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Abstract: Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies
have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important
proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein
biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular
cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In
addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a
series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflam-
mation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional
modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane
localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1
gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardio-
vascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations,
post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis,
ischemia/reperfusion, myocardial infarction, and coronary heart disease.

Keywords: cardiovascular disease; inflammation; polymorphism; post-translational modification
(PTM); transcription regulation; ATP binding cassette transporter 1 (ABCA1); cholesterol; high density
lipoprotein cholesterol (HDL-C)

1. Introduction

According to the World Health Organization, cardiovascular diseases are the leading
cause of mortality [1], causing a huge financial burden on the society [2]. Approximately
17.9 million people died from cardiovascular diseases in 2019, accounting for 32% of global
deaths. Of these, 85% died from heart attack and stroke. Additionally, with the aging of the
global population [3], the United Nations predicted that nearly one in six individuals would
be over the age of 65 by 2050 [4]. As previously reported, cardiovascular diseases cause
an enormous burden on elderly patients [5] and significantly affect their quality of life [6].
Cardiovascular diseases involve the heart and blood vessels. Many factors contribute to
the development and progression of cardiovascular diseases, including sex, age, poor diet,
exercise, obesity, smoking, alcohol consumption, high cholesterol, hypertension, diabetes,
and other psychosocial factors. Moreover, clinical trials and genetic epidemiological studies
have shown that high-density lipoprotein cholesterol (HDL-C) is a clinically valuable
predictor of cardiovascular disease risk instead of an independent risk factor [7].

The ABC transporter super-family is a large class of transmembrane proteins that bind
ATP and use its energy to drive the transport of various substrates across cell membranes,
including metabolites, lipids, cytotoxins, and drugs [8,9]. The current human genome
annotation presents 49 ABC genes, which are arranged in seven subfamilies designated
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‘A’ to ‘G’ [10]. As reported in the literature, there are many commonalities among ABC
transporter super-family members, such as their material transport function and structure.
The highest expression of these genes is found in critical barriers such as the placental
barrier [11], blood-brain barrier [12,13], and the venous endothelium [14,15]. Among them,
ATP-binding cassette transporter A1 (ABCA1) is the most widely studied gene and is also
most closely associated with plasma high-density lipoprotein (HDL) levels.

In this review, we used cardiovascular disease; inflammation; polymorphism; post-
translational modification (PTM); transcription regulation; ATP binding cassette transporter
1 (ABCA1); cholesterol; high density lipoprotein cholesterol (HDL-C) as keywords to search
interested literatures. In this paper, the literatures on ABCA1 from 1975 to 2022 were
reviewed, most of which were in the last 10 years. ABCA1 is located on chromosome 9q31.1.
The length of the ABCA1 gene sequence is 149 kb and it contains 50 exons and 49 introns.
ABCA1 is a 254 kD integral membrane protein composed of 2261 amino acids [9]. ABCA1
is expressed in various tissues, including the liver [16], intestine [17], placenta [18], pan-
creas [19], lung [20], and heart [21]. It is also expressed in macrophages [22] and endothelial
cells [23]. It participates in numerous physiological and pathological processes [24], includ-
ing inflammation [25], cancer development [26], dysregulation of lipid metabolism [27],
type 2 diabetes mellitus [28], and cardiovascular diseases [29]. Although the human ABCA1
gene was cloned in 1994, its biological function was not determined until 1999. Therefore,
better understanding ABCA1 is particularly important to the development of drugs based
on this gene, especially those aimed at targeting cholesterol deposits in artery vessels.

Moreover, cholesterol is the major risk factor for cardiovascular disease developing
processes [30]. Several studies have indicated that cholesterol is an essential biomolecule
involved in multiple cellular and systemic functions [31]. Cholesterol dysregulation is
a pivotal risk factor and a likely causal agent of cardiovascular diseases [32]. Previous
studies of ABCA1 have revealed that it mainly participates in cholesterol efflux and binds
to apolipoprotein A-I (ApoA-I) in nascent HDL formation. Reverse cholesterol transport
(RCT) is defined as the movement of excess cholesterol from the peripheral tissues to
the liver for biliary excretion [33]. Moreover, it is widely acknowledged that HDLs work
as “good cholesterol” with atheroprotective function [34]. Thus, impaired ABCA1 func-
tion may critically influence cholesterol homeostasis, nascent HDL biogenesis, and RCT.
ABCA1 plays a pivotal role in maintaining cholesterol homeostasis and has biomedical
significance in protecting against cardiovascular disease. This review summarizes the
current knowledge on ABCA1 transcription regulation mechanism, gene polymorphism,
post-translational modification, and its role in the development of diverse cardiovascular
diseases, highlighting ABCA1 as a potential therapeutic target for cardiovascular diseases.

2. Transcription Regulation of the ABCA1 Gene

ABCA1 is a key transporter that mediates cholesterol efflux from cells and is the most
studied member of the ABC superfamily. According to the literature, the ABCA1 gene can
be regulated in multiple ways. The most common regulatory mechanism involves the
transcription factors interacting with the upstream transcription initiation site to activate or
inhibit ABCA1 expression (Figure 1). In addition, many signaling molecules are involved
in ABCA1 regulation. Previous studies have reported that ABCA1 is a target gene of
the nuclear receptor superfamily, including—but not limited to—the liver X receptor
(LXR) [35], retinoid X receptor (RXR) [36], retinoic acid receptor [37,38], and peroxisome
proliferator-activated receptor gamma (PPAR-γ) [39]. These nuclear receptors mainly
upregulate ABCA1 expression by binding to the four-nucleotide (DR-4) element of the
ABCA1 promoter [40]. It should be noted that although the elevation of cyclic adenosine
monophosphate [41] (cAMP) levels increases ABCA1 expression, the response element for
cAMP in the existing promoter sequences or the precise regulatory mechanism of ABCA1
are still unclear. Some negative transcription factors downregulate ABCA1 expression.
For example, activator protein 2 (AP2) [42] interacts with the AP2-binding site in the
ABCA1 promoter region and sterol regulatory element-binding protein 2 (SREBP2) [43] and
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upstream stimulation factor interact with the E-box binding element [27,44]. Moreover, C-
X-C motif chemokine ligand 12 (CXCL12) downregulates ABCA1 expression by inhibiting
the binding of transcription factor 21 (TCF21) to the ABCA1 promoter [41] (Figure 1).
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Figure 1. ABCA1 expression is regulated by transcription factors. (A) PPARγ, oxysterol, and retinoic
acid target LXR and RXR, respectively, to activate ABCA1 expression. LXR and RXR bind to DR-4
element sequence, which are constituted by direct repeats of TGACCT and separated by four base-
pairs. (B) USF and SREBP2 bind to E-box of ABCA1, and CXCL12 promotes TCF21 to interact with
ABCA1 promoter to inhibit ABCA1 expression.

3. ABCA1 Gene Mutation and Single Nucleotide Polymorphism

The ABCA1 gene is a 147.2 kb DNA segment located on 9q31.1. The full-length ABCA1
mRNA is 10,412 nt in length and has 50 exons. At least 50 types of ABCA1 mutations
have been identified, including 23 missense mutations, 6 nonsense mutations, and 21 in-
sertion or deletion mutations [45]. Most mutations resulted in a reduction in lipid efflux.
For example, a homozygous defect of the ABCA1 gene is the molecular basis of Tangier
disease (TD) [46,47]. Familial hypo-alpha-lipoproteinemia is characterized by severe HDL
deficiency and premature atherosclerosis. ABCA1 exerts a rate-controlling step in HDL
biogenesis [48]. The early onset of atherosclerotic cardiovascular disease (ASCVD) is often
associated with reduced HDL cholesterol levels [49,50].

Genome-wide association studies (GWAS) have identified many functional SNPs
located in ABCA1 that are associated with cardiovascular diseases. The-565C > T polymor-
phism in the ABCA1 gene promoter region was associated with not only changes in ABCA1
expression but also atherosclerosis severity [51]. Moreover, four ABCA1 promoter SNPs
have been reported to significantly influence HDL concentration. Previous studies have
demonstrated that the G-395C, C-290T, C-7T [52], and -14 > T [53] polymorphisms have a
significant impact on HDL. Among them, G-395C, C-290T, and C-7T were reported to be
negatively related to serum HDL levels, -14 > T positively correlated with HDL levels, and
variations in the ABCA1 non-coding regions G-191C, C69T, C-17G, and InsG319 closely
related to clinical outcomes but did not alter serum lipid levels in coronary artery disease
(CAD) patients [54]. In the 5′ fragment of the ABCA1, -477C/T polymorphism showed a
strong association with the severity of coronary atherosclerosis and a moderate association
with serum HDL-C and ApoA-I levels [55].

Studies on SNPs in the ABCA1 coding region have shown different associations be-
tween plasma lipid levels and coronary heart disease (CHD) susceptibility. The rs2230806
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(R219K), rs2066718 (V771M), and rs4149313 (M8831I) polymorphisms (patients with GG,
AA, and GG genotypes, respectively) were associated with a protective role for CHD. How-
ever, the rs9282541 (R230C) T allele increases the risk for the advancement of CHD [56–59].
Moreover, R219K and M8831I variants are associated with HDL-C elevation and triglyc-
eride reduction [60]. Variants of V771M increased both HDL-C and ApoA-I levels. These
results indicate that ABCA1 gene polymorphism may serve as a risk or protective indicator
of cardiovascular diseases. Further studies are needed to explore the impact of ABCA1
polymorphisms on plasma lipid profiles and cardiovascular diseases.

4. Association of Gene Polymorphism with Cardiovascular Risk in Different
Ethnicities and Sexes

It is worth noting that ABCA1 gene polymorphism differs among different ethnic-
ities. For example, the results of a stratified analysis by ethnicity showed that R219K
polymorphism is significant associated with East Asians and other populations, but not
with Caucasians [61]. A number of studies indicate that the R219K polymorphism of
ABCA1 is a protective factor for developing CHD [62–64]. Doosti et al. [65] reported that
the presence of the GG genotype of R219K in Iranians increases their susceptibility to CAD
development [65]. Similarly, ABCA1 (R219K) gene polymorphism is closely associated
with the risk of premature CAD in Egyptians [66]. Additionally, it is well established
that major differences exist in the development of cardiovascular diseases between men
and women, such as symptoms, epidemiology, pathophysiology, treatment, and clinic
outcome [67–69]. Several longitudinal epidemiological studies indicate that the risk of
cardiovascular disease is significantly greater in women with low estrogen levels [67,70–72].
Until now, studies on sex differences in the risk of cardiovascular diseases have mostly
focused on the effects of sex hormones [73]. Kolovou et al. [74] report that the KK genotype
of the R1587K ABCA1 gene presented lower lipoprotein cholesterol (LDL-C) levels in a
Greek female population [74]. There are many potential mechanisms for this sex difference.
These include genetic mechanisms, epigenetic mechanisms, sex hormones and sex hormone
receptors, and sex differences in biological processes in cardiovascular cells. Based on this,
further studies are needed to explore the possible mechanisms underlying ethnicities/sex
differences in cardiovascular diseases and more precise treatment in personalized medicine.

5. Protective Polymorphism Related to the APOA-I Pathway

Several studies have identified some protective polymorphisms in the ABCA1 gene
related to the APOA-I pathway. Delgado-Lista et al. [75] report that APOA-I levels of the
major allele homozygotes of ABCA1 single nucleotide polymorphism i48168 and i27943
are high [75]. Similarly, homozygotes of the K219 allele also have higher serum HDL-C
and APOA-I levels than carriers of the R219 allele [76]. However, Zhao L. et al. [77] show
that both RR and RK genotypes of the R219K ABCA1 gene have high APOA-I levels in
abdominal aortic aneurysm patients [77]. Two polymorphisms of the ABCA1 gene, C-
564T and R1587K, are related to the serum levels of APOA-I [78]. Intriguingly, there were
two damaging mutations in the APOA-I gene that decrease with APOA-I production [79].
Because APOA-I is central to HDL production and RCT, it is important to further explore
protective polymorphism.

6. ABCA1 Protein
6.1. ABCA1 Structure and Distribution

ABCA1 is a 254 kD membrane transporter protein composed of 2261 amino acids. The
ABCA1 molecule contains two symmetrical transmembrane domains, each of which con-
sists of six transmembrane segments and one nucleotide binding domain (NBD) repetitive
sequence [46,80]. Additionally, ABCA1 has two large extracellular domains (ECDs) [81,82]
and a highly conserved N-terminal 40 amino acids sequence. N-linked glycosylation sites
are common in the ABCA1 protein and seven glycosylation sites on the ECDs were suc-
cessfully resolved [46]. In addition, many other modification sites exist in ABCA1, such
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as ubiquitylation, phosphorylation, lipidation, and palmitoylation sites. In human organs,
ABCA1 has low tissue specificity. It is highly expressed in the liver, placenta, small intestine,
and lungs. At the cellular level, ABCA1 is the most abundant protein in inflammatory cells,
especially macrophages.

Qian et al. [46] report on the discovery of the cryo-EM structure of human ABCA1.
The researchers first analyze the single particle cryo-EM structure of the full-length human
ABCA1 protein, which has an overall structure of 4.1 Å nominal resolutions and 3.9 Å
for the ECD. Contrary to previous reports, this study reveals, for the first time, that the
nucleotide-binding domain of ABCA1 exhibits an “outward-facing” conformation rather
than an “inward-facing” conformation. Additionally, the extracellular region of ABCA1
forms a specific unique structure containing an elongated hydrophobic tunnel, which
provides a key clue for further functional studies. In summary, analysis of the ABCA1 EM
structure not only establishes an important foundation for understanding its functional
role and the pathogenesis of related diseases, but it also expands our understanding of the
plausible mechanism of transmembrane transporters.

6.2. ABCA1 Post-Translational Modifications

The term ‘post-translational modifications’ (PTMs) refers to the chemical modification
of proteins. These include changes in protein structure, spatial orientation, activity, stability,
localization, and interactions. Thus, PTMs are at the core of many cellular signal processing
events [83]. Protein PTMs have been reported to be involved in the functional expression
of ABC transporters through a wide range of molecular mechanisms. ABC superfamily
protein PTMs are crucial for their biological functions, such as the distribution, excretion,
and up-take of endogenous compounds and xenobiotics [84]. To date, there are 461 different
types of PTMs in the UniProt database for eukaryotic proteins [85]. There are various
chemical modification sites in ABCA1. The most common are glycosylation, ubiquitination,
phosphorylation, and palmitoylation (Figure 2).
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Figure 2. Plasma membrane location and post-translational modifications of ABCA1. According
to the sucrose equilibrium density gradient, the plasma membrane was sub-divided into 10 frac-
tions from low to high, the lipid raft region was fractions 1–5 and the non-lipid raft region was
fractions 7–10. ABCA1 is located in the non-lipid raft region of the plasma membrane [86]. There
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were two palmitoylation sites in each of the N-terminus and NBD1 regions of ABCA1: C3S, C23S,
C1110S, and C1111S. ABCA1 is palmitoylated by palmitoyl transferase DHHC8. Seven N-linked
glycosylation sites are located in two ECD regions of ABCA1: N98, N400, N489, N521, N1453, N1504,
and N1647. On the ECD1 region of ABCA1, Thr505 is phosphorylated by PKC. Ser1042 and Ser2054,
which are phosphorylated by PKA, are located in NBD1 and NBD2 regions of ABCA1, respectively.
Five additional phosphorylation sites in NBD1 are phosphorylated by CK2. NBD, nucleotide-binding
domain; DHHC, Asp-His-His-Cys; ECD, extracellular domain; PKA, protein kinase A; PKC, protein
kinase C; CK2, casein kinase 2.

6.2.1. ABCA1 Glycosylation

Protein glycosylation refers to the election of target protein amino acid residues by
covalent attachment mono-sugars or glycans, i.e., multi-sugar polysaccharides or complex
oligosaccharides [87]. It is one of the most common types of PTM. To date, several different
types of protein glycosylation have been reported, including N-glycosylation [88,89], O-
glycosylation [90,91], C-glycosylation [92,93], S-glycosylation [94,95], and P-glycosylation [87].

Glycosylation mainly occurs in the endoplasmic reticulum (ER) and the Golgi appara-
tus. N-Glycosylation is the most common type of glycosylation in eukaryotes. Moreover,
the ABCA1 glycosylation sites were mostly located in the ECDs. Previously, it was reported
that the N-linked glycosylation sites of ABCA1 were located in the asparagine residue
(N) [80]. Based on data analysis from the Uniprot/SwissProt protein database, 21 putative
N-glycosylation sites were predicted in the ABCA1 amino acid sequence. To date, 7 of the
21 sites, N98, N400, N489, N521, N1453, N1504, and N1637 have been located [46,96–98].
However, the biological role of glycosylation of ABCA1 has not been fully elucidated yet.

As mentioned above, the R587W and Q597R mutations in ABCA1 protect against
digestion by the PNG enzyme (PNGase), which makes it less susceptible to glycosylation.
These two mutations appear to be associated with TD [97]. Appropriate glycosylation
of ABCA1 in ECD1 is critical for maintaining the balance of serum HDL-C levels. Previ-
ous studies have identified that Nef-mediated inactivation of ABCA1 leads to cholesterol
accumulation and augmentation of lipid raft abundance, thereby increasing the risk of
atherosclerosis. It is worth noting that Nef interacts with the ER chaperone calnexin to
regulate glycosylation, protein folding and maturation [99]. As previously highlighted, N-
acetylglucosaminyltransferase V (GnT-V) is an important glycosyltransferase. Interestingly,
GnT-V can significantly increase ABCA1 expression and cause aberrant glycosylation of
HDL-C assembly [100], which suggests that glycosylated modification of ABCA1 is essen-
tial for its biological functions in HDL production and lipid homeostasis. The mechanism
by which ABCA1 glycosylates remains unclear. Here, we outline several investigations that
provide novel insights into ABCA1 glycosylation modification and the risk of cardiovascu-
lar diseases. Further studies are needed to explore the function of different glycosylated
residues in ABCA1 and their precise mechanisms.

6.2.2. ABCA1 Ubiquitination

The ubiquitin system was first discovered in 1975 [101]. Subsequently, numerous
studies have confirmed that the ubiquitin-proteasome system (UPS) controls a wide range of
cellular functions and plays a critical role in maintaining homeostasis of the body [102–105].
For the most part, the UPS degrades intracellular proteins through the non-lysosomal
pathway [106–108].

Protein ubiquitination is critical for several pathophysiological processes. The role of
ubiquitination in the development of cardiovascular diseases has been reviewed in previous
studies [109–111]. A previous study discovered that ubiquitin involves ABCA1 protein
proteolysis through the lysosomal and non-lysosomal degradation pathways [112]. To date,
many studies have indicated that cell surface-resident ABCA1 (csABCA1) is ubiquitinated
and subsequently lysosomally degraded [113]. E3 ubiquitin ligase is also involved in
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ABCA1 degradation [114]. So far, we have summarized diverse ways to regulate ABCA1
protein levels through the ubiquitin–proteasome pathway.

Interestingly, under conditions of cellular cholesterol accumulation, the isolation of
LXRβ from csABCA1 promotes its ubiquitination [113]. However, in CHO cell lines, ubiq-
uitination of ABCA1 was decreased by cell cholesterol loading [115]. Meanwhile, activation
of the endosomal sorting complex required for transport (ESCRT) pathway increased the
degradation of csABCA1 [116]. The long form of serine/threonine kinase, a proto-oncogene,
promotes the interaction between csABCA1 and LXRβ, thereby protecting against ubiq-
uitination and degradation through the ESCRT system [117]. Subunit CSN8 of the COP9
signalosome controls the ubiquitinylation and deubiquitinylation of ABCA1 [118]. It has
been reported that overexpression of COP9 signalosome subunit 3 and COP9 signalosome
subunit 2 (CSN2) promotes ABCA1 deubiquitinylation and degradation [119]. Notably, the
ApoA-I binding protein binds ApoA-I to prevent ABCA1 degradation by CSN2 [120]. It
has been reported that the ubiquitin-proteasome system mediates ABCA1 polyubiquiti-
nation and degradation [121]. AGE-albumin enhances ABCA1 degradation via ubiquitin–
proteasome pathway [122]. The HIV-1 Nef protein interacts with the ABCA1 C-terminal
amino acids and facilitates ABCA1 ubiquitinylation degradation via the proteasomal degra-
dation pathway [123]. In a mouse model of ischemia-reperfusion, TANK-binding kinase 1
activation decreased ABCA1 protein levels through ubiquitinylation [124]. α-Taxilin pro-
tein deficiency aggravates ABCA1 polyubiquitination and ultimately leads to dyszoosper-
mia [125]. Moreover, the HECT domain E3 ubiquitin protein ligase 1, an E3 ubiquitin ligase,
is involved in ABCA1-mediated cholesterol export from macrophages [114]. Pulmonary
adenoma resistance 1 is mediated by Cullin3-based ubiquitin E3 ligase-dependent ABCA1
ubiquitination degradation [126]. It has been reported that the ubiquitin–proteasome path-
way is triggered by ubiquitin interacting with the lysine residue of the substrate protein. As
stated above, ABCA1 ubiquitination and degradation are induced in many context-specific
ways. However, it is still difficult to clarify the precise ubiquitin-modified lysine residue
in ABCA1, which requires further study. Collectively, these results indicate that ABCA1
activation is negatively regulated by the ubiquitin-dependent proteasomal degradation
pathway. Thus, modulation of ABCA1 ubiquitination provides a novel therapeutic target
for atherosclerosis treatment [117].

6.2.3. ABCA1 Phosphorylation

Protein phosphorylation refers to the introduction of negatively-charged phosphate
groups via the chemical modification of specific protein residues (e.g., Ser, Thr, Tyr, Asp,
Glu, Cys, His, Lys, and Arg) [127]. This leads to changes in protein conformation and
functional activities. Protein phosphorylation is an essential and reversible modulatory
mechanism that participates in nearly every basic eukaryotic cellular biological process.
Moreover, phosphorylation and de-phosphorylation of kinases and phosphatases can
activate or inactivate many enzymes and receptors [128,129].

It is well known that phosphorylation of serine (Ser) and/or threonine (Thr) residues
in amino acid residues are catalyzed by protein kinase C (PKC) and/or protein kinase A
(PKA) [130]. ABCA1 phosphorylation status is closely related to its stabilization [131]. It
has been reported that there are two phosphorylation sites, Ser-1042 and Ser-2054, located
in the NBDs of ABCA1, both of which can be phosphorylated by PKA [132]. Furthermore,
the ABCA1–PEST sequence contains two constitutively phosphorylated sites, Thr-1286
and Thr-1305 [133]. In addition, Stein et al. [134] demonstrated that ABCA1 NBD1 + R1 is
phosphorylated by protein kinase 2 (CK2) and reported on its potential phosphorylation
sites (Thr-1242, Thr-1243, and Ser-1255). According to a previous study, CK2 may act as an
inhibitor of ABCA1 activation [134].

Interestingly, previous studies report that ApoA-I induces the phosphorylation of
ABCA1 via the PKC pathway, which protects ABCA1 against calpain-mediated proteolytic
degradation to stabilize ABCA1 [135]. However, it is unclear which phosphorylation
site in ABCA1 is modified by PKC. 8-Br-cAMP facilitates ABCA1 phosphorylation in a
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time-dependent manner. H-89 PKA significantly inhibited ABCA1 through the cAMP/PKA-
dependent pathway [41]. Unsaturated fatty acids phosphorylate and destabilize ABCA1
through the phospholipase D2 and PKCδ signaling pathway [136,137]. However, the
polyunsaturated fatty acids eicosapentaenoic acid and ApoA-I mimetic peptide mediate
ABCA1 serine dephosphorylation through the cAMP/PKA pathway [138,139]. Berberine
attenuates the ABCA1 serine residues in a time- and dose-dependent manner [140]. These
findings indicate that ABCA1 phosphorylation plays a critical role in apoA-I-mediated
cholesterol efflux and atherosclerosis. Therefore, the mechanism of ABCA1 phosphorylation
requires further investigation.

6.2.4. ABCA1 Palmitoylation

Palmitoylation of proteins, one of the most common recognized forms of fatty acy-
lation, plays a role in regulating protein activity, stability, and localization; membrane
topology; and interactions between proteins and cofactors by imparting the spatiotemporal
regulation of protein hydrophobicity [141,142]. Reversible chemical ligation of cysteine
residues by palmitic acid molecules in the presence of palmitoyl acyltransferase (PAT)
has been identified as either protein S-palmitoylation or S-acylation [143]. Most protein
palmitoylation is catalyzed by proteins of the Asp-His-His-Cys (DHHC) family, which
possess PAT functions [144].

Numerous studies have shown that palmitoylation of ABCA1 is crucial for its trans-
portation and localization to the plasma membrane [145]. Activation of ABCA1 by SPTLC1
can be removed from the ER for transport to the Golgi apparatus [146]. A major finding sug-
gested that palmitoylation of ABCA1 occurred in four different cysteine residues of amino
acid residues: C3S, C23S, C1110S, and C1111S. A variety of enzymes, including DHHC8,
are involved in palmitoylation of ABCA1. Activation of DHHC8 results in palmitoylation
of ABCA1, which increases its hydrophobic property and ABCA1-mediated cholesterol
efflux [145]. Taken together, these studies indicate that palmitoylation of ABCA1 plays
an important role in its subcellular distribution and biological functions. Therefore, fur-
ther studies are needed to decipher the regulatory mechanism underlying palmitoylation
of ABCA1. This may provide a novel potential therapeutic target for increasing ABCA1
activity to reduce foam cell formation and prevent atherosclerosis development.

6.3. Mechanisms of ABCA1 That Regulate Cholesterol Homeostasis

RCT is the only way to eliminate excessive cholesterol, which is of great significance
to maintain the homeostasis of cholesterol metabolism. The key step for RCT is ABCA1,
which binds to apolipoprotein to participate in the formation of HDL [147,148]. Recently,
Yu et al. reported that there are five potential mechanisms underlying the regulation
of cholesterol homeostasis by ABCA1 [149], including channel trafficking [46], ABCA1
dimerization [150,151] the promotion of the efflux of intracellular cholesterol to apoA-I by
ABCA1 through a two-step process [152,153], apoA-I-free vesicle [154], and retroendocyto-
sis [155,156]. In the future, additional work is needed to precisely elucidate the underlying
mechanisms by which ABCA1 regulates cholesterol homeostasis.

7. ABCA1 and Cardiovascular Diseases
7.1. Dyslipidemia

Dyslipidemia is defined as a variety of lipid abnormalities and is probably related to a
combination of increased total triglyceride, cholesterol, and low-density LDL-C levels, or
decreased HDL-C levels. Substantial epidemiological evidence suggests that dyslipidemia
is a critical risk factor for the development of ASCVD [157]. Accumulating evidence
suggests that dysregulation of ABCA1 may mediate dyslipidemia. Therefore, it is important
to address how ABCA1 modulates lipid homeostasis.

ABCA1 is a critical regulator of HDL-C biogenesis and RCT. To date, the effect of
ABCA1 on plasma HDL-C modulation is clear. As mentioned above, TD is caused by an
ABCA1 gene mutation and is characterized by a complete deficiency or extremely low levels
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of HDL-C [158]. Abundant evidence suggests that ABCA1 is involved in other types of lipid
regulation. A study involving 363 patients indicated that a common variant, rs2230806,
of the ABCA1 gene led to TD and affected plasma triglyceride (TG) levels compared
with that in control patients [159]. Several studies have shown higher plasma TG and
lower LDL-C levels in homozygous TD patients compared with normal subjects [160–162].
In GWAS studies, more and more SNPs in ABCA1 loci are reported with the effect on
LDL-C (rs11789603, rs2066714, rs2740488, rs7873387, and rs2575876) and TG (rs1800978,
rs1799777, rs2575876, and rs1883025) levels. Moreover, several lines of evidence suggest
that many pharmacological and molecular regulators participate in ABCA1 regulation
and affect lipid levels. For instance, liraglutide upregulates ABCA1 by phosphorylating
ERK1/2 to decrease TC, TG, and LDL-C [163]. Mangiferin significantly reduces serum
TG, TC, and LDL-C levels by modulating PPARγ–LXRα-ABCA1/G1 pathway [164]. BBR
increases ABCA1 expression by activating the PCKδ pathway to reduce hepatic TC and
TG levels [140]. The loss of function of ferredoxin reductase and/or p53 represses ABCA1
expression, leading to an accumulation of TG, TC, and lipid droplets [165]. E1231, an
agonist of sirtuin-1, elevates LXRα-targeted ABCA1 expression to lower plasma TG and
TC levels [166]. Methyl protodioscin promotes ABCA1 expression by inhibiting microRNA
33a/b and sterol regulatory element binding protein (SREBP) transcription to decrease TG
and TC levels [167].

Several epidemiological studies have demonstrated that proper management and
prevention of dyslipidemia can significantly decrease cardiovascular morbidity and mor-
tality [157,168,169]. In recent years, increasing attention has been paid to the use of lipid-
lowering drugs. Previous studies identified many novel lipid biomarkers applied to clinical
treatment, such as PCSK9 inhibitors [170], antisense oligonucleotides of apolipoprotein
C3 or angiopoietin-like 3, which significantly decrease plasma TG [171,172] and lipopro-
tein(a) (Lp(a)) antisense oligonucleotide levels; the latter exhibits great potential in reducing
Lp(a) [173]. Collectively, the loss of function of ABCA1 leads to dyslipidemia, and currently,
there are no efficient drugs targeted to lower TC and HDL-C levels. This suggests that
ABCA1 may be a potential therapeutic target for cholesterol regulation.

7.2. Atherosclerosis

Atherosclerosis resulting in ischemic heart disease (IHD) is a major cause of all-cause
mortality [174]. Emerging evidence indicates that the rupture of atherosclerotic lesions
is closely related to cardiovascular events [175,176]. It is now generally accepted that
atherosclerosis is caused by the accumulation of cholesterol and triglycerides in the arterial
wall [177] and is a chronic inflammatory disease [178]. Recent studies have challenged
the protective effects of HDL against atherosclerosis [179,180]. ABCA1 expression is high
in atherosclerotic tissues, especially in atherosclerotic lesions containing inflammatory
cells and lymphocytes [181]. Moreover, atherosclerosis in ABCA1 transgenic and knockout
mouse models was reported to increase significantly [182]. It is well known that the
development of atherosclerosis lesion requires TC, TG, and LDL-C accumulations and the
existence of other risk factors, including cigarette smoking, hypertension, and diabetes
mellitus. Recently, dysregulation of the immune system was identified as a novel risk factor
for atherosclerosis [179].

Many studies have shown that ABCA1 may play a dual role in the development of
atherosclerosis. ABCA1 plays a crucial role in HDL-C production and cholesterol efflux
thereby protecting against atherosclerosis [183]. In contrast, it can also decrease macrophage
inflammation [184]. In this context, overexpressed ABCA1 in endothelial cells (ECs) has
anti-inflammatory effects and increases cholesterol efflux [23]. Moreover, the different
underlying mechanisms of ABCA1 and atherosclerosis have been illustrated in many stud-
ies [185,186]. Annexin A1 (ANXA1) interacts with ABCA1 to exert its anti-atherogenic
function [187]. CXCL12 also plays a pro-atherogenic role through the CXCR4/GSK3β/β–
catenin T120/TCF21 pathway to repress ABCA1 expression [188]. In vascular smooth muscle
cells, the inhibition of myocardin regulates ABCA1 to prevent atherosclerosis [189]. Re-
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cently, E17241 (4-(1,3-dithiolan-2-yl)-N-(3-hydroxypyridin-2-yl) benzamide) was identified
as a novel ABCA1 upregulator and reduced atherosclerotic lesion areas in vivo in animal
models [190]. An in vitro study showed that mangiferin, an agonist of NFE2 like bZIP
transcription factor 2, obviously reduced TC, TG, and LDL-c levels by augmenting the
expression of ABCA1 [164]. Furthermore, the role of phagocyte-mediated efferocytosis ef-
fectively phagocytized and cleared apoptotic cells to attenuate atherosclerosis lesions [191].
In a recent study by Chen et al. [192], ABCA1 was shown to be modulated by “find-me”
(containing LPC) and “eat-me” (containing PtdSer, ANXA1, ANXA5, MEGF10, and GULP1)
ligands to promote efferocytosis [192].

Interestingly, many traditional Chinese medicines are involved in ABCA1 regula-
tion and demonstrate efficacy against atherosclerosis. Yin-xing-tong-mai and Sini decoc-
tions [193] increase ABCA1 expression in macrophages by activating the PPARγ–LXRα
pathway to attenuate atherosclerosis [194]. The Qing-Xue-Xiao-Zhi formula inhibits the
TLR4/MyD88/NF-κB pathway to promote ABCA1 expression [195]. Ethanol extract of Dan-
lou tablet upregulates ABCA1 by triggering the PPARα signaling pathway [196]. In apoE-/-
mice, quercetin [197] and semen celosiae [198] have been found to promote ABCA1 expres-
sion to protect against atherosclerosis. Chinese herbal compounds “Xuemai Ning” [199]
and “Xinnaokang” [200] and flavonoids compounds [201] can up-regulate the expression
of ABCA1. Curcumin can promote cholesterol efflux, reduce intracellular lipid content, and
promote foam cell formation through the miR–125a-5p/SIRT6 axis to overexpress ABCA1 in
macrophages [202]. In summary, previous studies have suggested that the upregulation of
ABCA1 expression inhibits the development of atherosclerotic lesions.

7.3. Ischemia/Reperfusion and Ischemic Heart Disease

Ischemia-reperfusion injury (IRI) is a complex phenomenon that occurs in numerous
traumatic injuries and diseases. A prominent feature of IRI is the abrupt interruption of
blood supply (ischemia), followed by the recovery of blood supply and re-oxygenation
(reperfusion) [203]. IRI often causes reversible cell dysfunction, local and remote tissue
destruction, and multiple organ failures [204]. In the heart, reperfusion after ischemia
successfully attenuates ischemic myocardial damage. However, this leads to irreversible
detrimental effects [205]. A previous study suggests that IRI is the predominant patholog-
ical condition in cardiovascular diseases, including IHD [206]. Epidemiological studies
have shown that a deficiency of plasma HDL-C is closely related to an increased risk of
IHD [207,208]. The protective effect of HDL-C in IHD is mainly confirmed by its involve-
ment in RCT and its anti-inflammatory effects. In a study by Laura et al. [209], reconstituted
HDL showed pleiotropic effects to protect isolated rat hearts against IRI, including promo-
tion of prostaglandin and reduction of tumor necrosis factor-alpha release [209].

ABCA1 plays a crucial role in nascent HDL-particle formation, maturation, and
catabolism. Furthermore, many studies have suggested that ABCA1 functions in ischemia/
reperfusion-induced cardiomyocyte injury. However, there is no clear evidence to identify
the changes in ABCA1 expression during the ischemia or reperfusion stage. Although
evidence has pointed out the association between the risk of IHD and loss-of-function
variations in ABCA1 [207,210–212], conflicts exist regarding whether inherited low plasma
HDL-C levels accelerate the risk of IHD [213]. In TD patients, there was no significant
increased risk of IHD [162]. Similarly, in the ABCA1 loss-of-function mutation carriers, no
increased risk of IHD was found [213]. Several studies have uncovered potential mecha-
nisms by which ABCA1 participates in IRI and IHD. As reported, HDL-stimulated nitric
oxide (NO), an endogenous regulatory molecule, is released to trigger ischemic precondi-
tioning against IRI [214,215]. The underlying mechanism is ABCA1 mediating the activation
of the Akt/ERK/NO pathway in ECs [216]. In a myocardial IRI mouse model, ABCA1 was
downregulated by miR-27a through the upregulation NF-κB signaling pathway [217]. These
results will bridge the knowledge gap in the biology of ABCA1 in IRI and IHD.
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7.4. Myocardial Infarction

Myocardial infarction (MI) is a major cause of disability and mortality worldwide [218].
It is characterized by the interruption of myocardial blood flow and reduction of myocardial
oxygen supply, which leads to ischemic myocardial necrosis [219,220]. According to the uni-
versal definition of myocardial infarction, there are five subtypes of MI [221]. Among them,
type 1 and type 2 MIs are the most common types in clinical cases. The difference between
these two types is their occurrence with or without obstructive coronary disease [222]. Coro-
nary atherosclerosis is the primary cause of acute atherothrombotic atherosclerosis. During
unstable periods, plaque rupture and activated inflammation in the vascular wall often
occurs [218]. It is important to note that HDL particles have anti-inflammatory effects; pos-
sess antithrombotic properties; prevent the oxidation of low-density lipoproteins; modulate
vasomotor tone; and may improve EC function, proliferation, and migration [223,224].

It has been established that ABCA1 plays a critical role in HDL production and
cholesterol efflux and lipid homeostasis maintenance. Epidemiological studies have
shown that mutations and loss-of-function in ABCA1 significantly decrease HDL-C levels
and accelerate cardiovascular diseases risk [222]. Consistent with this view, a 36-year-
old man with MI had a combined ABCA1 and ApoA-I deficiency [225]. Additionally,
Subramaniam et al. reported a 41-year-old man with premature recurrent MI caused
by the ABCA1 gene mutation, who had moderately decreased serum HDL-C and pro-
tein C levels with increased homocysteine [226]. A 45-year-old woman presented with
three mutations (c.3137C > A, c.4595A > G, and c.5097G > T) in the ABCA1 gene with MI,
undetectable HDL, and multiple episodes of angina [227]. Remarkably, the R219K poly-
morphism in the ABCA1 coding region is associated with a high risk of MI [78]. Moreover,
in a group of young male survivors of MI, three mutations in the ABCA1 gene (I883M, R219
K, and -477C/T) were identified, and their influence on long-term prognosis was analyzed.
Notably, not all ABCA1 mutations are associated with the risk of MI. For example, in the
general Japanese population, a polymorphism in the ABCA1 promoter region, G(-273)C, sig-
nificantly decreased HDL-C levels but had no significant effect on MI risk [228]. However,
there is no evidence that ABCA1 polymorphisms are associated with genetic susceptibility
to MI [229].

According to previous studies, ABCA1 has a protective effect against atherosclero-
sis. However, it has adverse effects on cardiac function following MI [230]. Interestingly,
Kavita et al. observed no significant changes in ABCA1 mRNA transcripts in acute myocar-
dial infarction (AMI) peripheral blood mononuclear cells [231]. Tina et al. [232] showed that
niacin significantly stimulates ABCA1 transcription by repressing the cyclic AMP/protein
kinase A pathway to improve survival after MI [232]. Additional research is required to
determine the correlation between ABCA1 and MI.

7.5. CHD

CHD is one of the leading causes of mortality and imposes a substantial financial
burden on modern society. The primary cause of CHD is the obstruction of blood flow in
the coronary artery due to atherosclerosis or thrombosis [233]. Although numerous studies
have advanced our understanding of the relationship between triglycerides and CHD,
additional evidence suggest that circulating cholesterol is one of the most important risk
factors for atherosclerosis and CHD [234–236]. In the last few years, cholesterol-lowering
strategies have resulted in a prominent decrease in the total mortality of CHD [237]. Thus,
the underlying correlation between cholesterol and CHD warrants further investigation.

Few studies have indicated that prebeta-1 HDL (preβ-1-HDL) level is a solid inde-
pendent positive risk factor for CHD [238–241]. preβ-1-HDL is a subtype of HDL that is
mainly formed by ApoA-I containing two copies of ApoA-I per particle. As mentioned
previously [25], ABCA1 plays a critical role in cholesterol efflux from macrophages and
in the development and progression of CHD. Moreover, preβ-1-HDL is regarded as the
principal acceptor of cholesterol efflux via ABCA1 mediated RCT. Moreover, it appears
to be a substrate for lecithin–cholesterol acyl transferase, which esterifies cholesterol and
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plays a central role in HDL metabolism [242]. Consistent with the functions of ABCA1 in
cholesterol homeostasis, numerous population and basic studies have shown that CHD is a
vital complication of ABCA1 deficiency.

A large genetic study has supported the role of ABCA1 in CHD susceptibility. In
familial hypercholesterolemia, a genetic disorder of the ABCA1 mutation, statin treat-
ment can reduce the risk of CHD [243]. In the past decade, numerous polymorphisms
(rs146292819 [244], rs1800976 [245], rs2230806 [R219K] [246], rs4149313 [M8831I] [247],
rs9282541 [R230C] [56], -565C/T [248], A1092G [M233V] [249], rs363717, rs4149339, and
rs4149338 [250]) in the ABCA1 locus were significantly associated with susceptibility to
CHD. The R230C/ABCA1 variant features both a reduction in HDL-C levels and a protec-
tive effect against CHD [57].

Both gene mutations in ABCA1 and DNA methylation modifications lead to this
mRNA transcription deficiency. Previous reports have revealed a relationship between
ABCA1 promoter region methylation and CHD risk [251–255]. Infante, et al. [256] reported
that ABCA1, TCF7, NFATC1, PRKCZ, and PDGFA DNA are highly methylated in the CD4+
and CD8+ T cells of patients with acute coronary syndrome (ACS) using epigenome-
wide analysis [256]. Notably, the most severe clinical manifestation of CHD is ACS [257].
Fang et al. [253] indicate that high methylation of the ABCA1 promoter is associated with
decreased ABCA1 expression and HDL-C levels, as might be expected. However, there was
no significant association between ABCA1 promoter region methylation status and plasma
lipid concentration in an Iranian population [253]. Despite this, acetylsalicylic acid has
been shown to attenuate ABCA1 DNA methylation levels and protect against CHD [254].
These studies have revealed that epigenetic modifications might be a potential mechanism
for CAD, and ongoing studies are needed to clarify these mechanisms. As summarized
in this review, we conclude that ABCA1 plays a role in a broad array of cardiovascular
diseases, including dyslipidemia, atherosclerosis, ischemia/reperfusion, ischemic heart
disease, myocardial infarction, and CHD, with different preventive effects (Figure 3).
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8. Conclusions and Future Directions

ABCA1 is a critical molecule involved in cholesterol metabolism and HDL production.
Abnormalities in ABCA1 gene expression or post-translational modifications of ABCA1
often lead to the excessive intracellular accumulation of cholesterol. As mentioned above,
post-translational modifications of ABCA1 are closely related to its functions, including
distribution, transport, degradation, and stabilization. However, the underlying mech-
anism of ABCA1 PTMs has not been identified in previous studies and thus remains to
be elucidated in the future. In spite of the many studies that have identified that ABCA1
PTMs are involved in a variety of pathophysiological processes, few studies show the direct
associations between the PTMs of ABCA1 in cardiovascular diseases. Therefore, it is critical
to uncover the role of ABCA1 PTMs in cardiovascular diseases. It is of particular interest
that researchers have had a breakthrough in progress toward identifying the Cryo-EM
structure of human ABCA1. The structural observation developed provides us with a
mechanistic understanding of disease mutations and lays a basis for the development of
targeted drugs.

A series of landmark discoveries resulted in the development of the ‘HDL hypotheses’
and an inverse correlation between HDL-C concentration and cardiovascular diseases [255].
HDL particles have multiple functions and play important roles in promoting excess choles-
terol efflux from macrophages to prevent lesions in arterial wall vessels [256]. Therefore,
the elevation of circulating HDL levels by small HDL apoprotein-related mimetic peptides
is a promising approach for the development of anti-atherogenic and anti-inflammatory
drugs [257]. In addition, ABCA1 is involved in HDL biogenesis. However, the other major
clinical problem is that there is no specifical drug and synthetic ligand to regulate ABCA1
expression. Therefore, there is an urgent need to find and develop targeted drugs that
specifically regulate ABCA1 expression, which will be the focus of future research.

Lipid accumulation and vessel wall inflammation are the two fundamental hallmarks
of cardiovascular diseases [258]. To date, there has been conclusive evidence that ABCA1
is involved in inflammation. Thus, the function of ABCA1 in suppressing inflammation
in macrophages should also be discussed. Literature data from animal models to humans
indicate that macrophage-specific ABCA1 deficiency is related to accelerated inflammatory
cytokine release and pro-inflammatory gene expression [25]. The mechanisms of ABCA1
suppression of inflammation involve a large number of signaling pathways, including Janus
kinase 2 [259,260], Ca2+ [261,262], Rho family G protein cell division cycle 42 [263,264],
and protein kinase A pathways [139]. Determining how ABCA1 interacts with these
inflammation pathways in cardiovascular diseases may ultimately uncover novel methods
applied in cardiovascular disease therapy.

Much evidence supports the concept that macrophages play a critical role in the
pathogenesis of various cardiovascular diseases, including, but not limited to, the forma-
tion of foam cells, proliferation in atherosclerotic lesions, necroptosis, and macrophage
polarization [265]. Considering that ABCA1 is most abundant in macrophages and its
function is to maintain cholesterol homeostasis, much more research is needed to explore
the underlying molecular mechanism by which ABCA1 modulates cardiovascular diseases
through macrophages. Additionally, it may shed light on the diagnosis and treatment of
cardiovascular diseases.
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