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ABSTRACT: The equilibrium structure of supramolecular
magnetic filament brushes is analyzed at two different scales.
First, we study the density and height distributions for brushes
with various grafting densities and chain lengths. We use
Langevin dynamics simulations with a bead−spring model that
takes into account the cross-links between the surface of the
ferromagnetic particles, whose magnetization is characterized
by a point dipole. Magnetic filament brushes are shown to be
more compact near the substrate than nonmagnetic ones, with
a bimodal height distribution for large grafting densities. This
latter feature makes them also different from brushes with electric dipoles. Next, in order to explain the observed behavior at the
filament scale, we introduce a graph theory analysis to elucidate for the first time the structure of the brush at the scale of
individual beads. It turns out that, in contrast to nonmagnetic brushes, in which the internal structure is determined by random
density fluctuations, magnetic forces introduce a certain order in the system. Because of their highly directional nature, magnetic
dipolar interactions prevent some of the random connections to be formed. On the other hand, they favor a higher connectivity
of the chains’ free and grafted ends. We show that this complex dipolar brush microstructure has a strong impact on the magnetic
response of the brush, as any weak applied field has to compete with the dipole−dipole interactions within the crowded
environment.

■ INTRODUCTION

Polymer brushes consist of a relatively dense layer of macro-
molecular chains tethered to a surface by one of their ends.1,2

These systems can be designed to obtain a convenient modifi-
cation of the properties of the underlying surface, leading to
their control at the submicrometric scale. In general, the
properties of the brushes strongly depend on the interplay
between the intrinsic properties of the individual polymer
chains and the constraints introduced by the presence of the
substrate and the neighboring chains. This gives polymer brushes
a rich structural landscape and, consequently, a broad range of
potential applications, currently being used as a key approach
for the creation of advanced soft matter systems and nano-
technologies.3 For instance, among the most well-established
applications of polymer brushes, we can find the control of
the flocculation of colloidal particles,4 the design of filtration
and separation systems,5 and the control of the adsorption and
sensing of biomolecules.6,7

Besides the simple tuning of the properties of material
surfaces, in recent years there has been a growing interest in the
use of polymer brushes for the creation of responsive interfaces,
i.e., surfaces whose properties may change or adapt to the
environmental conditions and/or exhibit a controlled response
to external stimuli. For example, it is possible to achieve the
spontaneous modification of the brushes’ structures and their

swelling properties according to the nature of the solvent,8,9 the
switchable functionalization of their free surfaces controlled by
the background temperature10 or pH,11 and their use as mec-
hanical nanosensors and actuators.12 Among the diverse stimuli
that may control the structure of responsive surfaces, the use
of external fields is particularly appealing for technological
applications. As a well-known example, electric fields can be
used to modify the structure of brushes made out of poly-
electrolytes.13−16 Another attractive approach is the creation of
brushes with a response to external magnetic fields. The control
of the interface properties by means of external magnetic fields
provides an evident advantage, especially for applications in
which the system interacts with substances that are undesirably
sensitive to electric fields and/or to other potential control
parameters, such as the background temperature or pH.
However, in difference with polyelectrolytes, polymers with a
significant magnetic response are far less common substances.
To date, only polymers that exhibit magnetic properties at
very low temperature have been possible to synthesize.17,18

Nevertheless, the creation of a magnetoresponsive surface can
be achieved by applying more sophisticated approaches.
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Some of the most advanced techniques for the design of
responsive surfaces include the incorporation of colloidal
particles into the system in order to facilitate the control of
their functional and/or structural properties. In particular, the
incorporation of magnetic colloids into polymer brush-like
structures is a promising strategy to obtain a magnetoresponsive
behavior. Despite their potential interest, to our best knowledge
just a few studies on the design of such magnetoresponsive
supramolecular nanostructures exist to date.19,20 In such works,
the magnetic colloids are simply embedded into a polymer
brush without a fine control of their locations and moment
orientations. Here, we propose an alternative design of a
magnetoresponsive brush-like system, based on the replacement
of the tethered polymer chains by supramolecular magnetic
filaments, i.e., by polymer-like chains of prealigned ferromag-
netic colloids that have been permanently cross-linked by
means of macromolecules in order to keep their chain structure
under a broad range of conditions.21−25 Magnetic filaments
grafted to one end to a surface have been used in recent years to
work as micro- and nanofluidic pumps and mixers,26−31 either
alone or in sparse arrays. In this work we explore the possibility
of increasing the grafting density of such tethered magnetic
filaments to form a brush-like structure at a supramolecular
scale, with ferromagnetic colloids playing the role of polymer
monomers. We expect this system to have a much higher and
controllable magnetic response than the aforementioned polymer
brushes loaded with magnetic particles in a less organized way. In
particular, we focus on the study of the equilibrium structural
properties of the filament brush as the first step to determine
the potential of this system for practical applications. With this
goal, we perform extensive Langevin dynamics simulations with
a bead−spring model of the filament brush that takes into
account the cross-links between the surface of the colloids. We
analyze its equilibrium structures for different grafting densities
and filament lengths and determine the effects of the long-range
magnetic dipolar interactions by means of a comparison with
non magnetic filament brushes. We also compare our results
with previous theoretical works on brushes of neutral polymers
and polyelectrolytes with extended electric dipoles. Finally, we
introduce a graph theory based analysis approachto our best
knowledge, novel in this contextin order to characterize the
internal structure of the brush. We found that the magnetic
filament brush, for high enough grafting densities, is split into two
well-pronounced structural regions: near the substrate, it is very
compact, albeit its internal structure is less interlaced and more
anisotropic in comparison to a nonmagnetic filament brush;
the upper part of the brush is composed by dangling chain
free ends. We also observed that our model for the cross-links
within supramolecular filaments introduces significant differences
in the overall brush structure with respect to what is found in
conventional bead−spring models of molecular neutral polymers
and polyelectrolytes with extended electric dipoles. These
differences make the magnetic filament brush to exhibit a higher
magnetization and a more pronounced change in its thickness,
when exposed to external fields, than the ones shown by poly-
electrolyte brushes with extended electric dipoles or embedded
magnetic colloids.
The paper is organized as follows: in the next section,

we describe the model of the brush used in our computer
simulations; next, we study the overall structural properties of
the brushi.e., its structure at the scale of complete filaments;
a higher resolutioncorresponding to the scale of individual
beadsis then used to explain the unusual behavior brought to

the system by the long-range magnetic dipolar interactions;
finally, the manuscript ends with a brief summary.

■ FILAMENT BRUSH MODEL AND SIMULATION
METHOD

In recent works we introduced a phenomenological bead−
spring model of magnetic filaments that represents a chain of
permanently cross-linked monodisperse ferromagnetic colloids,
whose magnetic moments have an orientation fixed with
respect to the colloid solid body structure.32,33 The cross-links
are assumed to consist of polymers attached to the surface of
neighboring particles, created when the colloids are in a straight
chain disposition with a head-to-tail arrangement of their
magnetic moments. Current experimental techniques allow the
tuning of the length of the cross-linkers in a rather broad
range.25,34

Briefly, our model represents the colloids as soft core spheres
with a characteristic diameter d and a point magnetic dipole
moment μ⃗ located at their center. We take into account the
long-range magnetic interactions between the beads by means
of the conventional dipole−dipole pair potential:
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where = | ⃗ |r rij ij , being ⃗ = ⃗ − ⃗r r rij i j the displacement vector
connecting the centers of beads i and j with dipolar moments μ⃗i
and μ⃗j respectively. It is worth noting that introducing point
dipolesan exact representation for the case of magnetic single
domain colloidsprovides a substantial difference from early
models of polyelectrolytes, in which extended electric dipoles
where introduced by alternating the sign of the monomer
electric charges.35 In particular, the point dipoles located at the
particles centers introduce a strong anisotropy in the interac-
tions at the scale of individual particles, without regard to the
(in)existence of a permanent connectivity between them.
The soft core steric interaction between the beads is modeled

with a Weeks−Chandler−Andersen pair potential (WCA),36
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where ULJ(r) is the conventional Lennard-Jones potential
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and rcut = 21/6d is the shifting parameter that makes the
potential purely repulsive. The constraining effects of the cross-
linkers that bond any pair of neighboring particles are
represented by a simple harmonic spring whose ends are
attached to the surface of both soft spheres, i.e., to points at
a distance d/2 from the sphere centers. The locations of such
attachment points correspond to the projections of the head
and the tail of the magnetic moments of every bead. Figure 1a
shows a scheme of this linking potential, whose expression is
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where μ μ μ̂ = ⃗ ∥ ⃗ ∥/i i i and μ μ μ̂ = ⃗ ∥ ⃗ ∥/j j j are the unitary

vectors parallel to each associated dipole moment. We want
to underline that this linking model is also significantly dif-
ferent from the usual spring models applied to molecular
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polymerstypically, finitely extensible nonlinear elastic springs.37

Such springs only provide an isotropic constraint to the center
to center distance between the beads. Here, instead, we aim at
representing accurately the effect of the cross-linkers which,
being anchored to the surface of the colloids, also constrain the
rotational degrees of freedom. The combination of potentials 2
and 4 favors the arrangement of the dipoles into a head-to-
tail alignment parallel to the chain backbone, thus making
the filaments locally more straight than isotropic spring-linked
chains and, consequently, highly magnetoresponsive.33 We
expect this model to be a more accurate representation of
A-type Stockmayer polymers, i.e., polymers with monomer
dipoles being aligned along the backbone, than that of extended
fluctuating dipoles made out of point charges.35 The model also
differs significantly from other coarse-grained models of cross-
linked superparamagnetic colloids,38,39 i.e., particles in which the
dipole moment is not coupled to the chain backbone.
For simplicity, in this work, we measure all the physical

parameters of the system in reduced units, taking as reference
the reduced characteristic diameter of the colloids, d = 1,
their reduced mass m = 1, and the prefactor of the reduced
steric potential 2, ϵs = 1. According to our previous works,
the prefactor of the potential 4 is set to Ks = 30, a value that
provides average bond lengths close to the reference bead
soft core diameter (d = 1) and a maximum distance between
two bonded particle surfaces to be approximately half of the
particle diameter. Finally, we take μ μ μ= ⃗· ⃗ =( ) 52 for the
squared dipole moment of the magnetic filament beads.
These values for the interparticle interaction parameters
correspond to for example, magnetite spheres with a magnetic
core diameter of approximately 25−30 nm coated with a
5−10 nm polymer shell, which is also used to cross-link the
particles.
Finally, the filament brush is modeled in the following way.

First, a set of identical filaments with N beads each is placed
in a cubic simulation box of side length L, with periodic
boundary conditions in the x and y directions to mimic an
infinite horizontal brush size. Every chain is grafted by fixing
the position of one of its end beads close to a flat steric surface
located at z = 0. The steric repulsion produced by this surface
on the beads is given by a truncated shifted 9−3 Lennard-Jones
potential,40 which is obtained by applying expression 2 to
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where r is in this case the z coordinate position of the bead
center. The potential 5 is the result of integrating a con-
ventional 12−6 Lennard-Jones potential over an infinite flat
surface. The position of its minimum determines a new cutoff,
rcut= 31/6d/2, to which the z position of the fixed end particle
is permanently set. The orientation of the dipole of this fixed
end particle is also set to permanently remain pointing in the z
direction. The rest of the filament beads are initially disposed in
a perfect head-to-tail arrangement perpendicular to the surface.
The horizontal positions of the grafting points are placed
in a square lattice of separation constant a. Therefore, the
number grafting density of the brush, σ, defined as the number
of grafting points per unit of grafting surface area, is given by
σ = a−2. Figure 1b shows, as an example, the initial configura-
tion of a brush of filaments with length N = 10 and grafting
density σ = 0.028.
With this filament brush model, extensive computer simula-

tions were performed for different values of N and σ by means
of the ESPResSo 3.2.0 simulation package.41,42 In order to
avoid the explicit simulation of the background fluid, we chose
the Langevin dynamics (LD) simulation method.43 In LD
simulations, the effect of the background fluid is treated impli-
citly by introducing stochastic terms in the translational and
rotational equations of motion that apply to each particle i
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where F⃗i and τi⃗ are the total force and torque, mi is the mass,
Ii the inertia tensor, and ΓT and ΓR the translational and
rotational friction constants, respectively. Finally, ξi⃗,T and ξi⃗,R
are respectively a Gaussian random force and torque that
satisfy the usual fluctuation−dissipation relations, namely,
they have a zero mean value and a variance equal to 2ΓlT,
where Γl = {ΓT, ΓR} and T is the reduced temperature.44 The
values of the dynamical parametersi.e., mass, inertia tensor,
and friction constantsare physically irrelevant for the
determination of the equilibrium properties of the system.
Thus, we take ΓT = 1 and ΓR = 3/4 as values known to produce
a conveniently fast relaxation to equilibrium in this type of
simulation.45,46 Finally, in order to ensure isotropic rotations,
an identity matrix is taken for the inertia tensor. Another
important choice is the method to compute the dipole−dipole
interactions, due to their long-range nature. In a relatively dense
system of magnetic dipoles with periodic boundaries, the use of

Figure 1. (a) Schematic representation of the links between neighboring magnetic beads used in our filaments model. The orientation of the dipoles
is indicated by both the black arrows and the red and gray colors of the beads. (b) Example of an initial filament brush configuration, corresponding
to filaments of length N = 10 and a grafting density of σ = 0.027.

Macromolecules Article

DOI: 10.1021/acs.macromol.5b01086
Macromolecules 2015, 48, 7658−7669

7660

http://dx.doi.org/10.1021/acs.macromol.5b01086


a simple cutoff approach might be unacceptably inaccurate.
Therefore, we chose to use the dipolar-P3 M method,47 specifi-
cally designed to accurately compute the magnetic dipolar
interactions of pseudoinfinite systems, in combination with the
dipolar layer correction method.48 The latter is required to take
into account the slab geometry of our system, i.e. the absence of
periodic boundaries in the z direction.
The simulation protocol we used is the following. First, for

each simulation run, the background temperature of the system,
measured in reduced units, was set to T = 1. Then, an initial
configuration for a given set of values of N and σ was created
and a first pre-equilibration cycle was performed without
computing the dipolar interactions, i.e., by taking μ2 = 0. This
pre-equilibration cycle consisted of a progressive increment of
the integration time step, from 10−8 to 10−5, in 10 subcycles of
5 × 105 timesteps each. For μ2 = 5, a second analogous pre-
equilibration cycle was then performed to progressively increase
the dipolar moment of the beads from 10−10 to its final value.
Once such pre-equilibration cycles were completed, an equili-
bration cycle of 107 timesteps and a final cycle of measures were
performed. The length of the equilibration cycle was chosen to
ensure that both the average and the variance of the energy and
the mean-square total magnetic moment were able to reach
the saturation. In every run, 20 measures were taken at intervals
of 106 timesteps. Finally, a minimum of five independent runs
were performed for every set of explored parameters.

■ PROPERTIES ON THE FILAMENT SCALE

In order to determine the effect of the dipolar interactions on
the equilibrium structure of the filament brush, we first analyze
two conventional overall chain parameters: the density profile
and the distribution of chain heights.
Brush Density Profiles. The number density distribution

of chain monomers as a function of the distance to the grafting
surface, ϕ(z), is a common parameter used to characterize
brush-like structures.49 In this case, we compute this parameter
for the positions of the bead centers. Figure 2 shows the results
of N ϕ(z) obtained for two selected values of chain length
and grafting density, for nonmagnetic (μ2 = 0, squares) and
magnetic filaments (μ2 = 5, filled circles). The main plots
correspond to the profiles calculated for the whole set of
particles in the system, whereas, in the insets only the particles
located at the free ends of the chains have been considered.
We multiply them by N to make the scales along ordinate
comparable. The data is plotted as a function of the height
normalized with the characteristic contour length of the
filaments, z* = z/(N−1)d. As predicted by the Semenov−
Milner−Witten theory (SMW), and as is found in conventional
models of polymer brushes,37 the nonmagnetic brush has an
approximately parabolic profile, corresponding to the following
expression50

ϕ ∼ − +z z( ) const2
(7)

The main plots show an excellent agreement in the least-
squares fit of this function to the simulation data at heights
larger than z* ≳ 0.3. More importantly, Figure 2 also illustrates
the existence of a significant difference in the behavior of
magnetic brushes: without exception, the magnetic brush has
a more compact structure than the nonmagnetic one, with a
higher density close to the grafting surface and a lower density
far from it. A shift of the density profile toward the substrate
was also found in models of polyelectrolytes with extended

dipoles.35 In our case, we observe the decay of density in the
upper region to deviate from a parabolic behavior when dipoles
are present. Instead, a least-squares fit of the de Gennes self-
similar carpet profile49,51

ϕ ∼ +−z z( ) const1.3
(8)

shows a good agreement with the simulation data for z* ≳ 0.4.
The profile for the free ends is also significantly different in
the dipolar brush. While the nonmagnetic chains keep most of
their free ends far from the grafting surface, as predicted by the
SMW model,50 the main part of the magnetic free ends is found
to be in close contact with it. This means that the dipolar inter-
actions within the brush prevent the filaments to reach their
normal entropic extension in the z direction, leading to a more
compact overall brush structure with a clear −1.3-power scaling.
At this point one might wonder if the filaments are forming
individual closed loops to minimize the magnetic flux, as is
known to happen to dipolar chains under conditions of strong
intrachain dipolar interactions in front of the thermal fluctua-
tions and other non intrachain interactions.52−56 However, the
calculation of the probability distribution for the normalized
end-to-end distance of the chains, * = | ⃗ − ⃗ | −R r r N d/( 1)Nee 1 ,
shown in Figure 3 for a given chain length and grafting density,
proves that there exists just a slight increase of closed chains in
the dipolar case with respect to the nonmagnetic one, being in
both cases a very small fraction in the system. Therefore, the
internal structure of the magnetic brush is more complex than

Figure 2. Examples of density profiles corresponding to the
combination of two chain lengths (N = 10, 30) and two grafting
densities (σ = 0.04, 0.111). Main figures show the profiles of the whole
brush structure. Inset figures, plotted in semilogarithmic scale,
correspond to the distribution of the free end beads of the filaments.
Solid thin and thick lines in the main figures are, respectively, the fits
of eqs 7 and 8 to the rightmost range of the simulation data. Squares
correspond to μ2 = 0; filled circles to μ2 = 5.
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the one given by a simple closure of the chains. This points
to the relevance of the dipolar interchain interactions in the
structure of the magnetic brushes.
Finally, we make a comparison of our density profiles with

earlier models of brushes of neutral polymers and polyelec-
trolytes with extended dipoles.35,37 Following the latter, for this
purpose we calculate the normalized average brush height, ⟨z*⟩,
from the first moment of the density profile:

∫
∫

ϕ

ϕ
⟨ *⟩ =

−

∞

∞z
d N

z z z

z z
1

( 1)

( ) d

( ) d
0

0 (9)

Table 1 shows the values of this parameter for selected values
of chain length, grafting density and dipole moment. By

calculating the ratio ⟨z*⟩μ2=5/⟨z* ⟩μ2=0, we can see that the
relative decrease in the brush height introduced by the dipolar
interactions increases with both the chain length and the
grafting density, ranging roughly from 22 to 34%. This behavior
is different from the case of polyelectrolyte brushes with
extended dipoles: as shown by the study of Kaznessis and
co-workers,35 the influence of the electric dipoles becomes less
pronounced as the grafting density increases, showing a change
from 10 to 5% for the same range of parameters. One can
assume that the qualitative difference in the physical behavior
of a magnetic filament brush compared to a brush consisting of
polyelectrolyte chains with alternating charges stems from the
fact that in the latter system, with increasing grafting density,
the interaction that mainly determines the internal structure of
a brush is the central Coulomb interaction between individual
point charges, rather than the dipolar one. In contrast, for a

magnetic filament brush, the directionality of the dipole−dipole
interaction is enhanced when the bead density grows and,
consequently, the average distance between the point dipoles is
reduced.

Distribution of Mean Chain Heights. Further insight on
the overall structure of the brush can be obtained by looking at
the probability distribution of filament mean heights, P(⟨hc⟩),
where ⟨hc⟩ is the average z position of the centers of every
bead i belonging to a given filament, ⟨hc⟩ = (1/N) ∑i=1

N zi. This
parameter will tend to a value of one-half of the characteristic
contour length of the chains for a brush formed by vertically
straight filaments. Figure 4a shows the probability distributions

obtained for brushes of chains with length N = 30 and two
selected grafting densities. As it is expected, the magnetic
brushes show a clear shift of the curves toward lower heights
when compared to the corresponding magnetic case. The latter
shows a single maximum whose position tends to shift toward
higher values as the grafting density grows, and consequently,
the steric repulsion forces the chains to adopt more vertically
extended conformations. More interestingly, for high values
of the grafting density, the dipolar brush develops a second
maximum in its distribution of mean heights. This second
maximum is located at higher values and its origin is the
enhanced crowding of the region near the grafting surface:
since the dipolar brush is more compact in such lower regions,

Figure 3. Probability distributions of the normalized end-to-end
distance obtained for magnetic (μ2 = 5, filled circles) and non
magnetic (μ2 = 0, open squares) brushes with chain length N = 30 and
grafting density σ = 0.040.

Table 1. Selected Values of the Average Height of Magnetic
and Nonmagnetic Filament Brushes, ⟨z* ⟩μ2=5 and ⟨z* ⟩μ2 = 0
Respectively, Obtained for Different Chain Lengths and
Grafting Densities

N σ ⟨z*⟩μ2=0 ⟨z*⟩μ2=5 −
⟨ *⟩

⟨ *⟩
μ

μ

=

=

⎛
⎝⎜

⎞
⎠⎟100 1

z

z

2 5

2 0
, %

10 0.040 0.41 0.32 22
10 0.111 0.46 0.31 33
30 0.040 0.28 0.20 29
30 0.111 0.35 0.23 34

Figure 4. (a) Comparison of the probability distributions of the mean
height of chains with length N = 30 obtained for magnetic and
nonmagnetic brushes with two selected grafting densities. (b) Top and
side views of typical nonmagnetic (left) and magnetic (right) brushes.
The color scale indicates the z coordinate of the center of every
individual bead, relative to the characteristic contour length of the
chains, (N − 1)d. These examples correspond to the parameters
N = 30, σ = 0.111, μ2 = 0 and 5.
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it more easily reaches a saturation value in its local bead density.
As the grafting density grows, more free ends of the chains are
expelled from the lower crowded region and forced to dangle
above it. Finally, the difference in heights between magnetic
and nonmagnetic brushes can be better visualized in Figure 4b,
where two examples of typical brush configurations are
depicted with a height color scale.
Response to an External Magnetic Field. In order to

check if the density profile can be effectively manipulated with
an external magnetic field, we performed an additional set of
simulations in which fields with different strengths were applied
perpendicular to the grafting surface, H⃗ = Hk.̂ In this way,
we expect that, once the interaction of the dipoles with the field
becomes strong enough to overcome the thermal fluctuations
and the magnetic dipole−dipole interaction between the beads,
the chains will experience a vertical extension in order to
maximize their alignment with the direction of the field. As a
result, the thickness of the brush will steadily increase with the
field strength, up to the point where the end-to-end distance
approaches the chain contour length. An example of such an
evolution of the density profile is provided in Figure 5a. The
zero-field density profile, with its characteristic −1.3-power tail,
evolves into a basically rectangular distribution with growing

field. Initially, this evolution is rather slow due to the dominance
of dipolar bead−bead interactions and the internal structure of
the brush (which, for zero field, will be explained in detail in the
next Section). As the field-dipole coupling becomes stronger,
the internal structure of the brush simplifies drastically, as the
chains tend to straighten and coalign with the external field,
avoiding any entanglements. The alignment of the bead dipoles
leads to the change of the average brush magnetization, ⟨M⟩.
This parameter is defined as the total magnetic moment of the
system projected on the direction of the external field:

∑ μ⟨ ⟩ = ⟨ ⃗ · ⟩̂
=

M k
i

N

i
0

T

(10)

where NT is the total number of beads in the system, and μ⃗i·k ̂
denotes the z coordinate of the magnetic moment of bead i.
The averaging is performed over all sampled configurations.
Note that in these simulations the dipole moments of the
grafted beads are always pointing perpendicular to the grafting
surface (i.e., parallel to the field). This means that the zero-field
magnetization of the brush cannot be strictly zero. In the follow-
ing, we subtract the zero-field magnetization from the total,
⟨M*⟩ = ⟨M⟩H − ⟨M⟩H=0. In Figure 5b, we present the change
of this parameter with growing field. As it can be observed, the
magnetization of the brush grows and approaches a plateau,
corresponding to the value of the saturation magnetization. For
an individual chain, one can predict the equilibrium magnet-
ization using the model proposed by Mendelev and Ivanov for
self-assembled, not cross-linked chains of magnetic particles.57

The result is shown in the same figure with a solid line.
The agreement between the simulation data and the analytical
approach is rather good, even though the latter is a very rough
description of the magnetization of a magnetic filament due to
its disregard of the cross-links. Even more surprising is that
the analytical model, in which the interparticle correlations
are underestimated, predicts higher values of the magnetization
for small values of H. In a previous work,33 we showed that the
initial susceptibility of a magnetic filament is enhanced by
the presence of the permanent bonds. In the brush, however,
this effect seems to be suppressed. It can be explained looking
at the first moment of the density profiles, also plotted in
Figure 5b. As one can see, the qualitative change of the average
brush height and the brush magnetization with growing field
is basically the same. On the one hand, the observed height-
magnetization coupling can be attributed to a strong correlation
between the direction of the dipole and the orientation of the
chain backbone. On the other hand, the fact that the average
chain height is changing at a slower rate than the magnetization
at low field strength indicates the presence of a complex internal
structure of the brush caused most probably by the interchain
interactions. The upper boundary of the field range, for which
the complex internal structure of the brush turns out to be
important and makes the chain straightening difficult, can be
localized by looking at the point where the analytical curve
and the simulation data cross. After this point, the simulated
magnetization becomes higher than the analytical prediction.
This crossover takes place due to the reduction of the interchain
interaction caused by the straightening of the chains.
Finally, it is worth mentioning that the system studied

here has a stronger response not only with respect to poly-
electrolyte brushes with extended electric dipoles, as discussed
above, but also in comparison to former systems that have
magnetic colloids embedded within the polymer brush structure.

Figure 5. (a) Density profiles for different values of an applied external
dimensionless magnetic field, H. (b) Reduced magnetization, ⟨M*⟩
(simulations with circles and theoretical model with a solid line), and
the first moment of the simulated density profile, ⟨z*⟩ (squares), as a
function of H. Both plots are for N = 10, σ = 0.111, μ2 = 5.
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For instance, in the experimental study of Choi and co-
workers19 or the computational one of Ye et al.,20 the maximum
extension of the brush thickness under an applied external
magnetic field did not exceed 30%. In our case, according to the
values of ⟨z*⟩ shown in Figure 5b, the thickness of a magnetic
filament brush is expected to change by almost a factor of 2.
These differences in the change of the thickness are mainly a
consequence of the higher compactness of the magnetic
filament brush under weak and zero field conditions.
With this discussion we have proven that, in order to fully

understand the behavior of the filament brush magnetic
response and its enhanced structural change, it is essential to
look at the free field case, where the interparticle correlations
are not affected by the presence of an external force. In order to
unveil this point, we need to analyze other observables with
a higher structural resolution. This analysis is performed in the
next sections.

■ PROPERTIES ON THE PARTICLE SCALE
Here, we scrutinize the zero-field structure of the brush on the
level of chain beads. In this way, we are able to analyze local
fluctuations and pinpoint the part of the pure dipolar inter-
action in the A-type Stockmayer brush microstructure, avoiding
the inherent contribution from charges present in the afore-
mentioned model of polyelectrolyte brushes.35 In simulations,
chains can stretch and shrink somewhat, due to the presence
of springs and soft core interactions between neighbors (see,
eqs 2−4). Apart from these permanent links, particles from
both the same chain and from neighboring chains can come
in close contact forming clusters. Our analysis is based on the
characterization of such clusters by means of an approach based
on graph theory.
Connectivity Network Analysis. First, we introduce the

parameters we chose for the characterization of the brush
microstructure. Let us look individually at beads forming the
chains in the brush. These beads unavoidably interact with each
other via both dipolar and steric interactions, independently
from being or not permanently bonded. The interplay of
these interactions and thermal fluctuations leads to a complex
equilibrium self-assembly of the beads within the brush. In
order to classify these structures formed by individual beads,
we introduce a criteria of two beads forming a cluster: two
beads are connected if, and only if, the distance between them
is smaller than a certain rc. Here, we set rc to be the maximum
length among all permanent bonds observed in the simulation
measurements for a given brush. In this way, all permanently
bonded particles are considered connected, but additional
connections may also form in each configuration. In order to
reduce the computational load of the calculations, and taking
into account that here we are only interested in a qualitative
comparison between the magnetic and the nonmagnetic cases;
in this and the next sections, we do not consider the lateral
periodic boundaries when computing the distances between
beads belonging to different chains. However, checks shown
that the periodicity of the system equally affects magnetic and
nonmagnetic brushes and does not qualitatively influence the
results provided below.
In order to classify the connections between different beads

and to create its convenient graphical representation, we employ a
standard algorithm from the graph theory58 to build a so-called
adjacency matrix, A = {ai,j}. This matrix has a dimension NT × NT.
The elements of A are ai,j = 1 if beads i and j are connected, and
ai,j = 0 otherwise. On the basis of such a matrix, one can build a

graph of the connected beads, in which all beads form a set
of vertices and their connections serve as edges. Two examples
are visualized in Figure 6. Upper images show the graph
representation of randomly chosen configurations from the
simulation data of the brush with σ = 0.04, N = 15. One can see
that the amount of clusters different from isolated chains (the
number shown in the corner) is much higher if no magnetic
interaction is present (right, framed with gray). To show the
topology of the brush in real space, in the lower row we pro-
vide the snapshots corresponding to the visualized adjacency
matrices. All clusters that have connectivity N − 1 (isolated
chains) are semitransparent, whereas every other cluster is
colored differently. Figure 6 shows how the presence of
noncentral interaction, which favors head-to-tail or antiparallel
orientation of dipoles (left, framed with red), reduces the
probability of the formation of bulky interlaced clusters with
multiple branching points. For the magnetic brush, one can see
the presence of a ring-like structure, as well as longer linear
clusters. The only way to form an extended linear aggregate is
when the chain folds and attaches its free end to the grafted
bead of a neighboring chain. This type of fold can explain the
higher density of the magnetic brush near the grafting surface
that was evidenced by the profiles ϕ(z) in the previous section.
Since the choice of the configuration was essentially random, it
is more reliable to analyze some thermodynamically averaged
characteristics. To do so, we chose the observables presented in
Figure 7. The first quantity is the number of edges in the graph
(ones in the adjacency matrix) averaged over all sampled
configurations. The edges are drawn with solid black lines. To
confirm that the dipolar interaction inhibits the formation of
bulky clusters with multiple junctions, we study the average
degree δ of the vertices, i.e., the average number of edges
connected per vertex (see arrows in Figure 7). Besides this, in

Figure 6. Graphical representation of adjacency matrices (upper row)
and corresponding simulation snapshots (lower row). On the left, we
visualize the configuration of a magnetic filament brush with N = 15
and σ = 0.04; on the right, the configuration for a nonmagnetic brush
with the same chain length and grafting density is presented. Isolated
chains are not shown explicitly in the graphical representation: their
numbers are provided in the corners. In order to underline the
difference in the cluster topology, we present each cluster with a
different color. In the snapshots, all isolated chains are semitransparent.
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order to estimate the importance of a certain vertex in the
network of connections, we perform the analysis of the so-called
centrality. In particular, we use betweenness,59−61 which is a
standard tool used to characterize nodes in graph theory. In
order to describe this parameter, let us first introduce the
concept of path. If V is the set of vertices, and u and w are two
randomly chosen members of this set, then the edges you need
to walk from u to w form a path. There might be many ways to
walk from u to w, thus, for any two vertices there exists a set of
paths. The shortest path is the one containing the minimal
amount of edges. Using this formalism, the betweenness of a
vertex v which belongs to the set of vertices V of the clustered
brush, can be computed as the ratio:

∑=
∈

C v
p v

p
( )

( )
B

u w V

uw
s

uw
s

, (11)

where puw
s is the total number of shortest paths between vertices

u and w, and puw
s (v) is the number of those paths that pass

through v. The betweenness is shown in Figure 7 with dashed
circles, whose color corresponds to the value indicated in the
legend. In that example, the shortest path between 1 and 4, as
well as the one between 2 and 4, goes through 3. All other
vertices are either directly connected or totally disconnected, as
is the case of v = 5, so their betweenness is zero.

Brush Microstructure. We begin our analysis of the brush
structure at the bead scale by addressing the changes in the
vertices degree, δ. For the initial configuration (a brush with
straight vertical chains of length N), the distribution of the
degrees is evident: all free ends (whose number is NT/N) have
δ = 1; all grafted ends also have δ = 1; the remaining beads (in
the amount NT (1 − 2/N)) have δ = 2. In a thermodynamically
equilibrated brush, the chain beads can have a higher degree,
depending on how many added nearest neighbors they have
as a consequence of thermal fluctuations or magnetic dipole−
dipole interparticle interactions. The histograms of δ for the
initial brush configurations and for thermodynamically
equilibrated brushes obtained for selected values of N, σ, and
for both μ2 = 0 and 5, are presented in Figure 8. It can be easily
seen that the width of the histograms is broader for non-
magnetic brushes (front) with respect to that of the magnetic
filament brush (middle). In general, the degree of vertices is
growing with increasing grafting density for both brushes as
a consequence of the increasing combinatoric probability for
two particles to form a connection (additional edge). However,
looking at these histograms, one can say that the assumption for
dipolar forces to work against the formation of bulky clusters
and multiple junctions (first noticed in Figure 6) becomes more
grounded. In order to elucidate the nature of the redistribution
of degrees, we analyze the behavior of the free and the grafted
ends of the filaments. The results are summarized in Table 2.
It becomes evident that the presence of the magnetic dipole−
dipole interaction significantly strengthens the role of both free
and grafted ends in the cluster formation. For a grafted end to
take part in the cluster, it is essential that a neighboring chain

Figure 7. Sketch of a connectivity graph. Numbered circles represent
the vertices, black lines the edges. The degree of each vertex
corresponds to the number of outcoming colored arrows. The color of
the dashed circles within the vertices indicates its betweenness.

Figure 8. Histograms of the vertices degree corresponding to two selected chain lengths and grafting densities. Histograms in the back correspond
to the initial, out of equilibrium configurations; the ones in the middle, to the magnetic brush; in the front, we show the histograms for the
nonmagnetic brush.
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bends and attaches either its free end or any other bead to it.
Alternatively, the chain, whose grafted end has δ > 1, bends by
itself to connect one of the beads to the grafted one (examples
can be found in Figure 6). In both cases, these two con-
figurations effectively increase the density of beads near the
grafting surface and decrease the average height of a brush made
of magnetic filaments.
In order to estimate the total number of newly formed con-

nections within the brushes, we plot in Figure 9 the average

number of non permanent edges in the adjacency matrix, ⟨E*⟩,
normalized by the total number of particles, NT, as a function of
grafting density for various chain lengths. Note that we obtain
⟨E*⟩ by subtracting permanent bonds from the total amount
of edges and focus on the temporary connections only. It is
of course expected that, for both magnetic and nonmagnetic
brushes, the amount of edges grows rapidly with the grafting
density. However, the total amount of edges formed in a
nonmagnetic brush is higher than the one in a brush made of
magnetic filaments. This can be explained by the selectivity of
the connections in the magnetic case: there is only a limited
volume of space around each bead to where a second one could
be attracted (and a part of this volume is already occupied by
the permanent neighbors). The attempt of establishing a new
connection from outside of such favorable regions results in a
strong dipolar repulsion between the beads. In such a way,
magnetic forces prevent the formation of random connections
and stimulate the formation of energetically advantageous ones,
whose amount is relatively low.
In order to understand how this anisotropy of the magnetic

dipolar interaction influences the overall connectivity of the
networks and clusters, as the final step, we study the centrality

of the connections. In Figure 10, we present two different types
of plots in four panels. In the upper panels the results for
N = 10 are presented, whereas lower panels correspond to
N = 30. The left side corresponds to σ = 0.04, the right one is
for σ = 0.111. First, we focus on the lower part of each panel,
where one can see the plots of the average betweenness for
each particle in the system (the bead indices can be seen along
the horizontal axes). In these plots, gray lines describe the non-
magnetic brush, whereas the red lines characterize the brush
made of magnetic filaments. The overall parabolic profiles of
the curves come as a consequence of the brush’ finite size. In
addition, one can clearly see two types of periodicity in these
graphs. In order to understand these periodicities, one needs to
know the way the indices are assigned to the particles. For
example, in case of σ = 0.04 and N = 10, the particle with zeroth
index is the free end of the first chain; the particle with index 9
is the grafted bead of the first chain. To determine the position
of a particle with index p, one needs to calculate first [p/N] + 1
(with [·] denoting the integer part), this defines the number of
the chain to which the particle belongs; next, the res(p/N) + 1
(with res(·) denoting the residue of the division) will provide
the position within the chain from the free end. According to
this assignment, the shorter period in the curves corresponds to
the distribution of CB along individual permanent chains (grafted
and free ends tend to have a lower value than the middle parts).
The larger period is another manifestation of the system finite
size: it reflects the distance to the edges of the simulation box
of the grafting positions of the permanent chain to which the
given bead belongs. For short chains and low grafting densities,
the overall entanglement of the brush is very low, that is why
the value of betweenness is weakly dependent on the grafting
position of the corresponding permanent chain. The different
periods become more evident as the structure becomes more
entangled. More importantly, the plots of the average between-
ness of each particle show that beads in magnetic filament
brushes have higher betweenness (notice the dominance of gray
lines at low values). In order to understand where this difference
stems from, one needs to look at the upper plots. Here, we
present the average distribution of betweenness along positions
in the chains. Chain particles are drawn explicitly along the
vertical axes, with the grafted bead in the bottom and the free
end on the top. In this way, the horizontal axis indicates the value
of betweenness (growing to the right for the magnetic brush and
to the left for the nonmagnetic one). Color gradients are used to
represent the number of particles with the given value of CB at
the corresponding position along the chain. The lighter is the
color, the less beads had the respective betweenness. In the initial
configuration, when all chains are straight pointing perpendicular
to the grafting surface, the betweenness of each chain bead at the
position k can be calculated as

= − + + −C k k N k N( ) ( 1)B
sc 2

(12)

where k = 1, ..., N and N is the number of particles in the
permanent chain. Expression 12 is obtained by simple
combinatoric considerations: for a given bead k in an isolated
chain of length N, one can find other k − 1 beads in one of
the directions along the chain; from each of those latter beads,
there is a path that passes through k to the N − k beads that are
in the opposite direction. The expression in eq 12 reflects the
symmetry of the chain with respect to its central bead and its
graphical representation is shown as solid lines in the upper left
plot of Figure 10. For the other three cases (higher N and σ) the
results of the eq 12 for the initial configurations would not be

Table 2. Characteristic Degrees of Free and Grafted Endsa

N σ μ2 free ends, δ grafted ends, δ

10 0.040 0 1.22 1.05
10 0.040 5 1.25 1.12
10 0.111 0 1.69 1.16
10 0.111 5 1.83 1.39
30 0.040 0 1.40 1.07
30 0.040 5 1.42 1.15
30 0.111 0 2.09 1.25
30 0.111 5 2.11 1.59

aRelative error intervals do not exceed 5%.

Figure 9. Average number of newly formed edges as a function of σ.
Red filled symbols correspond to magnetic filament brushes, open
symbols to nonmagnetic ones. The last two points for N = 30 are
extrapolated. We use a log scale for the ordinate axis.
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distinguishable from zero in the scales used in the plots.
The betweenness for particles in the equilibrated brush is
always higher than the one of the initial configuration due to
the growing amount of nonpermanent connections. A more
interesting observation is that the betweenness of the grafted
ends is significantly higher in the magnetic filament brush
than in the nonmagnetic one. For the latter, the grafted beads
rarely end up being between any others. This behavior
qualitatively does not change with growing grafting densities
and chain lengths. Therefore, the fact that one sees gray lines
close to the horizontal axes in the plots of the average
betweenness for each particle (lower plots) is explained by the
lower connectivity of the grafted ends in the nonmagnetic case.
Finally, the distributions of betweenness along the chains
also evidence that, in general, CB(k) is higher in the magnetic
filament brush and has a less pronounced maximum when
approaching the middle of the chain. These results confirm
the assumption of the strong directional clustering in magnetic
filament brushes.
The fact that the grafted and the free ends actively participate

in the bead self-assembly within the magnetic filament brush
not only explains the reason for it to be more compact but
also why a weak external magnetic field cannot yield high
magnetization. For a brush to reach the saturation magnet-
ization, it is essential that all chains become almost straight.
Therefore, the field should be high enough to prevent the
strong bending of the filaments produced by the dipolar
entanglements, in which the free and grafted ends take an
important role.

■ CONCLUSION

In this manuscript, we presented the results of a combined
theoretical−computational study of magnetic supramolecular
filament brushes. The interest of this system lies in the
possibility to control the structural behavior of the brush with
an external magnetic field of a moderate strength. This per-
spective opens up a broad range of new applications in different
fields, such as chromatography and microfluidics. The first step
on this way was to understand the fundamental difference
brought by the magnetic interactions and the structure of head-
to-tail cross-linked dipoles that form the filaments to a polymer
brush-like system. In order to do this, we compare by means
of Langevin dynamics simulations the behavior of magnetic
filament brushes to that of nonmagnetic neutral brushes,
polyelectrolyte brushes with extended electric dipoles and
polyelectrolyte brushes with embedded magnetic colloids. It is
worth mentioning that the differences brought by the magnetic
interactions become evident already at the filament scale: in
contrast to a nonmagnetic filament brush or to the one made
out of polyelectrolyte chains, both with parabolic density
distributions, the magnetic brush with the same grafting density
is denser close to the substrate but it has a clear −1.3-power tail
at farther distances. This results in bimodal height distributions
for dense magnetic brushes, whereas regular brushes exhibit
unimodal profiles. This difference is more pronounced as the
length of the chains that form the brush increases. This is
not true for a polyelectrolyte brush with extended dipoles, for
which the role of the dipolar interactions gets screened with

Figure 10. Betweenness. Upper panels are for N = 10; lower panels are for N = 30. Left panels are obtained for σ = 0.04; right ones for σ = 0.111. In
the lower parts of each panel, the betweenness (averaged over all sampled configurations) is plotted for each particle in the brush (gray lines for a
nonmagnetic system, red lines for a brush made of magnetic filaments). The numbers along the horizontal axes are the beads indices. In the upper
parts of the panels, we plot the distributions of betweenness depending on the position of the bead within the permanent chain, which is sketched
along the vertical axes of the plots (magnetic on the right, gray/red; nonmagnetic on the left, gray). Horizontal rectangles at the bottom of the chains
represent the grafting surface. The parabolas in the upper left panel (N = 10 and σ = 0.04) characterize the betweenness for the initial configuration
with straight chains; corresponding parabolas for the other parameters cannot be seen in the provided scale.

Macromolecules Article

DOI: 10.1021/acs.macromol.5b01086
Macromolecules 2015, 48, 7658−7669

7667

http://dx.doi.org/10.1021/acs.macromol.5b01086


increasing grafting density. It turned out that the zero-field
internal structure of a magnetic filament brush has a crucial
influence on the magnetic response of these systems. If a weak
external magnetic field is applied, the magnetic response of the
filament brush is partially hindered by the interchain interactions
within the compact region near the grafting substrate. However,
if the field is strong enough to compete with the interparticle
magnetic dipole−dipole interaction and thermal fluctuations, then
the total magnetization fast reaches a value close to its saturation
due to an almost complete straightening of the chains. The latter
results in a pronounced change of the density profiles.
In order to elucidate both the reasons for the magnetization

hindrance under low fields and the different behavior of the
magnetic and nonmagnetic brushes at the scale of individual
chain beads, we employed graph theory. We performed a cluster
analysis by introducing the concept of connected beads, according
to a simple distance criterium. On the basis of this approach, the
brush was presented as a graph, in which the number of edges
(connections), the degree of vertices and the peculiarities of the
connectivity were carefully analyzed for various grafting densities
and chain lengths in both magnetic and nonmagnetic cases.
We found that magnetic interactions act against random density
fluctuations, and on average the number of connections in the
magnetic brush is lower than in a nonmagnetic one, albeit both
grow with the grafting density. The dominant connective unit in
the dipolar brush, except for the highest grafting density, is a bead
with only two neighbors. It was found that free ends in a dipolar
brush also tend to have a second neighbor. To allow this, a chain
has to bend, frequently to connect to the grafted bead of a
neighboring chain. This is also confirmed by centrality analysis:
free ends in a dipolar brush have a higher degree of betweenness
than in the case of a nondipolar brush. For the latter, the
distribution of degrees is shifted toward higher values, and the
probability for a bead to have more than two neighbors simply
grows with increasing grafting density. At the same time, the
betweenness for free ends of nondipolar brush is rather low due
to the absence of any directional interaction.
Note that the long-range nature of magnetic dipole−dipole

interaction results in a qualitative change in the behavior of a
brush, which cannot be obtained by introducing a simple
angular dependent short-range potential between chain beads.
The dipolar forces between beads in one chain effectively lead
to local stiffening, but also result in long-range anisotropic
interchain interactions. The latter plays a crucial part in the
brush microstructure. Neither the same kind of behavior can be
achieved by using extended electric dipoles, as this will lead to
the dominance of central Coulomb interaction at short distances
on growing grafting density. Besides that, the magnetic filament
brush proposed here shows a much stronger height change
under the influence of an applied external magnetic field in
comparison to previously studied systems.
In future, we plan to develop a theoretical approach to

describe the density profile of a magnetic filament brush. It is
also essential to perform a detailed study of the chain parameters,
such as dipolar strength and angular bond rigidity, as well as
determine the influence of the temperature on the equilibrium
structure of the system.
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