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Prolactin and vasoinhibin are
endogenous players in diabetic
retinopathy revisited
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Diabetic retinopathy (DR) and diabetic macular edema (DME) are major causes

for visual loss in adults. Nearly half of the world’s population with diabetes has

some degree of DR, and DME is a major cause of visual impairment in these

patients. Severe vision loss occurs because of tractional retinal detachment due

to retinal neovascularization, but the most common cause of moderate vision

loss occurs in DME where excessive vascular permeability leads to the

exudation and accumulation of extracellular fluid and proteins in the macula.

Metabolic control stands as an effective mean for controlling retinal vascular

alterations in some but not all patients with diabetes, and the search of other

modifiable factors affecting the risk for diabetic microvascular complications is

warranted. Prolactin (PRL) and its proteolytic fragment, vasoinhibin, have

emerged as endogenous regulators of retinal blood vessels. PRL acquires

antiangiogenic and anti-vasopermeability properties after undergoing

proteolytic cleavage to vasoinhibin, which helps restrict the vascularization of

ocular organs and, upon disruption, promotes retinal vascular alterations

characteristic of DR and DME. Evidence is linking PRL (and other pituitary

hormones) and vasoinhibin to DR and recent preclinical and clinical evidence

supports their translation into novel therapeutic approaches.
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Diabetic Retinopathy is a common cause of vision
loss and blindness

Most patients with longstanding diabetes mellitus developmicrovascular complications

of diabetes, namely nephropathy, neuropathy, and retinopathy. DR is a highly specific

neurovascular complication of diabetes and is the most frequent cause of new blindness

among adults aged 20-74 years in developed countries (1, 2). DR advances from mild

nonproliferative abnormalities with increased vasopermeability and microaneurysms to

moderate and severe stages characterized by the growth of new blood vessels in the retina
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and the posterior surface of the vitreous. Fibrous tissue may exert

tension on the retina and cause retinal detachment. The new

blood vessels may bleed and cause preretinal and vitreous

hemorrhage. A macular edema causing central vision

impairment may occur because of increased vasopermeability

and capillary nonperfusion (3). Major risk factors include the

duration of diabetes, HbA1c levels, and blood pressure (3, 4). The

onset of puberty and pregnancy increase the risk of progression of

DR. Tertiary prevention of DR includes laser photocoagulation for

proliferative diabetic retinopathy (PDR), anti-VEGF therapy for

DME and PDR, and vitrectomy in advanced DR (5). Various

pathophysiological and pathobiochemical pathways directly

linked to chronic hyperglycemia which lead to a disorganization

and breakdown of the blood-retinal-barrier are involved in the

manifestation of DR and DME, including an activation of protein

kinase C (6) and the accumulation of advanced glycation end

products (7). However, there are patient populations with type 1

diabetes of extreme duration who do not develop diabetic

complications and appear to be protected by unknown factors

(8, 9). This contrasts with other studies, which usually report

that >90% of patients with type 1 diabetes will eventually develop

retinopathy (10). Also, there was a lack of association between

glycemic control and prevalence of reported microvascular

complications (11). Consistently, the total glycemic exposure

(A1C and duration of diabetes) explained only 11% of the

variation in risk in the Diabetes Control and Complications

Trial (DCCT) cohort, where retinopathy progression was

studied in conventional and intensive treatment groups (12). It

is thus acknowledged that significant numbers of patients with

diabetes can live without severe complications, likely due to

factors that can neutralize the adverse effects of hyperglycemia

or other unknown protective factors which prevent the

development of diabetic complications (11). Hormonal factors

are predisposed to confer protective effects against microvascular

complications through their effects on organ function, repair and

maintenance of homeostasis, the control of growth, and their

capacity to adapt their levels and action in response to demand or

to pathologic stimuli. The investigation of pituitary hormones is

therefore warranted.
Pituitary infarction revealed an
involvement of pituitary hormones
in diabetic retinopathy

A role of pituitary hormones in the etiopathology of DR

emerged soon after the observation that infarction or

insufficiency of the anterior lobe of the pituitary, can result in

hypoglycemia and high sensitivity to administered insulin,

known as the Houssay-Biasotti phenomenon. In fact,

infarction, or insufficiency of the pituitary gland, also known

as Simmond’s disease, can lead to terminal hypoglycemia, as
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reported in a series of early case studies (13, 14). Pituitary

infarction can also occur after severe peri- or postpartum

hemorrhage, as described by Sheehan (Sheehan’s syndrome).

In all instances, examples of cessation or regression of diabetic

retinopathy was observed. Soon thereafter, pituitary ablations,

stalk sections, and destruction by irradiation were introduced for

treating diabetic retinopathy but became obsolete in the face of

the harmful effects that were associated with these procedures

and the following anterior pituitary insufficiency. The beneficial

effects of pituitary insufficiency were attributed to the cessation

of growth hormone secretion and consecutively lower insulin-

like growth factor I (IGF-I) levels, however, the overall resumé of

repeated cross-sectional, longitudinal, and prospective studies

on the relationship between circulating IGF-I levels and DR did

not establish a clear role for the GH/IGF-I axis (15). Patients

with acromegaly and diabetes mellitus do not have a higher

prevalence of DR (16) and patients with diabetes and congenital

IGF-I deficiency (Laron syndrome) or GH gene deletion can

develop DR (17, 18). Disparate data are available on circulating

IGF-I levels and DR progression during pregnancy, with studies

finding or not finding an association of IGF-I levels with DR

during pregnancy (19, 20). On the other hand, it is known that

an acute reduction of chronic hyperglycemia can accelerate DR,

and that this deterioration is preceded by an upregulation of

serum IGF-I (21). Both, GH, and IGF-I are present in the

vitreous and the levels of IGF-I are higher in the vitreous of

pat ients with ret inal neovascular iza t ion (22, 23) .

Mechanistically, IGF-I has mitogenic and differentiating effects

on cultured retinal endothelial cells (24) and on retinal

capillaries (25), and can induce neovascularization in the

avascular rabbit cornea (26). IGF-I and its receptor, as well as

IGF binding proteins are distributed throughout the retina, and

IGF-I mRNA has been detected in the ganglion cell layer, the

inner nuclear layer and in the outer limiting membrane (27, 28).

The total IGF-I distribution in ocular tissues is therefore a

combination of local expression and systemic uptake.

Altogether, the contribution of local and circulating IGF-I in

diabetic retinopathy remains to be understood, can be

interpreted as rather “permissive” than causal (17) and

therapeutic interventions into the GH/IGF-I axis did not yield

sufficient evidence in clinical studies to be considered in the

current treatment recommendations for DR (5). Attesting to the

heterogeneity and variation in pathomechanisms of proliferative

retinopathies across the lifespan, ample evidence demonstrates

the key role of IGF-I in retinopathy of prematurity (29–32).
Circulating PRL levels change
in diabetes

Another pituitary hormone which attracted attention in respect

to its involvement in DR is PRL. Not long after the
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radioimmunoassay for PRL became available, which allowed the

measurement of circulating PRL concentrations (33, 34), PRL was

evaluated in patients without DR and DR at various stages. Early

reports found higher PRL levels in patients with diabetes but

without severe DR and hypothesized about the potential function

of PRL as a protective factor in DR, and about some potential

treatment based on the stimulation of PRL secretion (35, 36).

Indeed, pituitary stalk section results in minimized GH secretion

with subsequent decline of IGF-I levels but result in higher PRL-

secretion due to a disinhibition of lactotroph PRL secretion by the

disruption of dopamine transport through the pituitary stalk (37).

The beneficial effects of pituitary stalk sections could therefore have

been not only due to the reduction of IGF-I levels, but also due to an

increase in circulating PRL. Comparable with IGF-I levels, various

results were reported in which the association of PRL levels with DR

presence and severity was not confirmed (38–41). A mechanism of

action for protective effects of PRL levels was also missing. PRL

exerts a diverse array of biological functions beyond its essential role

in lactation (42–44), a fact which has received little attention in

clinical medicine in the past, where the relevance of PRL is

acknowledged in prolactinoma and secondary amenorrhea.

Regarding diabetes and its complications, there is a new trend

towards the recognition of PRL as an important metabolic

hormone, directly involved in beta-cell function and survival, and

the regulation of insulin sensitivity and resistance, respectively (45).

Higher PRL levels are associated with higher insulin sensitivity and

a lower incidence of type 2 diabetes mellitus, which led to a re-

evaluation of current thresholds for normal PRL levels and

hyperprolactinemia (45). It was proposed to re-define the

interpretation of PRL levels beyond the upper threshold of 25 ng/

ml where a homeostatic functionally increased transient

hyperprolactinemia (homeoFIT) can be assumed, the suggested

term for an elevation of PRL levels which may constitute a

physiological response to increased metabolic demand (reviewed

in ref. 45).
The PRL/vasoinhibin axis
controls ocular angiogenesis and
vascular function

A new perspective on the role of PRL in DR began to evolve

when the antiangiogenic effects of an enzymatically cleaved 16

kDa N-terminal fragment of human PRL were discovered (46),

and a direct pathophysiological implication towards the

regulation of blood vessel growth emerged. It became evident

that the 16 kDa N-terminal fragment is not the only fragment

with antiangiogenic effects, and that multiple isoforms with a

large variation in molecular mass exist, their size being

determined by the PRL-cleaving enzyme and its cleavage site

location within the PRL molecule. The isoforms were collectively

called vasoinhibin (47–49), including similar proteins generated

by the proteolytic cleavage of GH and placental lactogen (PL)
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(50, 51). A strong role of vasoinhibin as a regulator of ocular

angiogenesis and vascular function evolved, and with reference

to existing reviews (52–55), and 11 years after PRL and

vasoinhibin were first portrayed as endogenous players in DR

(56), the following discussion will focus on key principles and

significant developments in the recent years (Table 1). The new

understanding of circulating PRL levels in terms of homeoFIT-

levels is relevant when considering the role of PRL and

vasoinhibin in DR, as in partial disagreement to the early

studies between 1970 and 1985, there appeared to be an

association between circulating PRL levels and DR, reported

by Arnold et al. in 2010 (62). The PRL levels were higher in

patients with diabetes and no retinopathy (compared to healthy

controls) and higher in patients with diabetes and non-

proliferative DR than in patients with PDR (62). The PRL

levels in the patients with diabetes were above the

conventional threshold of 25 ng/ml, and therefore in the

homeoFIT-range. In addition to answering to increased

metabolic demand, PRL levels in the homeoFIT-range may

also, through their proteolytic conversion to vasoinhibin,

contribute to control the function and growth of ocular blood

vessels. Interestingly, uncleaved PRL is protective in the retina

and required for maintaining retinal functionality in mice during

aging and has potential therapeutic value against age-related

retinal disorders (68, 69). Short PRL isoforms are expressed in

the canine retina undergoing retinal degeneration (70). A clinical

study in patients with a prolactinoma using optical coherence

tomography revealed a reduced thickness of the chorioretinal

layers in patients with prolactinoma compared to controls (71).

Patients with DR have a higher renal elimination of PRL (72)

and the circulating levels of vasoinhibin are reduced in patients

with DR (63).

The principle underlying vasoinhibin accumulation in the

retina – or in other tissues – is that of an endocrine axis in which

the levels of vasoinhibin are controlled by regulatory

mechanisms at the hypothalamo-, the pituitary-, and the local

level. The vasoinhibin levels depend on the availability and

amount of secreted and circulating PRL (hypothalamo-

pituitary level), and on the hypothalamo, pituitary, and

peripheral tissue distribution and activities of PRL-cleaving

proteases (local level). This hormonal axis was described as the

PRL/vasoinhibin axis of which the vasculature is a major target

tissue (53, 67). The cleavage sites in PRL through which

vasoinhibin is generated are conserved in vertebrates (47, 67,

73) and high affinity cleavages sites evolved, most likely as a gain

of function under positive selection, as a unique feature of higher

primates (74). The cleavage of PRL to generate vasoinhibin

occurs in the wider context of a hormone-metabolism

junction, through which specifically cleaved hormones regulate

essential functions to maintain homeostasis at the organismal,

tissue, or organ levels (75, 76). The PRL/vasoinhibin axis

contributes to maintaining corneal avascularity (66), restricts

retinal vasculature (65), and is disrupted in retinopathy of
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prematurity (77, 78). In rodents, hyperprolactinemia leads to

vasoinhibin accumulation in the retina and reduces both VEGF-

induced and diabetes-induced retinal vasopermeability (57, 62,

64); an effect also demonstrated by vasoinhibin gene transfer which

not only prevented (61) but also reversed (60) excessive retinal

vasopermeability and oxygen-induced retinal angiogenesis (79).

The bioactive site in vasoinhibin, through which the

antiangiogenic and antivasopermeability effects of the molecule are

mediated, is a short, conserved three-residue motif consisting of

residues His46-Gly47-Arg48 which becomes active after the

proteolytic cleavage of PRL to vasoinhibin (80). Molecular

dynamics simulations predicted the three-dimensional structure of

vasoinhibin comprising a three-helix bundle with a tendency to form

dimers or multimers, which also complicated the experimental

resolution of the vasoinhibin three-dimensional structure (73, 81,

82). Vasoinhibin signals through various binding partners such as a

specific high affinity binding site on endothelial cells (83), integrin

alpha5 beta1 (84), or plasminogen activator inhibitor 1, urokinase,

and urokinase receptor multicomponent complex (85) to trigger

intracellular signaling pathways that result in its effects on endothelial

cells but a classical hormone receptor has not been identified. The

circulating levels of vasoinhibin are unknown due to the absence of a

quantitative vasoinhibin assay for human serum, which is why

immunoprecipitation followed by SDS-PAGE and Western blotting

is still the only more frequently used method for the evaluation of

vasoinhibin in clinical samples (77). Alternative methods using a lab-
Frontiers in Endocrinology 04
on-a chip technology ormass spectrometry were reported (63, 86, 87)

but did not establish themselves thereafter. The lack of monoclonal

anti-vasoinhibin antibodies able to discriminate between PRL and

vasoinhibin prevented attempts to develop a sandwich enzyme-linked

immunosorbent assay (ELISA). Fortunately, monoclonal antibodies

were recently developed, and their evaluation for an ELISA by which

the levels of vasoinhibin could be quantified is underway (88).

However, Western blot evaluation of vasoinhibin in clinical

samples is supported by the measurement of its antiangiogenic

properties in the presence or absence of anti-PRL antibodies that

neutralize vasoinhibin action (58, 89).
A clinical trial investigates the
elevation of PRL-levels in patients
with diabetic retinopathy

Increased, hypoxia-driven expression of VEGF, produced by

the retinal pigment epithelium, by endothelial cells, pericytes

and other retinal cells, with consecutive enrichment in the retina

and vitreous is a major driver of DME and PDR as it contributes

to rupturing the blood-retinal barrier and induces angiogenesis

which results in pathological neovascularization. The healthy

vitreous is one of the few naturally avascular structures but is

invaded by blood vessels in PDR. Not only the elevation of
TABLE 1 Landmark original research articles and reviews highlighting the involvement of the prolactin/vasoinhibin axis in diabetic retinopathy.

Brief description Year Ref.
ORIGINAL RESEARCH ARTICLES

Sulpiride-induced hyperprolactinaemia inhibits the diabetes- and VEGF-mediated increase in retinal vasopermeability by promoting the intraocular
conversion of endogenous PRL to vasoinhibin

2022 (57)

Levosulpiride increases the levels of PRL in the vitreous of PDR patients and promotes its MMP-mediated conversion to vasoinhibin, which can inhibit
angiogenesis in DR

2020 (58)

Study protocol of a prospective, randomized, double-blind, placebo-controlled trial enrolling male and female patients with type 2 diabetes having DME,
randomized to receive placebo or levosulpiride

2018 (59)

AAV2 vasoinhibin vector decreases retinal microvascular abnormalities in rats 2016 (60)

AAV2-vasoinhibin vector in rats prevents pathologic retinal vasopermeability and suggest it could have therapeutic value in patients with DR 2011 (61)

Circulating PRL influences the progression of DR after its intraocular conversion to vasoinhibin. Inducing hyperprolactinemia may represent a novel
therapy against DR

2010 (62)

Patients with diabetes mellitus and DR have lower circulating levels of vasoinhibin, compared to healthy patients 2009 (63)

Vasoinhibin blocks retinal vasopermeability in diabetic rats and in response to intravitreous injection of VEGF or of vitreous from patients with DR 2008 (64)

Vasoinhibin is a natural inhibitor of angiogenesis in the retina 2005 (65)

Vasoinhibin is a natural inhibitor of corneal vascularization 1999 (66)

Speculations whether stimulating PRL-release in patients with DR might be benefitial 1976 (36)

REVIEW ARTICLES

Pharmacological interventions into the prolactin/vasoinhibin axis for the treatment of diabetic retinopathy 2017 (52)

Introduction of the prolactin/vasoinhibin axis and its pathophysiological significance including DR 2015 (67)

Review of the regulation of blood vessel growth and function by vasoinhibin 2015 (53)

Portray and review of PRL and vasoinhibin as endogenous players in DR 2011 (56)

Introduction of vasoinhibin as a novel inhibitor of ocular angiogenesis 2008 (55)
fro
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growth factors facilitates its invasion by neovessels, the impaired

production or insufficient upregulation of natural blood vessel

inhibitors responsible for maintaining the avascular state of the

vitreous are relevant as well (90). The healthy vitreous humor as

such is antiangiogenic and inhibits tumor neovascularization

(91), and angiogenesis in various other models, for example the

retinal-extract induced angiogenesis in the chick chorioallantoic

membrane (CAM) assay (92).

As mentioned, hyperprolactinemia leads to vasoinhibin

accumulation in the retina of rats and prevents and reverses

diabetes-induced blood retinal barrier breakdown and ischemia-

induced angiogenesis by inhibiting vasopermeability and by

targeting the retinal pigment epithelial cells in the outer blood

retinal barrier (62, 93). These insights triggered the development

of a randomized clinical trial, in which levosulpiride is evaluated as a

medical treatment in patients with PDR and DME (59) (Figure 1).

Levosulpiride is a dopamine D2 receptor blocker which is used as a

prokinetic drug in patients with diabetic gastroparesis, where enteric

inhibitory dopaminergic D2 receptor antagonism can have

prokinetic effects. At the pituitary level D2 receptor antagonism
Frontiers in Endocrinology 05
with levosulpiride evokes hyperprolactinemia (94). One arm of the

clinical study includes patients with PDR undergoing vitrectomy,

with and without prior treatment with levosulpiride and subsequent

laboratory evaluation of the vitreous fluid. Levosulpiride treatment

increased PRL and vasoinhibin in the vitreous, and the vitreous from

levosulpiride-treated patients with PDR, but not from placebo-

treated patients with PDR, inhibited the basic fibroblast growth

factor (bFGF) andVEGF-induced proliferation of endothelial cells in

culture (58). The conversion of PRL to vasoinhibin was mediated by

matrix metalloprotease (MMP) present in the vitreous fluid and was

higher in patients without diabetes than in patients with PDR (58).

This result is the first partial outcome of the clinical study which

provided a proof-of-concept that treatment with levosulpiride is

appropriate to elevate intraocular PRL and vasoinhibin levels.

Further proof-of-concept was shown by an in vivo study in rats

with streptozotocin-induced diabetes, in which racemic sulpiride

increased ocular vasoinhibin levels and inhibited retinal

hypervasopermeability (57). The other arms of the trial that also

comprise patients with DME are awaiting completion and the

publication of the results are expected soon.
FIGURE 1

Schematic representation of the mechanism by which levosulpiride therapy could limit the progression of DME and DR. Levosulpiride, a dopamine D2
receptor antagonist, blocks dopamine D2 receptors located in the membrane of anterior pituitary cells that produce PRL (lactotrophs). Given that
hypothalamic dopamine inhibits the release of PRL, levosulpiride leads to high levels of PRL in the circulation (hyperprolactinemia) which, in turn, favor
PRL penetration across the blood–ocular barrier. MMPs in the intraocular/vitreous compartment cleave PRL to vasoinhibin, which can reduce retinal
vasopermeability and angiogenesis in DME and DR. Scheme was partly created with Biorender.com. The original figure was published by Nunez-Amaro
et al. (58) under the Creative Commons Attribution-Non-Commercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/
by-nc-nd/4.0/). The figure was not modified.
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PRL and vasoinhibin are
endogenous players in
diabetic retinopathy with
translational potential

By the providing the retina and the vitreous with PRL and

antiangiogenic vasoinhibin, the PRL/vasoinhibin axis

contributes to the physiological restricted and avascular states

of the retina and vitreous body, respectively. The natural

antiangiogenic capacity of the vitreous is impaired in DR,

namely by the upregulation of factors stimulating blood vessel

growth, but likewise by the downregulation of inhibitors. The

downregulation includes a reduced MMP-mediated conversion

of PRL to vasoinhibin in DR and facilitates an increase in retinal

blood vessel permeability and neovascularization growing into

the vitreous, with concurrent manifestation of edema, bleeding,

tractional retinal detachment, and clinically loss of vision and

blindness. Preclinical experimental and clinical proof-of-concept

studies revealed the translational potential of raising systemic

PRL levels to elevate ocular PRL levels and enhance the

generation of vasoinhibin in the vitreous. The PRL/vasoinhibin

axis and its regulation in diabetes is among the factors beyond

glycemic exposure which may determine the risk of DME, and

DR. Therapeutic interventions are currently evaluated in a

clinical trial and will show whether patients with diabetes

benefit from raising circulating PRL levels. The new clinical

perspective of PRL in metabolism and its contribution to the

control of blood vessel growth and function via the PRL/

vasoinhibin axis is attesting to the clinical significance of PRL

beyond reproduction-associated functions.
Frontiers in Endocrinology 06
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