-yet unknown pathogenesis of the disease.

Several observations deepen an interest in adrenal and thyroid gland function in dogs with

mucocele formation. The first is that pathological findings similar to gallbladder mucocele for-

mation are described in studies examining the toxicological effect of estrogen and progestogen

treatment in dogs [20–24] and several Shetland sheepdogs with gallbladder disease have been
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described as having “atypical” hyperadrenocorticism characterized by high serum concentra-

tions of progesterone [5]. The second observation is that gallbladder mucocele formation in

dogs has a strong resemblance to descriptions of the gallbladder in piglets and ferrets with cys-

tic fibrosis caused by mutation of the cystic fibrosis transmembrane conductance regulator

protein gene (CFTR)[25, 26]. In patients with cystic fibrosis, subclinical hypothyroidism was

historically associated with iodine excess (i.e. use of iodine-containing expectorants)[27] but

can also be associated with iodine deficiency[28]. While the mechanism is still unclear, CFTR

is expressed by thyroid follicular cells[29] where it is suspected to provide an ion exchange

mechanism necessary for function of the iodide transporter pendrin[30]. Abnormal iodide

uptake results in impaired thyroid hormone synthesis[31].

There is strong circumstantial evidence that hyperadrenocorticism and hypothyroidism,

regardless of their pathogenesis, may promote the progression of gallbladder mucocele forma-

tion by contributing to impaired gallbladder motility[2, 5], altering the composition of gall-

bladder bile acids[32], or increasing the quantity of gallbladder sludge[33]. In 2 dogs,

treatment of concurrent hypothyroidism was described to result in medical resolution of gall-

bladder mucocele formation[34]. Given the possibility of a therapeutic benefit to treating

underlying hypothyroidism or hyperadrenocorticism in dogs with gallbladder mucocele for-

mation, clinicians may be more likely to test for these endocrinopathies even in dogs that lack

clinical signs of endocrine disease. Therefore, it is also of interest to describe what these test

results are likely to yield if performed in this population and to determine any correlations

between serum biochemistry findings and results of endocrine test results when performed

simultaneously in dogs with gallbladder mucocele formation.

The objective of this prospective case-controlled study was to determine the prevalence of

occult or atypical abnormalities in adrenal cortical and thyroid gland function in dogs that

lack clinical signs or physical examination findings suggestive of endocrinopathy at the time of

diagnosis of gallbladder mucocele formation. We sought to ascertain if identified abnormali-

ties are consistent with laboratory-based criteria for diagnosis of hyperadrenocorticism or

hypothyroidism, expected changes in thyroid hormone concentrations in dogs with concur-

rent illness, or suggestive of an effect of endocrine disruption or iodine deficiency. Accord-

ingly, our approach was to utilize a quantitative mass spectrometry-based assay to measure a

panel of adrenal-origin steroids before and after ACTH stimulation testing using synthetic

cosyntropin. We simultaneously profiled serum thyroid hormone concentrations and urine

iodine:creatinine ratios in control dogs and dogs with gallbladder mucocele formation. These

studies were complemented by histological examination of archival thyroid tissue from dogs

with gallbladder mucocele formation and measurements of thyroid gland iodide. Finally, we

analyzed the adrenal and thyroid hormone test results of these dogs for significant correlations

with results of simultaneous serum biochemistry profile testing.

Methods

Case-control study

Patient recruitment and inclusion criteria. Client-owned dogs with presumptive diag-

nosis of gallbladder mucocele formation at the North Carolina State University Veterinary

Hospital (NCSU-VH) were prospectively identified for possible inclusion into the study over

the time period from February 2014 to January 2017. In each case, diagnosis of gallbladder

mucocele formation was confirmed by a single board-certified veterinary radiologist (G.S.)

based on previously published ultrasonographic criteria[9]. These criteria included an

enlarged gallbladder containing non-gravity dependent, immobile bile having hypoechoic

extensions of mucus into the lumen, resulting in a stellate or finely striated bile pattern. In the
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event that the dog was euthanized or underwent surgery for removal of the gallbladder, the

gross pathology and histopathology reports were reviewed to confirm the ultrasonographic

diagnosis of gallbladder mucocele formation.

An apparently healthy, age, breed, and sex-matched cohort of client-owned dogs were con-

currently recruited by the Clinical Studies Core facility at North Carolina State University for

inclusion as controls. For each control dog, ultrasonography was used to confirm absence of

gallbladder mucocele formation based on a normal appearing gallbladder with normal wall

structure and thickness. Sludge, if present, was gravity-dependent, occupied less than 50% of

the gallbladder lumen, and was not attached to the wall.

Dogs were excluded if they had previously been diagnosed with, treated for, or suspected,

based on clinical signs or physical examination findings, of having hypothyroidism or hypera-

drenocorticism. Dogs were excluded if they had a recent (within 2 months) history of treat-

ment with ursodeoxycholic acid or drugs recognized or suspected to interfere with thyroid or

adrenal function testing (e.g. topical or systemic steroids, non-steroidal anti-inflammatory

drugs, anti-convulsants, furosemide, sulfa-containing drugs, fatty acid supplements) or were

reproductively intact. Because prior studies have not demonstrated any significant association

between gallbladder mucocele formation and intact reproductive status, reproductively intact

dogs were excluded from the study to eliminate a confounding influence of gonadal steroido-

genesis[35, 36]. Owners of each dog signed an informed consent for participation in the study.

All study protocols were approved by the Institutional Animal Care and Use Committee of

North Carolina State University (ID#14-049-O).

Sample collection and corticotropin stimulation testing. Upon enrollment into the

study, dogs diagnosed with gallbladder mucocele formation and control dogs underwent a

complete physical examination by the attending clinician. Blood was collected by means of

venipuncture and urine was collected by ultrasound-guided cystocentesis. Samples were

obtained after a minimum fasting period of 12 hours. Time of day of sampling was dictated by

patient accessibility and therefore not standardized. Anticoagulated (EDTA) whole blood,

plasma, serum, and urine were processed by the NCSU-VH Clinical Pathology Laboratory for

a complete blood cell count and serum biochemical analysis. Aliquots of plasma, serum, and

urine were also stored at -80˚C within 30-min of collection. Each dog received an intravenous

injection of synthetic cosyntropin (Cortrosyn, Amphastar Pharmaceuticals, Inc, Rancho Cuca-

monga, CA) according to the following dose regimen:� 5 kg = 25 μg, 5.1–10 kg = 50 μg, 10.1–

15 kg = 75 μg, 15.1–20.0 kg = 100 μg, and 20–50 kg = 250 μg. One hour following administra-

tion of cosyntropin, a second blood sample was drawn and plasma and serum were stored at

-80˚C within 30-min of collection. Plasma endogenous adrenocorticotropic hormone (ACTH)

concentration was measured in samples that were obtained pre-cosyntropin administration

from each dog. Plasma for ACTH measurement was separated from EDTA-anticoagulated

whole blood by centrifugation at 2,000 x g for 10-minutes under refrigeration (5˚C). Each

plasma sample was subsequently frozen and stored at -80˚C until the time of batch testing

using a previously validated assay (IMMULITE 1000 Canine ACTH; Siemens Healthcare

Diagnostics, Llanberis, Gwynedd, UK[37]).

Targeted mass spectrometric analysis of serum steroids. Frozen pre- and post-cosyntro-

pin serum samples were shipped on 20 kg of dry ice to a commercial laboratory (BIOCRATES

Life Sciences AG, Innsbruck, Austria) and confirmed to arrive frozen. Analysis of 17 different

steroid hormones was performed using a standardized Ultra High Performance Liquid Chro-

matography tandem mass spectrometry-based quantitative multiplex assay (AbsoluteIDQ
Stero17 Kit, BIOCRATES Life Sciences AG) that has undergone an extensive validation pro-

cess for use in humans [38]. For quantification of each steroid compound, 7-point calibration

curves and 13 stable isotope-labeled internal standards were used. Compounds analyzed
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included 11-deoxycorticosterone (limit of detection (LOD), 0.01 nM), 11-deoxycortisol (LOD,

0.01 nM), corticosterone (LOD, 0.01 nM), cortisol (LOD, 0.3907 nM), cortisone (LOD, 0.038

nM), progesterone (LOD, 0.016 nM), 17α-hydroxyprogesterone (LOD, 0.017 nM), andro-

stenedione (LOD, 0.011 nM), testosterone (LOD, 0.01 nM), aldosterone (LOD, 0.0828 nM),

dehydroepiandrosterone sulfate (DHEAS) (LOD, 39 nM), dihydrotestosterone (LOD, 0.01

nM), androsterone (LOD, 0.022 nM), estrone (LOD, 0.019 nM), estradiol (LOD, 0.01 nM),

etiocholanolone (LOD, 0.0517 nM), and dehydroepiandrosterone (LOD, 0.056 nM).

Thyroid hormone assays. Serum samples were obtained from all dogs prior to cosyntro-

pin administration, stored at -80˚C and collectively submitted on dry ice to a commercial labo-

ratory (Michigan State University Veterinary Diagnostic Laboratory, Endocrinology Section,

Lansing, MI) for measurement of total thyroxine (T4), total triiodothyronine (T3), free thyrox-

ine by equilibrium dialysis (FT4), free triiodothyronine (FT3), thyrotropin (TSH), and antibod-

ies against thyroxine (T4AA), triiodothyronine (T3AA), and thyroglobulin (TgAA) using

methods previously described and validated for use in dogs[39–43]. Briefly, serum T4 (T4

MAb Solid Phase Component System; MP Biomedicals, Diagnostics Division, Orangeburg,

NY), FT3 (Free T3 Solid Phase Component System; MP Biomedicals, Diagnostics Division,

Orangeburg, NY), T4AA, and T3AA concentrations were measured by radioimmunoassay.

Serum T3 concentrations were measured using an in-house charcoal-separation radioimmu-

noassay. Serum FT4 concentrations were measured by equilibrium dialysis in combination

with radioimmunoassay (Free T4 by Equilibrium dialysis; Antech Diagnostics, Irvine, CA).

Serum TSH concentrations were measured by use of a solid-phase chemiluminescent immu-

nometric assay (IMMULITE 2000 Canine TSH; Siemens Healthcare Diagnostics, Llanberis,

Gwynedd, UK). Serum concentrations of canine TgAA were measured with an enzyme-linked

immunosorbent assay (Canine thyroglobulin autoantibody ELISA; Oxford Biomedical

Research, Oxford, MI) properly blanked for nonspecific binding. Results of TGAA were quali-

tatively determined as positive (>35%), inconclusive (20–35%), or negative (<20%).

Quantification of inorganic iodine in urine. Urine samples were collected from each

dog prior to cosyntropin administration, stored at -80˚C, and then collectively submitted to a

commercial laboratory (Michigan State University Veterinary Diagnostic Laboratory, Nutri-

tion Section, Lansing, MI) for measurement of inorganic iodine by means of inductively-

coupled plasma mass spectrometry (ICP-MS). Urine creatinine was measured using a com-

mercially available chemistry analyzer (Roche Cobas c501 Chemistry system; Roche Diagnos-

tics USA) and used to calculate a urine inorganic iodine:creatinine ratio (UICR; μg/g) for each

dog.

Scoring of clinical illness severity. To evaluate thyroid hormone test results for an influ-

ence of non-thyroidal illness (NTI), all dogs were stratified by disease severity into four groups

based on a previously described scoring system[44] as follows: absent (0) for patients that dem-

onstrated no clinical signs of illness, mild (1) for patients with signs of clinical disease but suit-

able for outpatient care, moderate (2) for patients sick enough to require hospitalization and

aggressive treatment, and severe (3) for patients with severe illness requiring intensive care

and advanced treatment (including all dogs requiring emergency cholecystectomy).

Examination of thyroid glands from unrelated groups of dogs undergoing

post-mortem examination

Quantification of organic iodine in thyroid tissue obtained opportunistically from

euthanized dogs with and without gallbladder mucocele formation. Fresh thyroid tissue

was collected by a study investigator (J.L.G.) from dogs diagnosed with a gallbladder mucocele

that underwent euthanasia during the time course of this study. Thyroid glands were likewise
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obtained from an unmatched group of apparently healthy shelter and research dogs that

underwent euthanasia during the time course of the study. All control dogs lacked gallbladder

mucocele formation confirmed by gross inspection of the gallbladder contents. Both thyroid

lobes were removed and each divided transversely into two halves with a scalpel blade. One

half of each lobe was placed in a 1.7 ml microcentrifuge tube and frozen at -80˚C until analysis.

Quantification of organic iodine was performed in a commercial laboratory (Michigan State

University Veterinary Diagnostic Laboratory, Nutrition Section, Lansing, MI) by means of

ICP-MS and reported as μg/g dry weight.

Retrospective light microscopic and histomorphometric examination of archival thy-

roid tissue from dogs with and without gallbladder mucocele formation. The electronic

medical records database of the NCSU-VH was searched over the time interval from 2002 to

2015 to identify all dogs having a histological diagnosis of gallbladder mucocele formation

using previously described criteria[17] and from whom thyroid tissue was archived at the time

of post-mortem examination. Two groups of control dogs were also identified. The first con-

trol group consisted of adult dogs of breeds with known predisposition to gallbladder muco-

cele formation but having histologically normal appearing gallbladders and from whom

thyroid tissue was also archived at the time of post-mortem examination. The second control

group consisted of apparently healthy research and shelter dogs from which convenience sam-

ples of gallbladder and thyroid glands were prospectively obtained for this study at the time of

euthanasia. Dogs were excluded if they had known history of diagnosis or treatment for

hypothyroidism.

Formalin-fixed and paraffin-embedded thyroid tissue was sectioned at a thickness of 5 μm,

mounted onto glass microscopic slides and stained with Mayer-Harris hematoxylin and alco-

holic eosin Y. Each slide was examined by a single board-certified veterinary pathologist (J.C.)

who was blinded to the identities of the groups of dogs. Histologic appearance of each thyroid

gland was scored on the basis of number of follicles and amount of colloid present (normal,

increased, or decreased), severity of inflammation and fatty infiltration (none, mild, moderate,

or severe), and the presence or absence of mineralization or lipofuscin. The presence of any

lesions was recorded.

Each slide was scanned (Aperio ScanScope XT; Leica Biosystems Inc, Buffalo Grove, IL)

with a 20X power objective and a camera resolution of 0.4942 microns per pixel. Images were

then uploaded (eSlide Manager; Leica Biosystems Inc) as 8-bit JPEG2000-compressed SVS

files and visualized with a digital pathology software program (Aperio ImageScope 12.3; Leica

Biosystems Inc). After annotation to isolate the thyroid sections, each was manually imported

for analysis (Definiens Architect XD 2.7 with Tissue Studio version 4.4.2; Definiens Inc, Cam-

bridge, MA) using an algorithm to segment the tissue into four regions-of-interest (ROIs): col-

loid, follicular and parafollicular cells, adipose tissue and glass, and RBCs and other stroma.

This algorithm was trained on representative input regions in order to classify all the tissue

within the ROIs in the final analysis. The program then calculated the total tissue area and the

area percentages for each of the ROIs. Additionally, nuclei were detected and scored according

to size for each of the ROIs. The analysis output included all quantitative results as well as

screen captures of the ROI detection plus overlays for tissue segmentation and cellular scores.

For each gland, the average height of the follicular epithelium was measured manually using a

digital micrometer for each of 30 follicles selected to include all general regions of the gland.

Data and statistical analysis

Continuous variables such as clinical pathology findings, serum thyroid hormone and steroid

hormone concentrations, urine iodine concentration, and histomorphometry measurements
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of thyroid tissue, were described as median and range or interquartile range. Individual ste-

roids for which� 20% of values were below the limit of detection (LOD) had missing values

imputed by applying a logspline method[45]. For androstenedione, values below the LOD

prior to administration of cosyntropin were imputed using a 50% rule method. Steroids for

which the majority of dogs had values below the LOD had their missing values excluded from

analysis rather than imputed. For measurements of endogenous ACTH, concentrations < 10

pg/ml were assigned a value of zero.

Unmatched numbers of control dogs (n = 30) and dogs with gallbladder mucocele forma-

tion (n = 39) underwent thyroid hormone and iodine concentration testing and continuous

data were analyzed using unpaired statistical analyses (Kruskal-Wallis One Way ANOVA on

Ranks). A reduced subset of breed, sex, and age-matched control dogs (n = 30) and dogs with

gallbladder mucocele formation (n = 30) underwent steroid hormone concentration and

endogenous ACTH testing and therefore comparisons of continuous data between groups and

in response to cosyntropin administration, were analyzed using paired statistical analyses

(Wilcoxin signed rank test). To compare the results of thyroid and steroid hormone testing a

sample size of 30 dogs per treatment group was chosen based on an estimated ability to dem-

onstrate a 2-fold or greater difference between groups with 80% power and assuming an aver-

age coefficient of variance of 0.45 as reported in prior studies from which this variance could

be calculated[46, 47].

For diagnostic assays with established reference intervals (clinical pathology, thyroid hor-

mone, TSH and ACTH assay results), those intervals were used to define the percentage of

dogs having values outside reference range limits. For ACTH, a reference interval of 10 to 45

pg/ml was used. A laboratory-based diagnosis of hypothyroidism was defined by results dem-

onstrating a low serum total T4 and elevated serum TSH or a low serum FT4 as previously pro-

posed[13, 48, 49]. For assays without established reference intervals (i.e. serum steroid

concentrations), a 95% double-sided reference interval was calculated from data obtained

from control dogs using the Robust method as described in the Clinical and Laboratory Stan-

dards Institute (CLSI) Guidelines EP28-A3c and recommended by the American Society of

Veterinary Clinical Pathology for sample sizes ranging from� 20 to< 40 [50]. Data were

tested for outliers using the method based on Reed et al [51]. Ninety percent confidence inter-

vals for the reference limits were estimated using bootstrapping (percentile interval method

[52]). Statistical analyses were performed using MedCalc for Windows, version 18.11 (Med-

Calc Software, Ostend, Belgium). In the control group of dogs, there were no significant differ-

ences between spayed female and neutered male dogs in the concentrations of steroid

hormones before or after exogenous administration of ACTH. Accordingly, the control values

of each steroid from female and male dogs were combined to create a control reference inter-

val for each steroid. Based on these reference intervals, the % of dogs having steroid concentra-

tions outside the reference interval was calculated. Differences in the % of control dogs and

dogs with gallbladder mucocele formation having values outside of reference range limits were

tested for significance using Chi Square and Fisher Exact Tests. Statistically significant results

were reported as odds ratio, 95% confidence interval, and p-value.

A Pearson product-moment correlation coefficient (r) was computed to assess strength of

the linear relationship between the following continuous variables (age, cholesterol, alkaline

phosphatase activity (ALP), gamma-glutamyl transferase activity (GGT), total bilirubin, blood

urea nitrogen (BUN), creatinine, lipase, amylase, TT3, TT4, FT3, FT4, TSH, UICR, post-

cosyntropin cortisol, and endogenous ACTH). The correlation coefficient can be generally

interpreted to reflect a weak (r<0.4), moderate (r>0.4 to 0.7), or strong relationship (r>0.7)

between the variables and with the positive or negative value of r reflecting the direction of the

association[53]. All statistical analyses were performed using commercially available software
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(Sigma Plot12, Systat Software, Inc. San Jose, CA and Prism version 7.03, GraphPad Software,

La Jolla, CA).

Statistical results of experimental data undergoing multiple testing underwent a Benjamini-

Hochberg procedure[54] using a false-discovery rate of 0.15. All results reported as statistically

significant had a p-value of<0.05 and Benjamini-Hochberg corrected p-value <0.15.

Results

Description of case dogs

Ninety-seven dogs, suspected to have gallbladder mucocele formation, were considered for

inclusion in the study. Thirty-nine dogs (40%) met the inclusion criteria. The remaining 58

(60%) dogs had one or more exclusion criteria. Twenty five dogs were excluded based on fail-

ure to confirm gallbladder mucocele formation upon review of ultrasonographic images by an

ACVR-boarded radiologist (G.S.) or at the time of surgery or post-mortem examination.

Twelve dogs were receiving medications known or suspected to interfere with thyroid function

testing including exogenous glucocorticoids, sulfa-containing drugs, or non-steroidal anti-

inflammatory drugs. The remaining dogs were assessed to be too medically unstable to partici-

pate in the study (n = 9), were reproductively intact (n = 5), were documented to have an his-

torical diagnosis of hypothyroidism or were receiving levothyroxine (n = 6), or were

previously diagnosed with hyperadrenocorticism (n = 1).

Dogs with gallbladder mucocele formation that were enrolled into the study were repre-

sented by 19 breeds including 11 Shetland Sheepdogs, 4 American Cocker Spaniels, 3 Beagles,

2 Bichon Frise, 2 Chihuahuas, 2 Miniature Poodles, 2 Pugs, 2 Mixed Breed Dogs, and 1 each of

the following breeds: American Staffordshire Terrier, Border Collie, Border Terrier, Cavalier

King Charles Spaniel, Fox Terrier, Kerry Blue Terrier, Labrador Retriever, Miniature Schnau-

zer, Pomeranian, Shih Tzu, and West Highland White Terrier. Ages of the affected dogs ran-

ged from 2 to 16 years (median, 10 years). There were 22 castrated males and 17 spayed

females and the median body weight was 9.0 kg (range 5.0 to 34.2 kg). The non-thyroidal ill-

ness severity scores of the dogs at the time of participation in the study were as follows: 0

(absent) in 14 (35.9%) dogs, 1 (mild) in 8 (20.5%) dogs, 2 (moderate) in 8 (20.5%) dogs, and 3

(severe) in 9 (23.1%) dogs.

Description of control dogs

Thirty-eight dogs of similar age, predisposed breed, and spayed or castrated were screened for

inclusion in the study as controls. Thirty dogs met the inclusion criteria. All 8 dogs that were

excluded had an abnormal ultrasonographic appearance of the gallbladder. The 30 control dogs

enrolled in the study represented 16 breeds including 11 Shetland Sheepdogs, 3 American Cocker

Spaniels, 2 Chihuahuas, 2 Bichon Frise, and 1 each of the following breeds: American Staffordshire

Terrier, Beagle, Border Collie, Border Terrier, Cavalier King Charles Spaniel, Fox Terrier, Kerry

Blue Terrier, Miniature Schnauzer, Shih Tzu, Pug, Miniature Poodle, and Labrador Retriever. Ages

of the control dogs ranged from 6 to 13 years (median, 10 years). There were 16 castrated males

and 14 spayed females and the median body weight was 9.5 kg (range 2.7 to 35.6 kg). All control

dogs had an illness severity score of 0 (absent). There was not a statistically significant difference in

age, sex, or body weight between control dogs and dogs with gallbladder mucocele formation.

Diagnosis of gallbladder mucocele formation

All 39 dogs had gallbladder mucocele formation diagnosed by means of ultrasonography of

the gallbladder. Indications for the ultrasound examination in these dogs included routine
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screening for gallbladder mucocele formation in an otherwise healthy dog (10 dogs); clinical

signs of gastrointestinal illness, increased liver enzyme activities and/or increased serum total

bilirubin (21 dogs); further evaluation of urinary tract disease (urolithiasis, stranguria, azote-

mia)(4 dogs); investigation of inappetence, weakness or syncope in a cardiology patient (3

dogs); and as a survey for metastatic disease (1 dog). In 14/39 (36%) dogs, gallbladder muco-

cele formation was additionally confirmed by histopathology of gallbladder tissue obtained at

the time of surgery (10 dogs) or at post-mortem examination (4 dogs). All 30 control dogs had

no evidence if mucocele formation on gallbladder ultrasound examination. In all control dogs,

indication for ultrasound examination was for the purpose of screening for inclusion in this

study.

Clinicopathologic findings

Results of CBC and a serum biochemistry profile were obtained for 38/39 (97.4%) dogs with

gallbladder mucocele formation and all 30 control dogs. Compared to control dogs, dogs with

gallbladder mucocele formation had significantly more polymorphonuclear leukocytes and

bands and higher activities for liver enzymes (alkaline phosphatase, ALT, and GGT), lipase, and

amylase. Also observed was a higher serum total bilirubin and cholesterol and lower serum

albumin in dogs with gallbladder mucocele formation compared to control dogs (Table 1).

Steroid hormone assay results

Among the 17 unique steroids included in the utilized assay, 8 steroids were present in > 90%

of all dogs at serum concentrations greater than the LOD before or after the administration of

synthetic cosyntropin. For these steroids, missing values were imputed, and 95% reference

intervals were constructed from the control dog data. Considering this subset of steroids, no

significant differences were observed between control and gallbladder mucocele groups in the

number of dogs having� 1 steroid hormone (or any individual steroid hormone) above of the

reference interval before or after the administration of cosyntropin (S1 and S2 Tables).

Before administration of cosyntropin, dogs with gallbladder mucocele formation had sig-

nificantly lower median serum concentrations of 11-deoxycorticosterone and 11-deoxycortisol

compared to control dogs. For both groups of dogs, a significant increase in the median con-

centration of each of the 8 steroids was observed after administration of cosyntropin. After

administration of cosyntropin, dogs with gallbladder mucocele formation had a greater magni-

tude of increase in both corticosterone and cortisol compared to control dogs, although only

cortisol remained significant after adjusting for multiple testing (Fig 1). Data relating cortisol

concentrations before and after administration of cosyntropin in individual dogs is shown in

S1 Fig.

Nine of the 17 assayed steroids were present at concentrations greater than LOD in only a

subset of dogs (Table 2). Considering data for only those dogs with values greater than LOD, a

significantly greater number of dogs with gallbladder mucocele formation (7/30, 23%) had

measurable concentrations of dehydroepiandrosterone sulfate (DHEAS) compared to control

dogs (1/30, 3%) before administration of cosyntropin (Fig 2). The median concentration of

DHEAS before cosyntropin in dogs with gallbladder mucocele formation was significantly

greater than for control dogs after cosyntropin administration. No dogs with gallbladder

mucocele formation had detectable concentrations of aldosterone prior to administration of

cosyntropin, but mucocele dogs had significantly higher concentrations of aldosterone than

control dogs after administration of cosyntropin (Table 2). Infrequent detection of dihydrotes-

tosterone, androsterone, estrone, and etiocholanolone was anticipated in these spayed and cas-

trated dogs.
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Median pre-cosyntropin plasma endogenous ACTH concentration did not differ between

control dogs and dogs with gallbladder mucocele formation. Similar numbers of control and

gallbladder mucocele dogs had concentrations above and below the reference interval (Fig 3).

There was no significant correlation between ACTH and concentrations of 11-deoxycorticos-

terone, 11-deoxycortisol, corticosterone, cortisol, cortisone, progesterone, 17α-hydroxypro-

gesterone, or androstenedione among either control dogs or dogs with gallbladder mucocele

formation (data not shown).

Table 1. Selected complete blood cell count and serum biochemical analysis findings in 38§ dogs with gallbladder mucocele formation and 30 control dogs that fit

inclusion criteria for this study.

Clinical Pathological

Variable

No Gallbladder Mucocele

(30 dogs)

Gallbladder Mucocele

(38 dogs§)

Reference

range

Chi-square Odds Ratio

Median Range Number (%) of dogs

with abnormal value

Median Range Number (%) of dogs

with abnormal value

Odds

Ratio

95% CI p-value

Complete blood cell count

Packed cell volume (%) 44 30–52 3 (10) 41 22–61 13 (35)� 39–58 4.7 1.2–

18.4

0.04

Plasma protein (g/dl) 7.2 5.8–8.3 12 (43) 7.3 4.3–10.0 13 (42) 6.1–7.5 0.78 0.29–

2.1

0.812

Total white blood cells (×
103/μl)

7.545 3.460–

13.730

5 (17) 10.670��� 4.670–

66.330

18 (49)� 4.39–11.61 4.5 1.4–

14.2

0.016

Polymorphonuclear

leukocytes (× 103/μl)

5.460 2.214–

10.450

6 (20) 8.610��� 3.468–

55.054

16 (43) 2.841–9.112 2.9 0.97–

8.7

0.094

Bands (× 103/μl) 0.0 0.0–

0.210

10 (33) 0.217��� 0–6.568 25 (68)� 0.0–0.0 3.8 1.4–

10.6

0.016

Platelets (× 103/μl) 353 189–616 4 (13) 381 73–820 8 (22) 191–468 1.7 0.47–

10.6

0.016

Serum biochemical

analysis

Alkaline phosphatase (IU/

L)

52 6–251 5 (17) 308��� 21–5236 27 (71)��� 16–140 12.3 3.74–

40.3

<0.001

ALT (IU/L) 48 11–215 10 (33) 172��� 11–5393 27 (71)�� 12–54 4.9 1.75–

13.8

0.004

GGT (IU/L) 0.0 0–6 0 (0) 12��� 0–112 21 (55)��� 0–6 — — <0.001†

Total bilirubin (mg/dl) 0.0 0.0–0.1 0 (0.0) 0.1��� 0.0–11.5 12 (32)�� 0–0.2 — — 0.002†

Cholesterol (mg/dl) 259 165–452 5 (17) 323� 107–754 18 (47)� 124–344 4.5 1.42–

12.2

0.016

Blood urea nitrogen (mg/dl) 16 8–36 2 (7) 17 5–179 12 (32)� 8–26 6.5 1.32–

31.7

0.026

Creatinine (mg/dl) 0.8 0.5–1.1 0 (0.0) 0.75 0.2–5.9 4 (10) 0.7–1.5 — — 0.124†

Albumin (g/dl) 3.6 2.9–4.6 5 (17) 3.3�� 1.6–4.2 13 (34) 3–3.9 2.6 0.81–

8.4

0.117

Lipase (IU/L) 83 24–1032 3 (10) 144��� 25–3920 19 (50)�� 12–147 9.0 2.3–

34.8

0.001

Amylase (IU/L) 664 67–1496 1 (3) 825� 363–

3143

11 (29)� 236–1337 11.8 1.4–

97.8

0.015

Comparison of median values performed using Kruskal-Wallis One Way ANOVA on Ranks. Comparison of proportions performed using Chi-square statistic.

�p<0.05

��p<0.01, and

���p<0.001 (Benjamini-Hochberg FDR� 0.15).

†P-value represents Fisher-Exact test probability.
§ Testing was not performed in 1 dog with gallbladder mucocele formation

ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase

https://doi.org/10.1371/journal.pone.0212638.t001
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Fig 1. Measurements of serum steroid concentrations before and 1 hour after administration of cosyntropin to control dogs and dogs diagnosed with

gallbladder mucocele formation. Data points represent individual dogs. Before and after refer to concentrations measured prior to and following

administration of cosyntropin, respectively. Delta refers to the absolute change in steroid concentration after cosyntropin administration (after–before).

Horizontal dashed lines indicate the upper limit of the reference interval established by CLSI C28-A3 Robust method using concentrations measured in control

dogs in this study. Confidence interval (90%) for upper limit reference interval in control dogs is reported in S1 and S2 Tables. Bars represent median and

interquartile range. �P<0.05, ��P<0.01 Wilcoxin signed rank test compared to control dogs under same conditions (Benjamini-Hochberg FDR� 0.15).

https://doi.org/10.1371/journal.pone.0212638.g001

Table 2. Serum concentrations (in nmol/L) of 9 steroid hormones measured at concentrations> LOD in less than 50% of dogs before and 1 hour after intravenous

administration of synthetic cosyntropin.

Steroid Number (%) of dogs with

steroid > LOD

Median (IQR)

steroid concentration in nmol/L

Control

(n = 30)

Mucocele

(n = 30)

Control (n = 30) Mucocele (n = 30)

Before After Before After Before After Before After

Testosterone 3 (10) 15

(50)

2 (7) 12

(40)

0.0211 (0.0153–

0.0218)

0.0350 (0.0177–

0.0558)

0.0340 (0.0211–

0.0468)

0.0274 (0.0191–

0.0414)

Aldosterone 4 (13) 11

(37)

0 (0)� 8 (27) 0.298 (0.135–0.383) 0.168 (0.125–0.280) ND 0.376 (0.210–0.487)§

Dehydroepiandrosterone

sulfate

1 (3) 4 (13) 7

(23)�
5 (17) 91.7 (1 dog) 66.6 (48.2–106.4) 249.9 (96.9–342)§† 190.5 (51.3–354.7)

Dihydrotestosterone‡ 3 (10) 1 (3) 3 (10) 3 (10) 0.580 (0.0296–0.869) 0.577 (1 dog) 0.222 (0.164–0.694) 0.197 (0.149–0.639)

Androsterone‡ 1 (3) 0 (0) 1 (3) 3 (10) 0.0258 (1 dog) ND 0.0296 (1 dog) 0.0279 (0.0258–

0.0665)

Estrone‡ 3 (10) 0 (0) 0 (0) 0 (0) 0.0233 (0.0215–

0.0270)

ND ND ND

Estradiol‡ 0 (0) 0 (0) 1 (3) 0 (0) ND ND 0.031 (1 dog) —

Etiocholanolone‡ 0 (0) 1 (3) 0 (0) 0 (0) ND 0.481 (1 dog) ND ND

Dehydroepiandrosterone‡ 0 (0) 0 (0) 0 (0) 0 (0) ND ND ND ND

�P<0.05 Fisher Exact Test compared to control dogs before cosyntropin
§P<0.05 Kruskal-Wallis One Way Analysis of Variance on Ranks (Benjamini-Hochberg FDR� 0.15).

†Significantly greater compared to after- cosyntropin concentration in control dogs

‡Steroids for which� 3 dogs had concentrations > LOD did not undergo statistical analysis

ND, not detected at concentrations >LOD in any dogs

https://doi.org/10.1371/journal.pone.0212638.t002
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Thyroid hormone assay results

Sixty-nine percent (27/39) of dogs with gallbladder mucocele formation had at least one mea-

surement out of reference range on the thyroid profile compared to 37% (11/30) of control

dogs (OR 3.9, 95% CI 1.4–10.6; p = 0.014). Summary data for each assay for both groups of

dogs are shown in Table 3 and presented individually in Fig 4.

There was a significantly lower median serum concentration of total T4 in dogs with gall-

bladder mucocele formation compared to control dogs with 51% (20/39) of gallbladder muco-

cele dogs and 7% (2/30) of control dogs having a value below the reference range. Compared

to control dogs, dogs with gallbladder mucocele formation were 14.7 times more likely to have

a serum total T4 concentration below reference range limits. There was a significantly lower

median serum concentration of total T3 in dogs with gallbladder mucocele formation com-

pared to control dogs with 59% (23/39) of gallbladder mucocele dogs and 17% (5/30) of con-

trol dogs having a value below the reference range. Compared to control dogs, dogs with

gallbladder mucocele formation were 7.2 times more likely to have a serum total T3 concentra-

tion below reference range limits (Fig 4). Total T4, T3, or both were not detected in the serum

of 6/39 (15%) dogs with gallbladder mucocele formation. Both total T4 and total T3 were

below reference range limits in 19/39 (49%) dogs, followed by low total T3 alone in 4/39 (10%)

or low total T4 alone in 2/39 (5%) dogs with gallbladder mucocele formation.

There was a significantly lower median serum concentration of FT4 in dogs with gallbladder

mucocele formation compared to control dogs with 14% (5/35) of gallbladder mucocele dogs

and 0% (0/30) of control dogs having a value below the reference range. Free T4 was below the

Fig 2. Measurements of serum dehydroepiandosterone sulphate (DHEAS) concentrations before and 1 hour after

administration of cosyntropin to control dogs and dogs diagnosed with gallbladder mucocele formation. Data

points represent individual dogs with concentrations above the lower limit of detection. Before and after refer to

concentrations measured prior to and following administration of cosyntropin, respectively. Dashed lines indicate

dogs for which a measurable concentration of DHEAS was obtained both before and after administration of

cosyntropin. Bars represent median. �P<0.05 Kruskal-Wallis One Way Analysis of Variance on Ranks compared to

control dogs after administration of cosyntropin (Benjamini-Hochberg FDR� 0.15).

https://doi.org/10.1371/journal.pone.0212638.g002
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limit of detection in the serum of one dog with gallbladder mucocele formation. The median

serum concentration of FT3 was not significantly different between dogs with gallbladder

mucocele formation and control dogs, however a significantly greater percentage of dogs with

gallbladder mucocele formation had a serum concentration of FT3 below reference range (6/

30; 20%) compared to control dogs (0/25; 0%). An increase in serum concentration of TSH

above reference range limits was observed in 23% (8/35) of dogs with gallbladder mucocele

formation and 7% (2/30) of control dogs.

An increase above reference range in serum percent TgAA was observed in 2/34 (7%) con-

trol dogs and 0/30 (0%) dogs with gallbladder mucocele formation. Two dogs with gallbladder

mucocele formation (a Shetland sheepdog and a Border Collie) had a T3AA value above the

reference range. No dog in the study had a T4AA value above the reference range.

Twenty-six percent (9/35) of dogs with gallbladder mucocele formation met diagnostic cri-

teria for diagnosis of hypothyroidism on the basis of having a low serum total T4 and elevated

serum TSH or a low serum FT4 [13, 48, 49]. Among the 9 dogs meeting the diagnostic criteria,

5 dogs had all 3 abnormalities present. Four dogs with gallbladder mucocele formation were

not included in the analysis due to a missing FT4 or TSH measurement. None of the control

dogs met diagnostic criteria for diagnosis of hypothyroidism.

Fig 3. Plasma ACTH concentration in control dogs and dogs with gallbladder mucocele formation. Data represent individual

dogs with reference range limits shown as dashed lines. Bars represent median and interquartile range. Open circles represent dogs

with gallbladder mucocele formation that had concurrent post-cosyntropin serum cortisol concentrations above the calculated

reference range (as shown in Fig 1).

https://doi.org/10.1371/journal.pone.0212638.g003
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Urine inorganic iodine and iodine:Creatinine ratio

Inorganic iodine and creatinine were measured in the urine of 32 dogs with gallbladder

mucocele formation and 29 control dogs. Both groups of dogs demonstrated a high median

and wide range in concentration of urine iodine that did not differ significantly between

control dogs and dogs with gallbladder mucocele formation (Fig 5A). Based on the National

Research Council recommended daily allowance for iodine intake in the dog, and as

expressed on the basis of metabolic body weight (29.6 μg/kg0.75)[55, 56], commercial diets

should provide iodine within a minimum range of 100 to 500 μg per day. Assuming a conser-

vative urine output of 30 ml/kg/day, dogs in this study can be estimated to have excreted any-

where from 6 μg to more than 3,324 μg of iodine in excess of their daily thyroid requirement.

Dogs with gallbladder mucocele formation had a significantly higher median urine iodine:

creatinine ratio (UICR; μg/g) of 0.154 (interquartile range (IQR), 0.0346 to 0.359) compared

to control dogs (UICR = 0.0692; IQR, 0.0482 to 0.118)(p = 0.048, Kruskal Wallis One Way

ANOVA on Ranks) (Fig 5B). There was no significant association between non-thyroidal ill-

ness severity score and urine iodine:creatinine ratio in dogs with gallbladder mucocele

formation.

Table 3. Thyroid hormone, thyroid hormone stimulating hormone, and autoantibody results in 39 dogs with gallbladder mucocele formation and 30 control dogs

meeting the inclusion criteria for this study.

Thyroid Profile Variables No Gallbladder Mucocele Gallbladder Mucocele Reference

range

Chi-square Odds Ratio

Median Range Number (%) of

dogs with value

out of reference

range

Median Range Number (%) of dogs

with value out of

reference range

Below Above Below Above Odds

Ratio

95% CI p-value

Total T4 (nmol/L) 23.5 8–43 2/30 (7) 0/30

(0)

10��� 0.0–44 20/39

(51)���
0/39 (0) 11–60 14.7 3.1–70.5 <0.001

Total T3 (nmol/L) 1.0 0.5–2.0 5/30

(17)

0/30

(0)

0.7��� 0.0–1.7 23/39

(59)���
0/39 (0) 0.8–2.1 7.2 2.3–22.8 <0.001

Free T4 by dialysis (pmol/L) 18.9 7.0–

34.0

0/30 (0) 0/30

(0)

15.0� 1.0–27.0 5/35 (14) 0/35 (0) 6–42 — — 0.057†

Free T3 (pmol/L) 3.9 1.2–9.1 0/25 (0) 2/25

(8)

2.9 0.0–10.5 6/30 (20)� 1§/30

(3)

1.2–8.2 — — 0.027†

Thyroid Stimulating Hormone

(ng/ml)

0.16 0.02–

0.6

0/30 (0) 2/30

(7)

0.19 0.02–

2.24

0/35 (0) 8/35

(23)

0.00–0.58 4.1 0.81–

21.3

0.092

T4 Autoantibody (%) 10.0 0.0–

12.0

0/25 (0) 0/25

(0)

7.0� 0.0–12.0 0/32 (0) 0/32 (0) 0–20 NA NA NA

T3 Autoantibody (%) 4.0 0.0–7.0 0/28 (0) 0/28

(0)

5.0� 0.0–28.0 0/34 (0) 2/34 (6) 0–10 — — 0.497†

Thyroglobulin Autoantibody

(%)

7.0 0.0–

77.0

0/30 (0) 2/30

(7)

6.0 0.0–19.0 0/35 (0) 0/35 (0) 0–35 — — 0.209†

Comparison of median values performed using Kruskal-Wallis One Way ANOVA on Ranks.

Comparison of proportions performed using Chi-square statistic.

�p<0.05

��p<0.01, and

���p<0.001 (Benjamini-Hochberg FDR� 0.10).

†P-value represents Fisher-Exact test probability.

§ This dog did not have identified autoantibodies.

https://doi.org/10.1371/journal.pone.0212638.t003
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Influence of illness severity

A significant impact of non-thyroidal illness severity score on median measurements of corti-

sol and thyroid hormones, endogenous ACTH and TSH, and UICR was only observed for

serum total T4. Dogs with an illness severity score of 2 or 3 (moderate to severe) were more

likely to have a serum total T4 below the reference range compared to dogs with an illness

severity score of 0 or 1 (absent to mild)(OR 6.0, 95% CI 1.6–29.3; p = 0.015). There was no sig-

nificant association between an illness severity score of 2 to 3 versus 0 to 1 and presence of an

out-of-reference-range test result for total T3, FT4, FT3, TSH, post-cosyntropin cortisol,

endogenous ACTH, or having met the diagnostic criteria for hypothyroidism or hyperadreno-

corticism (data not shown).

Correlations between serum biochemistry, post-cosyntropin cortisol, and

thyroid hormone concentrations

Correlations were performed to provide insight into the pathogenesis or confounding influ-

ence of serum biochemistry abnormalities and their relationship to the results of simulta-

neously measured post-cosyntropin cortisol and thyroid hormone concentrations in dogs with

gallbladder mucocele formation.

Fig 4. Thyroid hormone assay results obtained from control dogs and dogs diagnosed with gallbladder mucocele formation. For dogs with gallbladder

mucocele formation, values are shown subdivided by non-thyroidal illness severity score. The horizontal dashed line designates lower limit of the laboratory

reference range (total T4, FT4, total T3, and FT3) and upper limit of the laboratory reference range (TSH). Among dogs with gallbladder mucocele formation,

solid gray data points represent dogs meeting proposed criteria for diagnosis of hypothyroidism. Bar = median. �p<0.05 and ���p<0.001 Kruskal Wallis One

Way ANOVA on Ranks (Benjamini-Hochberg FDR� 0.15). Significant differences between illness severity groups, if present, determined by post-hoc Dunn’s

test.

https://doi.org/10.1371/journal.pone.0212638.g004
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Serum cholesterol was positively correlated with serum concentration of total T3 and FT3

in dogs with gallbladder mucocele formation (TT3; r = 0.436, n = 38, p = 0.006 and FT3; r =

0.506, n = 29, p = 0.005). For both groups of dogs, there was no significant correlation between

serum cholesterol and post-cosyntropin cortisol or endogenous ACTH concentration. Dogs

having gallbladder mucocele formation and a serum cholesterol above reference range limits

were no more likely than dogs with normal serum cholesterol to have met the defined criteria

for diagnosis of hypothyroidism or hyperadrenocorticism. In dogs with gallbladder mucocele

formation, serum cholesterol was positively correlated with biochemical indices of cholestasis,

ALP (r = 0.394, n = 38, p = 0.014) and total bilirubin (r = 0.406, n = 38, p = 0.01).

There were no significant correlations between serum biochemistry values and post-cosyn-

tropin cortisol or endogenous ACTH concentrations in dogs with gallbladder mucocele for-

mation other than a positive correlation between GGT activity and post-cosyntropin cortisol

(r = 0.449, n = 30, p = 0.013). In control dogs, ALP was positively correlated with post-cosyn-

tropin cortisol concentration (r = 0.484, n = 28, p = 0.009).

Serum albumin was positively correlated with serum concentration of total T4 (r = 0.466,

n = 30, p = 0.009) and total T3 (r = 0.575, n = 30, p = 0.0009) in control dogs and with total T4

(r = 0.525, n = 38, p = 0.0007), total T3 (r = 0.542, n = 38, p = 0.0004), and FT3 (r = 0.596,

n = 29, p = 0.0006) in dogs with gallbladder mucocele formation. Dogs with gallbladder muco-

cele formation that had serum albumin concentration below reference range limits were no

more likely to have abnormal concentrations of thyroid hormones, TSH, post-cosyntropin

cortisol, or endogenous ACTH compared to dogs with gallbladder mucocele formation and

normal serum albumin. In dogs with gallbladder mucocele formation, serum albumin was

negatively correlated with BUN (r = -0.414, n = 38, p = 0.0097), and creatinine (r = -0.426,

n = 38, p = 0.0077) concentration.

Among all dogs with gallbladder mucocele formation, there were moderate correlations

between increasing age and decreasing FT4 concentration (r = -0.450, n = 35, p = 0.007),

increasing TSH concentration (r = 0.492, n = 35, p = 0.003), and increasing UICR (r = 0.426,

n = 32, p = 0.015). Significant correlations between age and FT4, TSH, and UICR in control

Fig 5. Urine iodine concentration (A) and urine iodine to creatinine ratio (UICR) (B) of control dogs and dogs diagnosed with gallbladder mucocele

formation. Panel A demonstrates values for urine iodine concentration in individual dogs. Bar = median. Shaded area represents the NRC recommended daily

intake of iodine (in μg) as expressed on the basis of metabolic body weight. Panel B demonstrates UICR for both groups of dogs and in dogs with gallbladder

mucocele formation as subdivided by illness severity score. Among dogs with gallbladder mucocele formation, filled gray data points represent dogs meeting

proposed criteria for diagnosis of hypothyroidism. Open circle data points represent 3 dogs that were subsequently euthanized and had thyroid tissue obtained

for iodine measurement. Bars = median. �p<0.05 Kruskal Wallis One Way ANOVA on Ranks.

https://doi.org/10.1371/journal.pone.0212638.g005
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dogs was not observed. In dogs with gallbladder mucocele formation, UICR was positively cor-

related with post-cosyntropin cortisol concentration (r = 0.654, n = 24, p = 0.0005) and serum

amylase activity (r = 0.454, n = 31, p = 0.01).

In control dogs, ACTH was positively correlated with TSH (r = 0.497, n = 28, p = 0.007). In

dogs with gallbladder mucocele formation, there was no correlation between post-cosyntropin

cortisol concentration or ACTH with any individual serum thyroid hormone measurement

(total T4, total T3, FT4 or FT3), or TSH. Dogs with gallbladder mucocele formation and having

a post-cosyntropin cortisol concentration above the calculated reference range were no more

likely than other dogs to have met the criteria for diagnosis of hypothyroidism. Correlation

matrices between serum biochemistry results and results of serum thyroid hormone testing,

TSH, post-cosyntropin cortisol, ACTH, and UICR are shown for control dogs (S3 Table) and

dogs with gallbladder mucocele formation (S4 Table).

Measurement of organic iodine in thyroid tissue from euthanized dogs

Recognition of significantly increased UICR in dogs with gallbladder mucocele formation

prompted interest in thyroid gland content of organic iodine, which requires the collection of

fresh frozen thyroid tissue. Accordingly, thyroid lobes were prospectively collected from 10

dogs with gallbladder mucocele formation immediately following euthanasia. Only 3 of these

dogs had undergone thyroid hormone assay testing prior to euthanasia. In each case, gallblad-

der mucocele formation was confirmed grossly and histologically post-mortem. Breeds repre-

sented included Shetland sheepdogs (n = 3), Border Collie, Border Terrier, Chihuahua, Lhasa

Apso, Miniature Schnauzer, Shih Tzu, and West Highland White Terrier (n = 1 each). Dogs

ranged in age from 10 to 17 years (median, 12.5 years). Control thyroid gland tissue was

obtained from research Foxhounds aged 4 years (n = 4), mixed-breed shelter dogs ranging in

age from 2 years to geriatric (n = 5), a 14 year old Chihuahua, and a 5 year old Shetland sheep-

dog. All control dogs underwent euthanasia over the same time interval as dogs with gallblad-

der mucocele formation and absence of gallbladder mucocele formation was confirmed by

gross inspection of the gallbladder at the time of post-mortem examination.

Thyroid glands from dogs with gallbladder mucocele formation had a non-significantly

greater concentration of organic iodine (mean ± SD, 3,482 ± 1,071 μg/g dry weight) than

glands from control dogs (2,600 ± 1,006)(p = 0.067, one-way ANOVA)(Fig 6). For the 3 dogs

with gallbladder mucocele formation that also had thyroid hormone testing and UICR mea-

sured, 2 dogs had normal thyroid hormone test results and 1 dog had low serum total T4 and

total T3. UICR results for these 3 dogs can be discerned from Fig 5B.

Retrospective examination of archival thyroid tissue from dogs with

gallbladder mucocele formation

Twenty-two dogs with a histologic diagnosis of gallbladder mucocele formation and undergo-

ing post-mortem examination from 2008 to 2015 were retrospectively identified from medical

records. Thirteen of the dogs were excluded because they did not have thyroid gland saved at

the time of post-mortem examination. One additional dog was excluded for a history of treat-

ment for hypothyroidism. From 2015–2017, thyroid tissue was prospectively collected from an

additional 11 dogs with diagnosis of gallbladder mucocele formation that underwent post-

mortem examination. In total 29 thyroid lobes from 19 dogs with histologic diagnosis of gall-

bladder mucocele formation were included in the study. Ages of the 19 dogs ranged from 4 to

17 years (median, 12 years). Breeds represented included 5 Shetland Sheepdogs, 2 each of

American Cocker Spaniels, Chihuahuas, and Mixed Breed Dogs, and 1 each of the following;

Border Collie, Border Terrier, German Shepherd Dog, Golden Retriever, Lhasa Apso,
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Miniature Schnauzer, Shih Tzu, and West Highland White Terrier. Three of the dogs under-

went thyroid function testing antemortem, none of which met criteria for diagnosis of hypo-

thyroidism. Fourteen control dogs of predisposed age and breed that had gross and

histologically normal appearing gallbladders and from whom thyroid tissue was archived at

the time of post-mortem examination were also identified. Two dogs were excluded due to his-

tory of treatment for hypothyroidism. In total 20 thyroid lobes from 12 dogs with histologically

normal appearing gallbladders were included in the study. Ages of the dogs ranged from 5 to

16 years (median, 12 years). Breeds represented included 5 American Cocker Spaniels, 4 Shet-

land Sheepdogs, and 3 Chihuahuas. None of the dogs had a history of thyroid function testing

or thyroid hormone treatment. Gallbladder and thyroid tissue were additionally obtained

from 4 apparently healthy research dogs and 5 shelter dogs immediately following euthanasia

that was performed for reasons unrelated to the study. In total 15 thyroid lobes from 9 of these

control dogs were included in the study. Research dogs were 4 year old mixed breed Fox-

hounds. Shelter dogs ranged in apparent age from young adult to geriatric and were repre-

sented by 3 American Staffordshire Terriers, a Husky, and a German Shepherd Dog. No

control dogs had evidence of gallbladder mucocele formation.

Thyroid lobes from dogs with gallbladder mucocele formation did not differ significantly in

light microscopic appearance of follicles or colloid compared to either group of control dogs.

No significant differences between the two control groups were identified (Table 4).

A single control dog had evidence of severe lymphocytic thyroiditis, however inflammatory

infiltrates were not observed in any glands from dogs with gallbladder mucocele formation.

Overall, few dogs had evidence of fat within the thyroid gland and when present was mild with

the exception of a moderate infiltrate in one control dog. Significantly more dogs with gall-

bladder mucocele formation had mineralization and lipofuscin present in thyroid tissue com-

pared to glands from control dogs. An adenoma and carcinoma were identified in thyroid

tissue from 2 dogs with gallbladder mucocele formation, respectively. An adenoma was identi-

fied in thyroid tissue from a single control dog.

Fig 6. Thyroid iodine content of control dogs and dogs diagnosed with gallbladder mucocele formation. Among

dogs with gallbladder mucocele formation, open circle data points represent 3 dogs that had concurrent thyroid

hormone assay testing. † serum total T4 and total T3 were below reference range. Bars = median.

https://doi.org/10.1371/journal.pone.0212638.g006
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Results of thyroid tissue analysis based on computer recognition of specified regions of

interest (Fig 7) within the glands of dogs in each group are summarized in S5 Table. No signifi-

cant differences between the 3 populations of dogs were observed.

Discussion

Adrenal function in dogs with gallbladder mucocele formation

Retrospective studies have identified a significant association between gallbladder mucocele

formation and a diagnosis of hyperadrenocorticism in dogs [5, 13, 17]. The reported preva-

lence for hyperadrenocorticism diagnosis prior to or within 6 months following diagnosis of

gallbladder mucocele formation in dogs is 23% and is based on results of either ACTH stimu-

lation or low-dose dexamethasone suppression testing and supportive clinical signs[13]. In

this study, we performed adrenal function testing on dogs that were diagnosed with gallblad-

der mucocele formation but had no obvious clinical signs or physical examination findings

suggestive of hyperadrenocortism. Dogs with gallbladder mucocele formation had a signifi-

cantly higher magnitude of increase in serum cortisol after stimulation with cosyntropin. This

supports an increased capacity of the adrenal cortex for glucocorticoid synthesis although the

Fig 7. Histology (A) and computerized histomorphometry (B) of thyroid gland tissue from a 13 year old castrated male American Cocker Spaniel with

gallbladder mucocele formation. Panel A represents the scanned in image of the original hematoxylin and eosin stained gland. Panel B demonstrates the

computer-generated assignment of each tissue architectural feature into one of 4 different categories as shown.

https://doi.org/10.1371/journal.pone.0212638.g007
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increase was fairly modest. We observed no significant relationship between illness severity at

the time of the study and magnitude of increase in serum cortisol, however an influence of

chronic stress[57] in dogs with mucocele formation could not be reliably assessed and cannot

be discounted. While progestogens appear to be able to promote gallbladder pathology similar

to gallbladder mucocele formation in experimental studies[20–24], there was no evidence for a

primary increase in endogenous progesterone synthesis by dogs with gallbladder mucocele

formation in this study. However, this does not rule out the possibility of exposure to exoge-

nous progestogens.

With the exception of DHEAS, no individual steroids were identified as increased above

reference range significantly more often in dogs with gallbladder mucocele formation com-

pared to control dogs. Only 3/30 (10%) dogs with gallbladder mucocele formation had a post-

cosyntropin cortisol concentration exceeding the reference range calculated for use in this

study (� 418 nmol/L) and also consistent with laboratory-based criteria for borderline (552–

607 nmol/L [200–220 ng/ml]) or customary diagnosis of hyperadrenocorticism (i.e.� 607

nmol/L [� 220 ng/ml])[58]. This is similar to the prevalence of hyperadrenocorticism reported

as preexisting in dogs at the time of diagnosis of gallbladder mucocele formation (prevalence

ranging from 8.9 to 14%)[6, 13, 17]. The comparable prevalence of post-cosyntropin hypercor-

tisolemia in dogs at the time of diagnosis of gallbladder mucocele formation in this study does

not support any major occult disturbance of glucocorticoid synthesis nor provide any justifica-

tion for routine testing for hyperadrenocorticism in dogs with gallbladder mucocele formation

that do not also have clinical signs of hypercortisolemia. In dogs with gallbladder mucocele

formation, there was not a significant correlation between post-cosyntropin cortisol concen-

tration and serum ALP activity. Instead, ALP was significantly correlated with serum biochem-

istry indicators of cholestasis such as total bilirubin, GGT, and cholesterol. The implication of

this is that serum ALP activity in dogs with gallbladder mucocele formation may not be useful

in assessing the possibility of underlying hyperadrenocorticism.

Perhaps the most interesting finding regarding adrenal function in dogs with gallbladder

mucocele formation was that a significantly greater number of dogs had measureable and

measurably higher concentrations of dehydroepiandrosterone sulfate (DHEAS) compared to

control dogs. Few studies have included measurement of DHEAS in assessment of the ste-

roidogenic response of the adrenal gland to cosyntropin administration in dogs[58, 59]. Those

studies demonstrated that a measureable quantity of DHEAS is produced by the adrenal gland

in clinically normal dogs and that serum concentrations of DHEAS are minimally responsive

to cosyntropin stimulation. In this study, only a subset of control dogs (20%) and dogs with

gallbladder mucocele formation (40%) had measureable serum DHEAS concentrations before

or after stimulation with cosyntropin, likely reflecting the higher limit of detection of the mass

spectrometry-based assay used in this study (39 nmol/L) compared to the radioimmunoassay

used in prior reports (1.4 nmol/L[35]). Nonetheless, dogs with gallbladder mucocele formation

had significantly higher concentrations of DHEAS than control dogs in this study and also

when compared to previous reports of DHEAS concentrations in normal dogs[35] and dogs

with hypercortisolemia[58]. The reason for increased serum DHEAS concentrations in dogs

with gallbladder mucocele formation is unclear. The adrenal cortex normally produces three

steroids with androgenic activity, dehydroepiandrosterone (DHEA), androstenedione, and

testosterone. Concentrations of DHEA were below the limit of detection for all dogs with gall-

bladder mucocele formation and control dogs in this study. Inactivation of DHEA is mediated

by sulfonation to form DHEAS, nearly all of which is synthesized in the adrenal cortex and

then released into the circulation. As such, serum DHEAS concentration is considered to be a

stable biomarker of adrenal androgen steroidogenesis[60]. High DHEAS and exaggerated

adrenal steroidogenesis in the absence of an overt hypothalamic-pituitary-adrenal axis
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dysfunction is described in women with polycystic ovary syndrome but has an unclear patho-

genesis[60]. It should also be considered that dogs with gallbladder mucocele formation could

have an impaired excretion of DHEAS. DHEAS is transported by organic anion-transporting

polypeptide (OATP) family members[61], ABCG2[62], and likely other efflux transporters[63]

that play critical roles in excretion of endogenous compounds and xenobiotics. In particular,

ABCG2 (aka Breast Cancer Resistance Protein, BCRP) resides in the hepatocyte canalicular

membrane[62] and many ABCG2 substrates, including DHEAS, are products of phase II

metabolism by co-expressed sulfotransferases. In the absence of ABCG2 activity these com-

pounds can be increased in plasma and reduced in bile[63]. It is of interest that a number of

compounds excreted by ACBG2, such as phytoestrogens[64] and riboflavin[65], were identi-

fied in a previous study to be significantly lower in the bile of dogs with gallbladder mucocele

formation compared to control dogs[66]. Determining whether or not increases in DHEAS in

dogs with gallbladder mucocele formation represent a biomarker of altered xenobiotic metab-

olism or transport versus an increase in androgen synthesis by the adrenal glands will require

additional studies.

Thyroid function, iodine homeostasis and thyroid gland pathology in dogs

with gallbladder mucocele formation

The prevalence of hypothyroidism in dogs with gallbladder mucocele formation in prior stud-

ies is reported to range from 13 to 17%[5, 13, 17]. In this prospective study, we documented

that 26% of dogs had thyroid profile test results arguably consistent with laboratory-based

diagnostic criteria for hypothyroidism at the time of diagnosis of gallbladder mucocele forma-

tion. These dogs had no obvious clinical signs or physical examination findings suggestive of

hypothyroidism and their test results were defined by having a low serum total T4 and an ele-

vated serum TSH or a low serum FT4 concentration[13, 48, 49]. In view of the significant asso-

ciation between hypothyroidism and gallbladder mucocele formation reported in other studies

[13, 17] and the observed prevalence of abnormal thyroid hormone test results in this study, it

is worth considering that thyroid dysfunction in dogs with gallbladder mucocele formation

may not simply be a coincidental disease process.

Several observations suggest that dogs with gallbladder mucocele formation and abnormal

thyroid hormone test results in this study were unlikely to have primary hypothyroidism.

First, no dogs in this study had positive test results for anti-thyroglobulin antibodies (TgAA).

We would expect a prevalence of 50% positive for TgAA in this population if abnormal thyroid

test results were due to subclinical immune-mediated thyroiditis[42, 43, 67]. Second, the lack

of pathological findings such as inflammatory cell infiltrates, destruction of follicles, increase

in adipose tissue, gland atrophy, or fibrosis[68, 69] in 29 thyroid lobes from 19 dogs with gall-

bladder mucocele formation in this study was noteworthy. While the sample size might be

considered small, it should be sufficient to identify at least some stage in progression of thyroid

disease if representing a population of dogs with a reported prevalence for diagnosis of pri-

mary hypothyroidism of 13–17%. This is particularly true if one considers the common asser-

tion that more than 60 to 70% of thyroid tissue must be destroyed before changes are observed

in laboratory measures of thyroid function[70]. In addition to histopathological examination,

we performed an unbiased morphometric analysis of each thyroid tissue specimen and com-

pared these findings to control dogs of predisposed age and breed as well as healthy dogs. Our

rationale was that abnormal thyroid function in dogs with gallbladder mucocele formation

would be reflected in the known structure-function relationship between activity of the thyroid

gland and appearance of the follicular epithelium and colloid[71, 72]. Active thyroid tissue has

small follicles with reduced colloid content lined by tall (active) follicular epithelial cells.
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Inactive thyroid tissue has large colloid-filled follicles lined by cuboidal (inactive) epithelium.

In this study, we did not identify any significant or systematic differences between dogs with

gallbladder mucocele formation and the other control groups. This finding indirectly suggests

that the dogs with gallbladder mucocele formation, and whose thyroid glands were included in

this analysis, had a similar potential for synthesizing and secreting thyroid hormones as com-

pared to dogs without gallbladder mucocele formation. Therefore, it would seem unlikely that

primary hypothyroidism or autoimmune thyroiditis was a major cause for abnormal thyroid

hormone homeostasis in these dogs or somehow contributed to their gallbladder mucocele

formation.

It is reasonable to suspect that abnormal thyroid hormone test results observed in dogs

with gallbladder mucocele formation in this study could be attributed to concurrent non-thy-

roidal illness (NTI). Most dogs diagnosed with gallbladder mucocele formation have an ill-

ness-related indication for having undergone an abdominal ultrasound examination. We

screened close to 100 dogs for inclusion in this study, over half of which were eliminated to

minimize the impact of NTI or concurrent drug or thyroxine administration on thyroid hor-

mone test results. Despite this, distinguishing between abnormal thyroid hormone homeosta-

sis and the effect of NTI in these dogs is a formidable challenge. A number of studies have

demonstrated that significant percentages of dogs with moderate to severe illness, and no clini-

cal signs or laboratory findings suggestive of hypothyroidism, will have serum total T4, total

T3, and/or FT4 in the hypothyroid range[44, 48, 71, 73–76]. Serum TSH appears to be least

affected by NTI[44, 71]. To address an effect of NTI on thyroid hormone test results in this

study, we stratified dogs by illness severity as previously described for dogs with NTI[44].

Consistent with prior studies of NTI in dogs, this study also demonstrated a significant

association between illness severity and decreasing serum concentrations of total T4. However,

a larger percentage of dogs with gallbladder mucocele formation had an abnormal total T4

(51% in this study versus 31[44] and 35%[74] in others) and this was observed at all degrees of

illness severity (mild, moderate, severe; 37, 67, and 89% respectively) compared to reports of

euthyroid dogs with NTI that were similarly stratified (8, 28, 60% respectively[44, 71, 77]).

Prior studies reporting the effect of NTI on total T3 concentrations in dogs demonstrate a

large variation in percentage of abnormal total T3 results ranging from 8% to 76%[44, 48, 74,

77], being largely related to the severity of illness in the dogs studied. However, in dogs with

gallbladder mucocele formation, a much larger percentage of dogs had an abnormal total T3 at

all degrees of illness severity (mild, moderate, severe; 86, 62, and 78% respectively) compared

to reports of euthyroid dogs with NTI that were similarly stratified (3, 18, 27%, respectively)

[44]. Moreover, the median total T3 in dogs with gallbladder mucocele formation was at or

below the reference range in all categories of illness severity, while in other studies this was

only observed in the most critically ill dogs[74, 75] or not at all[44]. In this study, 15% of dogs

had serum total T4, total T3 or both below the limit of detection of the assay (i.e. 0 nmol/L). It

is unlikely that the high prevalence of severely reduced total T3 concentrations in dogs with

gallbladder mucocele formation in this study is due to primary hypothyroidism, because total

T3 concentrations are not predictably reduced in hypothyroid dogs[48, 76]. Most dogs with

gallbladder mucocele formation in this study had a concurrently low total T3 and total T4

(48.7%) which differs from a study of dogs with severe illness in which low total T3 alone was

the most common finding (42.1%)[74]. Finally, 20% of dogs with gallbladder mucocele forma-

tion had a FT3 below reference range. Few reports exist on interpretation of FT3 values in

dogs, however one study demonstrated no significant effect of systemic inflammatory response

syndrome on FT3 measurements[75]. In contrast, prior studies report a significant association

between illness severity and percentage of dogs with low FT4 (mild, moderate, severe; 7.6, 16.8,

and 43.5% respectively)[44]. However, a low FT4 was much less common in dogs with
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gallbladder mucocele formation when similarly stratified (3, 6, 6% respectively). While an

effect of NTI on thyroid hormone homeostasis in dogs with gallbladder mucocele formation

undoubtedly contributed to some of the findings in this study, the severity of reduction in thy-

roid hormone concentrations, large percentage of dogs with abnormal values, and apparent

lack of association with severity of NTI suggest that additional factors may be contributing to

low serum thyroid hormone concentrations in these dogs. In considering other potential

mechanisms for thyroid hormone disruption[78–80], this study found no correlation between

decreasing serum concentrations of thyroid hormones and serum biochemistry values related

to cholestasis (cholesterol, ALP, GGT and total bilirubin), post-cosyntropin cortisol or serum

albumin concentration.

We have previously speculated that concurrent thyroid disruption, rather than coincidental

primary hypothyroidism could be responsible for abnormal thyroid function in dogs with gall-

bladder mucocele formation[17]. Given the observation that experimental models of cystic

fibrosis in piglets and ferrets have gallbladder pathology similar to gallbladder mucocele for-

mation in dogs[25, 26] and a reported association between cystic fibrosis and iodine-deficiency

hypothyroidism in people[28], we explored iodine homeostasis in dogs with gallbladder muco-

cele formation. Iodine is required for synthesis of thyroid hormones. After absorption by the

gastrointestinal tract, iodide is transported into the colloid by thyroid follicular cells using the

sodium-iodide symporter (NIS)[81] and chloride/iodide exchanger pendrin[82]. These trans-

porters additionally depend on exchange of iodide with other ions such as Cl-, Na+, and K+[30,

82, 83]. Interruption of these transport mechanisms by thyroid disrupting compounds[84] or

hereditary disease (such as Pendred syndrome[85] or cystic fibrosis[27, 28] can be associated

with abnormal iodide uptake and impaired thyroid hormone synthesis[31]. Although concur-

rent gallbladder disease is not a typical feature of these conditions in people, gallbladder epi-

thelial cells utilize many of the same transport mechanisms to promote biliary secretion[86–

88].

To investigate the possibility of abnormal iodine homeostasis as an underlying cause for

thyroid dysfunction in dogs with gallbladder mucocele formation, we measured urine iodine

concentration and iodine-creatinine ratios (UICR) in the dogs in this study. In humans, urine

iodine concentration is measured to gauge sufficiency of dietary iodine consumption as this

value generally reflects iodine provided to the body in excess of thyroid gland requirements. In

humans, urine iodine concentration < 100 μg/L is considered indicative of dietary deficiency

and> 300 μg/L considered indicative of dietary excess. Dogs in this study had an average

urine inorganic iodine concentration of 1,384 μg/L with a range from 27 to 5,473 μg/L. There-

fore, rather than evidence of iodine deficiency, what we observed in this study was a higher

than expected concentration of iodine in the urine of both control and gallbladder mucocele

dogs. However, dogs with gallbladder mucocele formation had significantly higher urine

iodine:creatinine ratios (UICR) compared to control dogs. We had speculated that high UICR

in dogs with gallbladder mucocele formation could reflect disruption of iodide uptake by the

thyroid gland, however the estimated quantity of iodine being excreted is considerably higher

than could be achieved simply by interrupting thyroidal uptake of iodine, which is estimated

to be 7.2 μg/kg/day in the adult beagle[89]. Finally, the finding of a non-significantly higher

content of organic iodine in thyroid glands opportunistically collected from euthanized con-

trol dogs and dogs with gallbladder mucocele formation does not support the presence of thy-

roidal iodine deficiency.

The significance of high urine iodine concentrations in dogs in this study in general and

the significantly higher UICRs in dogs with gallbladder mucocele formation remains unclear

but is likely a reflection of dietary iodine intake. The reason why this might be relevant is that

increasing dietary intake of iodine can be associated with development of subclinical
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hypothyroidism in people, especially among children, the elderly, and those with past or pres-

ent thyroid disease or goitrogen exposure[90–97]. We are aware of only one study examining

the effect of high dietary iodine on thyroid function in dogs. In the study, beagles that were fed

a commercial diet containing 5.6 μg/g dry weight of iodine (estimated to provide 1,200 to

1,800 μg/day as fed) developed significantly lower total T4, FT4, and higher TSH concentra-

tions compared to dogs fed a diet containing 0.25 μg/g of iodine (100 μg/day as fed)[98]. Based

on the quantity of iodine measured in the urine of dogs in this study, many were likely con-

suming diets providing equivalent or more iodine than was associated with subclinical hypo-

thyroidism in the beagle study. Older studies report iodine content ranging from 0.5 to 5.6 μg/

g dry weight with an estimated daily intake corresponding to 400 to 3,750 μg/day as fed to the

dogs studied[89, 98]. A more recent study reports inorganic iodine content ranging from 0.86

to 4.05 μg/g dry weight, however the additional presence of organic iodine in the form of intact

thyroid hormones (T4 and T3) and thyroid hormone precursors (MIT and DIT) raised the

total iodine content to 2.1 to 136 μg/g dry weight[99]. Many of the diets and treats examined

in this latter study were consumed by dogs diagnosed with dietary thyrotoxicosis[100], pre-

sumably due to the presence of intact thyroid hormones in the diet. Importantly, as regards

the present study, it is not clear if there is any direct link between the high UICR, the observed

abnormal thyroid hormone concentrations, and pathogenesis of gallbladder mucocele forma-

tion in the dogs reported here. Indeed, we observed no direct correlation between UICR and

thyroid hormone concentrations in dogs with gallbladder mucocele formation.

Study limitations

There are several important limitations to this study. The first is that the HPLC-MS/MS assay

used for measurement of steroid hormones in this study has not been specifically validated for

use in dogs. Within our objective of discovering any differences in steroid hormone metabo-

lism between control dogs and dogs with gallbladder mucocele formation, we selected this par-

ticular assay based on the ability to simultaneously and quantitatively measure the largest

number of different steroid hormones in a single commercial assay. While expected ranges in

concentration for commonly measured steroids were generally obtained, for some steroids the

assay lacked sensitivity (e.g. testosterone, aldosterone), generated values lower than prior pub-

lications (e.g. androstendione[35, 36]), or failed to detect an expected steroid (estradiol[101]).

Accordingly, the reported assay results should be considered as a means for comparing the

two populations of dogs included in this study and not as having validated diagnostic value.

An additional limitation to this study is that we did not also perform adrenal or thyroid

function testing on a population of sick dogs without gallbladder mucocele formation. In our

opinion, this decision is justified by numerous prior studies having clearly established the

expected impact of concurrent illness on results of thyroid function testing in dogs[44, 48, 71,

73–76] and our use of an established scoring system[44] to directly examine the significance of

illness severity on thyroid hormone test results in our population of dogs. Nonetheless, the

current study design could not quantify the influence of chronic stress in these dogs, particular

in regards to an influence on the results of steroid hormone testing. It would have been inter-

esting to conduct follow up thyroid function testing in dogs that ultimately recovered from

their clinical illness, however this was beyond the scope of our study. Ideally this study would

have included a direct assessment of thyroid function such as TSH stimulation testing or mea-

surement of thyroidal uptake of 99mTcO4-[73], however this was cost prohibitive and consid-

ered not to be in the best interest of these clinical patients. Ultrasonographic examination of

the thyroid gland was not performed and ultrasound examination of the adrenal glands was

inconsistently performed in the dogs in this study and would likely have added additional
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value to these studies. Ultrasonography would be worth considering as an adjunct to assess-

ment of thyroid and adrenal function in dogs at the time of diagnosis of gallbladder mucocele

formation[102–105]. Ultrasonographic examination of the gallbladder is not 100% specific for

diagnosis of mucocele formation and therefore misclassification of some dogs in this study is

possible. Finally, a major limitation of our studies conducted on archival thyroid tissue from

dogs with gallbladder mucocele formation is that the majority of these dogs did not undergo

thyroid hormone testing. This approach was unavoidable because thyroid gland biopsy was

not considered a justifiable approach to procuring tissue from the live dogs participating in

this study. A similar limitation applied to our measurement of thyroid iodine content which

required collection of fresh thyroid tissue and therefore limited to dogs with gallbladder muco-

cele formation that were euthanized over the time course of the study. The majority of these

dogs did not have concurrent thyroid hormone or urine iodine measurements performed.

Control thyroid tissue for organic iodine measurement was largely, but not exclusively,

obtained from younger-aged, healthy dogs.

Application of findings

Based on the high prevalence of serum thyroid hormone abnormalities in this study and oth-

ers[13] and indirect support for a therapeutic effect of levothyroxine in some dogs with gall-

bladder mucocele formation[34], diagnostic testing for hypothyroidism in dogs with

gallbladder mucocele formation seems warranted. What remains unclear is whether or not

these dogs actually have primary hypothyroidism versus NTI or some other form of thyroid

disruption. This study did not provide strong immunological (TgAA) or histological evidence

for a high prevalence of primary hypothyroidism in dogs with gallbladder mucocele formation

and the contribution of NTI in this study remains unresolved. Given the confounding influ-

ence of NTI in dogs with gallbladder mucocele formation, testing should be performed, if

possible, prior to onset or after resolution of clinical illness, be based on results of a compre-

hensive thyroid profile, and ideally undertaken in dogs with other supportive clinical signs.

This study did not find any correlation between high serum cholesterol and decreases in

serum concentration of thyroid hormones in dogs with gallbladder mucocele formation.

These findings suggest that dogs of an age and breed at risk for gallbladder mucocele forma-

tion and recognized to have high serum cholesterol should undergo abdominal ultrasono-

graphy to rule out gallbladder mucocele formation in addition to comprehensive thyroid

hormone testing. The present finding that dogs with gallbladder mucocele formation have

higher UICR compared to control dogs is of undetermined significance but worthy of addi-

tional investigation.
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