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ABSTRACT

Over 120 FDA-approved antibody-based therapeutics are used to treat a variety of diseases.However,
many candidates could fail because of unfavorable physicochemical properties. Light-chain amyloidosis is
one form of aggregation that can lead to severe safety risks in clinical development. Therefore, screening
candidates with a less amyloidosis risk at the early stage can not only save the time and cost of antibody devel-
opment but also improve the safety of antibody drugs. In this study, based on the dipeptide composition of
742 amyloidogenic and 712 non-amyloidogenic antibody light chains, a support vector machine–based model,
AB-Amy, was trained to predict the light-chain amyloidogenic risk. The AUC of AB-Amy reaches 0.9651. The
excellent performance of AB-Amy indicates that it can be a useful tool for the in silico evaluation of the light-
chain amyloidogenic risk to ensure the safety of antibody therapeutics under clinical development. A web
server is freely available at http://i.uestc.edu.cn/AB-Amy/.

Statement of Significance: Statement of Significance: The amyloidogenic propensity of light chains is not
only associated with disease but also the developability of the antibody. A machine learning method for
the assessment of therapeutic antibody amyloidosis is herein presented.
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INTRODUCTION

Therapeutic antibodies have become a major class of bio-
pharmaceutical products because of their high specificity
to the therapeutic targets that are undruggable for small-
molecule drugs [1,2]. In the last decade, the therapeutic
antibody has been widely used for the treatment of can-
cers, immune-related diseases and infections [3,4]. With the
advancement of hybridoma, phage display and single B-cell
platforms, a growing number of therapeutic antibodies have
been discovered and proceed into clinical development. The
number of therapeutic antibodies in the late clinical stage
has been more than tripled in the last decade [5]. In July
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2021, the US Food and Drug Administration approved the
100th monoclonal antibody therapy [6]. However, over 85%
of human or humanised mAbs failed in preclinical develop-
ment, with many cases due to unfavorable physicochemical
properties leading to increased aggregation tendency and
high viscosity and thus, poor manufacturability [7, 8]. As
a result, the evaluation of aggregation propensity is a key
part of antibody developability assessment [9].

Aggregation not only leads to bioprocessing failure but
also causes safety risks in clinical trials. The majority
of antibody-related amyloidosis is light-chain (AL) amy-
loidosis. In addition, heavy-chain (AH) amyloidosis and
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immunoglobulin heavy- and light-chain (AHL) amyloi-
dosis are reported [10, 11]. AL, also known as primary
amyloidosis, is a type of complex and incurable disease
caused by abnormal clone plasma cells overproducing
immunoglobulin light chains (LCs) that misfold and
aggregate as amyloidogenic fibrils in certain organs [12, 13].
AL is often related to multiple myeloma [14] and often leads
to cardiac amyloidosis or systemic amyloidosis that affects
the kidney, peripheral and autonomic nervous system,
liver and other organs [11]. As a result, the therapeutic
antibody should not contain LCs with an amyloidogenic
risk for the safety of patients. Therefore, the developability
assessment of the therapeutic antibody candidates should
involve the evaluation of the amyloidogenic risk of
their LCs.

The characterisation of the amyloidogenic propensity of
LCs in vitro was primarily by Congo Red staining. However,
due to the limited sensitivity of the Congo Red assay [15],
several methods with higher sensitivity have been developed
recently [16]. Nevertheless, these assays are laborious, costly
and thus not suitable for high-throughput characterisation.
Besides, experimental assays only report the presence of the
amyloid aggregation once it is significantly formed, rather
than giving an early warning before the formation of the
nucleus. Bioinformatics method could provide predictive
tools to this problem. In recent years, several amyloidogenic
sequence databases such as AMYPdb [17], AmyPro [18]
and WALTZ-DB2.0 [19] have been constructed. Based on
these databases, a few computational tools for the predic-
tion of amyloidogenic proteins have been built [20,21,22–
24]. These methods, however, only perform well in detecting
hot-spot regions (about six residues) to find aggregation-
prone regions. Thus, the results became less accurate when
tested by longer sequences [25]. In addition, no predic-
tive tool has been developed specifically for the AL amy-
loidogenic risk to assess the developability and safety of
therapeutic antibodies.

In this study, we trained a novel SVM-based predictor
called AB-Amy for the evaluation of the AL amyloidogenic
risk of a therapeutic antibody. It enables researchers to
exclude amyloidogenic candidates in early development,
thereby saving the research and development cost and time.
AB-Amy showed reliability in cross- validation and robust-
ness in the test dataset. To our knowledge, this is the first
investigation linking AL amyloidogenic propensity and the
developability of therapeutic antibodies.

MATERIALS AND METHODS

Figure 1 shows the framework of AB-Amy. In brief,
after building the datasets, 21 categories of features
were extracted and selected, and unrelated features were
reduced. Later on, an SVM-based predictive model
was trained and evaluated. Finally, a web server and a
standalone program were constructed, respectively.

Dataset construction

AL-base [26] is a curated database that contained LC amino
acid sequences from patients with AL amyloidosis. We

downloaded 527 AL amyloidosis LC sequences from AL-
base and further cleaned these sequences with the following
criteria:

a) excluded the sequences containing illegal characteris-
tic “X”;

b) numbered the sequences using IMGT scheme [27];
c) extracted the VL regions of sequences;
d) excluded the sequences with missing or unmatched

CDRs.

The other 263 amyloidogenic sequences were taken
from the work by David et al. [28] and were cleaned as
above. Combining the data of the two sources together, we
obtained 742 unique sequences of the antibody VL region
causing amyloidosis as the positive dataset. The sequences
of the LCs of approved antibodies or those in clinical trials
are considered as non-amyloidogenic. These LC sequences
were extracted from “The Therapeutic Structural Antibody
Database” (Thera-SAbDab) [29] and cleaned as above. We
finally used the remaining 712 unique sequences as the
negative dataset. From the positive and negative datasets,
we randomly picked out 500 amyloidogenic and 500 non-
amyloidogenic sequences, respectively, to make the training
dataset. The remaining sequences (454 in total) were used
as an independent test dataset to evaluate the performance
of the SVM model.

Feature extraction and selection

The most important step in building a reliable machine
learning model is to extract features from data using an
appropriate mathematical method such that LC sequences
can be classified. The features extracted from amino acid
sequences have displayed good performance on the classi-
fication of many proteins and peptides [30–32]. Based on
a large number of trials, we found that DPC displayed
the best performance on predicting amyloidogenic LCs.
DPC encodes the frequency of amino acid pairs (i.e., AA,
AC, AD, . . . , YY) in a protein or peptide sequence. It is
defined as

DPC (r, s) = Nrs

N − 1
, r, s ∈ {A, C, D, · · · , W , Y} (1)

where Nrs is the number of the corresponding amino acid
pair rs. N is the length of a protein or peptide sequence.
DPC has 400 (20 × 20) descriptors.

In addition, other 20 feature extraction methods were
tested. They are AAC, APAAC, DPC, TPC, CKSAAP,
CKSAAGP, GAAC, GDPC, GTPC, Moran, Geary,
NMBroto, CTDC, CTDT, CTDD, CTriad, KSCTriad,
SOCNumber, QSOrder and PAAC. All the feature extrac-
tion processes were performed using the iFeature Python
package [33].

Exceeding the amount of features used in a model tends
to overfit the training data, increase training time and
reduce the robustness of the model. To avoid this, fea-
tures should be reduced. We used an integrated feature
selection algorithm MRMD2.0 developed by He et al [34].
MRMD2.0 first sorts all features using different methods
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Figure 1. The framework of AB-Amy.

such as mRMR, LASSO and ANOVA . Then, the PageR-
ank algorithm is used to obtain the new ranking of features.
Finally, the optimal feature subset is selected by sequential
forward selection (SFS). SFS is the one of the simplest
feature subset selection methods in which feature set A
is initially given one feature, and then, more features are
orderly given to evaluate the model until any new feature
does not increase the performance. The corresponding set
A is considered the best feature set.

Model establishment

Support vector machine (SVM) is a supervised machine
learning framework for data classification and regression,
which was first proposed by Vapnik et al. Because of its high
accuracy in handing data characterised by small sample
sizes, non-linearity and high dimensional patterns, SVM
has been applied in many fields such as peptide identi-
fication [35], protein–protein interaction [36] and cancer
prediction [37]. We employed LIBSVM [38] with radial
basis function (RBF) kernel to construct the model. The
SVM output score P, ranging from 0 to 1, is the probability
of an LC sequence to be amyloidogenic. LC sequence is
classified as amyloidogenic if the probability is greater than
0.5. Furthermore, we compared the SVM-based model with
several other classification algorithms, which are Logistic
Regression, Random Forest, Decision Tree, Naive Bayes,
k-Nearest Neighbors and AdaBoost, using the “sklearn”
Python package.

Performance evaluation

In machine learning, cross-validation has been widely used
to facilitate model evaluation and hyperparameter selec-
tion. We implemented 5-fold cross validation to assess
the performance of our predictive model and obtain the
optimal kernel parameter γ and penalty parameter c. In
our procedure for 5-fold cross validation, the dataset was
randomly split into five equal parts, each of which was
regarded as the test set in turn, whereas the remaining
four parts were used as training set. Eventually, the aver-
age accuracy was taken as the final value of accuracy.
To evaluate the performance of the predictive model, we
employed five widely used classification metrics: sensitivity
(Sn), specificity (Sp), accuracy (ACC), Matthews correla-
tion coefficient (MCC) and AUC. These metrics can be
defined as

Sn = TP
TP+FN (2)

Sp = TN
TN+FP (3)

ACC = TN+TP
TP+FN+TN+FP (4)

MCC = TN×TP−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(5)

where TP is the number of correctly predicted amyloido-
genic sequences; FP is the number of falsely predicted amy-
loidogenic sequences; TN is the number of correctly pre-
dicted non-amyloidogenic sequences; and FN is the number
of incorrectly predicted non-amyloidogenic sequences. In
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Figure 2. The usage frequency of germline gene in amyloidosis sequences. The other groups include IGLV2-8, IGKV2-28, IGLV2-11, IGKV1D-16, IGLV4-
69, IGLV3-27, IGLV3-25, IGKV1-12, IGLV1-36, IGLV7-43, IGKV1-27, IGLV10-54, IGLV3-10, IGKV2-30, IGLV3-9, IGKV3-20 and IGKV3D-15.

addition, the true-positive rate (TPR) and false-positive
rate (FPR) will be calculated to plot the receiver operating
characteristic (ROC) curve. The AUC (area under the ROC
curve) is used to illustrate the performance of the model
because it is independent of the choice of the threshold
for the predicted values. The AUC value of 0.5 represents
a random prediction. A model with the AUC value of 1
means a perfect performance.

Online web server and standalone tool

To provide an easy and user-friendly interface, we con-
structed a web server for AB-Amy. The front-end of
AB-Amy was developed and implemented using HTML,
CSS and JavaScript. The back-end of AB-Amy was
implemented with PHP and Python scripts. To ensure a
stable and secure service, the standalone versions of AB-
Amy can also be freely downloaded. The graphical user
interface (GUI) of the standalone version of AB-Amy
is implemented with “pyside2,” a Python module, which
provides an access to the complete Qt 5.12+ framework.

RESULTS

Germline gene usage in AL amyloidosis

The use of certain germline gene segments poses a risk
for the development of amyloidosis [39]. We analyzed
the germline gene usage of 742 AL amyloidosis LC
sequences. The most frequently used germline genes were
IGLV6-57 (6a), IGLV3-1 (3r), IGLV1-44 and IGLV2-14,
accounting for 18.73, 13.21, 11.19 and 10.24 of total usage,
respectively (Fig. 2). The germline gene IGLV6-57 is more
common in AL amyloidosis than in the normal B cells and

is associated with renal involvement [40]. Using IGLV1-
44 and IGLV2-14 germline genes is linked to predominant
cardiac involvement, whereas IGLV3-1 is frequently found
in the amyloid infiltration of various organs [39]. In
contrast, IGLV7-43, IGKV1-27, IGLV10-54, IGLV3-
10, IGKV2-30, IGLV3-9, IGKV3-20 and IGKV3D-15
are used only once in AL-base. These genes were rarely
reported to have usage bias in AL patients.

Feature selection on DPC

In our model, DPC has 400 features that were then selected
by MRMD2.0. Figure 3 shows the variation of ACC using
different numbers of features during the SFS process. Ini-
tially, the ACC increased significantly from 0.803 to 0.901,
whereas the number of features increased from 1 to 37.
Subsequently, with the increase of the number of features,
the ACC fluctuated around 0.90 and reached the maximum
value when the number of features was 45. Compared with
the original 400 features, the ACC of optimal feature set
has been raised from 0.896 to 0.907. The visual increase of
ACC was not significant, but we suggested that the small
sub-feature-set was better even if the ACC equaled to model
trained with original features. The results of MRMD2.0
indicated that the 45 selected features were the most rep-
resentative feature set of the original features, which nearly
covered the characteristics of amyloidogenic LC sequences.

Performances of SVM-based models in identification of
amyloidogenic antibody LCs

The SVM-based model was trained using the optimal sub-
feature-set with 45 features selected in the previous step. We
used 5-fold cross-validation to investigate the performance
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Figure 3. The ACC calculated by a different sub-feature-set in the
sequential forward selection procession.

Figure 4. The ROC curve for AB-Amy and other six classifiers tested on
the independent dataset.

of the model. The model reached the highest accuracy when
c = 2 and γ = 0.125. The results from the 5-fold cross
validation showed that the ACC of the predictive model
was 90.60% when the threshold was set to 0.5. To test
the robustness and generalisation of the proposed method,
external validation is required to evaluate the developed
predictive model. Therefore, we assessed AB-Amy on an
independent test set, the ACC of which was 92.95% with
an SE of 93.80%, an SP of 91.98% and an MCC of 0.8584.
Figure 4 shows the ROC curve of AB-Amy, where the
AUC reached 0.9651. The results of cross-validation and
independent testing confirmed that our proposed predictor,
AB-Amy, effectively recognised amyloidogenic LCs from
therapeutic antibody LCs.

Figure 5. The number of features of 21 feature extraction methods
processed by MRMD2.0. The original feature number of each method is
marked in parentheses.

Performance of different feature extraction methods

As described previously, to verify the effectiveness of the
proposed feature, we compared DPC with other 20 popular
feature extraction methods. Figure 5 shows the comparison
of the original and reduced feature dimension results of all
the methods processed by MRMD2.0. The smaller repre-
sentative feature subsets were obtained to reduce redun-
dancy and correlation between features. The independent
test results of all the methods are shown in Table 1. The
performance of the two models was compared by five
metrics: SE, SP, ACC, MCC and AUC. In the comparison,
the SVM model based on DPC achieved the highest sen-
sitivity, specificity, ACC and MCC of 93.80, 91.98, 92.95
and 0.8584, respectively (Table 1). In the AUC metric, TPC
and DDE performed slightly higher than DPC. However,
the feature number of TPC and DDE is 2349 and 319,
respectively, which is strikingly more than that of DPC.
Fewer features can reduce the training time and overfitting
risk of the model. Therefore, DPC is more proper for pre-
dicting amyloidogenic antibody LC sequences in terms of
feature dimension and the model performance in external
validation.

Comparison with other classifiers

We compared the SVM model with other widely used
classifiers including Logistic Regression, Random Forest,
Decision Tree, Naive Bayes, k-Nearest Neighbors and
AdaBoost. The results are shown in Table 2. The SVM-
based method is obviously superior to the six other
classifiers in SE, ACC and MCC and higher than them
by about 0.0031–0.1368 in the AUC metric (Fig. 4). The
k-Nearest Neighbors also achieve the highest specificity of
91.98%. However, its sensitivity is 83.47%, which is much
lower than that of SVM.

Comparison with other published predictors

Quite a few computational tools have been developed for
the prediction of amyloidogenic sequences in proteins. To
further evaluate AB-Amy, we compared its performance
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Table 1. The performance evaluation of the SVM model based on 21 feature extraction algorithms

Feature SE (%) SP (%) ACC (%) MCC AUC

DPC 93.80 91.98 92.95 0.8584 0.9651
TPC 92.15 91.98 92.07 0.8408 0.9700
Geary 91.32 91.98 91.63 0.8322 0.9612
DDE 93.39 88.68 91.19 0.8231 0.9728
CTriad 90.50 91.04 90.75 0.8145 0.9608
Moran 91.32 90.09 90.75 0.8142 0.9571
QSOrder 90.91 90.57 90.75 0.8143 0.9684
GTPC 90.50 90.57 90.53 0.8100 0.9517
KSCTriad 91.32 89.62 90.53 0.8097 0.9635
NMBroto 89.67 91.04 90.31 0.8059 0.9575
CTDD 89.26 89.62 89.43 0.7880 0.9629
APAAC 89.67 88.21 88.99 0.7788 0.9519
CKSAAP 88.84 88.21 88.55 0.7701 0.9525
CTDC 87.60 89.62 88.55 0.7709 0.9427
SOCNumber 88.84 88.21 88.55 0.7701 0.9424
CKSAAGP 88.43 88.21 88.33 0.7658 0.9588
CTDT 88.43 88.21 88.33 0.7658 0.9403
AAC 88.43 86.32 87.44 0.7477 0.9359
PAAC 89.26 84.91 87.22 0.7432 0.9365
GDPC 84.30 88.21 86.12 0.7235 0.9296
GAAC 79.75 81.60 80.62 0.6124 0.8694

Table 2. Comparison of SVM with other classifiers

Model SE (%) SP (%) ACC (%) MCC AUC

SVM 93.80 91.98 92.95 0.8584 0.9651
Random Forest 91.74 91.98 91.85 0.8365 0.9620
Naive Bayes 90.08 86.79 88.55 0.7698 0.9306
K-Nearest Neighbors 83.47 91.98 87.44 0.7533 0.9440
Decision Tree 81.82 83.96 82.82 0.6565 0.8283
AdaBoost 88.43 87.26 87.89 0.7567 0.9527
Logistic Regression 88.02 89.62 88.77 0.7752 0.9528

with previously published methods. We used VLAmY-
Pred [41], Aggrescan [20], AmyloGram [42], APPNN [43],
Pasta2.0 [44], Waltz [21] and iAMY-SCM [45] to predict the
amyloidogenic patches or amyloidogenic propensity of the
sequences with our independent test dataset. The outputs
of some methods were processed further for properly com-
paring their performance. For example, Pasta2.0 and Waltz
make prediction to the number of amyloidogenic hotspot
regions. We assumed that an antibody is amyloidogenic
if at least one amyloidogenic region was predicted in
its sequence. Moreover, Aggrescan calculates the global
protein aggregation propensity average score of input
sequences. Because high Aggrescan score corresponds
to low aggregation propensity, we sorted all the scores
and classified all antibodies into amyloidogenic and non-
amyloidogenic groups by the threshold of −12.96 [46].
The performances of all selected methods are listed in
Table 3. It is shown that AB-Amy exhibited the best overall
performance. The SE of Aggrescan, Waltz and iAMY-SCM
are all significantly higher than SP, whereas APPNN and

AmyloGram predicted all sequences as positive samples,
which indicates that these methods have significant biases
in predicting amyloidosis-prone sequences. VLAmY-Pred
is an in silico tool for screening the potential amyloidogenic
LCs. However, it achieved an unsatisfied ACC of 74.67%.
It is obvious that AB-Amy is an efficient model for the
accurate prediction of the amyloidogenic antibody LCs.

DPC features and amyloidogenic risk

We analyzed the dipeptide occurrence in amyloidogenic
and non-amyloidogenic LC sequences. Figure 6 shows
the dipeptides that are significantly different in their
occurrence between the positive and negative samples
(FDR < 0.05). The positive samples are rich in DE, WD,
SI and NF sequences, whereas the frequency of EI, TF and
LE is much higher in the negative samples. This suggests
that amyloidogenic and non-amyloidogenic LCs have
clearly distinguishable dipeptide composition [47]. The
above result indicated that the selected dipeptide features
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Table 3. Performance of AB-Amy and other published methods in amyloidogenic antibody sequence identification

Model SE (%) SP (%) ACC (%) MCC AUC

AB-Amy 93.80 91.98 92.95 0.8584 0.9651
VLAmY-Pred 73.55 75.94 74.67 0.4939 0.7475
Aggrescan 78.93 0.94 42.51 −0.3127 0.3993
AmyloGram 100 – 53.3 – 0.5
APPNN 100 – 53.3 – 0.5
Pasta2.0 52.06 75 62.77 0.2763 0.6353
Waltz 97.52 0.47 52.2 −0.8129 0.4899
iAMY-SCM 98.76 28.3 53.96 0.0569 0.5079

Figure 6. Volcano map of 45 dipeptides in the AB-Amy model showed
that 16 dipeptides were significantly different between the positive and
negative groups. The thresholds were |log2 (FC)| > 1 and FDR < 0.05.
Blue and red points indicated the down- and up-regulated dipeptides,
respectively.

are useful for characterising amyloidogenic sequences.
The occurrence of up-regulated dipeptides probably
enhances the amyloidogenic risk of LCs. Interestingly,
we found that WD only existed in the CDR3 region of
amyloidogenic LCs.

Web server and standalone tool

For the convenience of users, we implemented AB-Amy
into a user-friendly web server, which is freely available at
http://i.uestc.edu.cn/AB-Amy. Figure 7 shows the interface
of AB-Amy. At the “submit”page (Fig. 7A), users can input
or paste LC sequence in the text box or upload files in raw
or FASTA format. AB-Amy only recognises 20 common
amino acids in one letter code as legal characters. Users
can download their results once the prediction is completed
(Fig. 7C). In the downloaded file, the “Probability” col-
umn represents the probability of amyloidosis (the default
threshold is 0.5). “1” in the “Result” column denotes that
the submitted LC exhibits a high risk of amyloidosis and
should be excluded from the development pipeline. For
users who want keep their data private, they can download
standalone versions of AB-Amy via http://i.uestc.edu.cn/A

B-Amy/download.html. The interface style and usage of
the GUI AB-Amy are consistent with that of the web server
(Fig. 7B and D).

DISCUSSION

Relevant computational studies

Quite a few computational methods have been applied to
decipher the properties leading to amyloidosis. The existing
methods can be grouped into two categories: the structure-
based and sequence-based methods. The structure-based
methods [48] rely on crystal structures. In contrast, the
sequence-based methods [20, 21, 42–45] provide easier ways
to predict the amyloidogenic proteins. However, most of
the sequence-based methods are mainly applied to predict
amyloidogenic hotspot regions in proteins. As a result,
these methods show high false-positive rates when they are
applied to longer protein sequences.

David et al. [28] explored a naive Bayesian classifier and a
weighted decision tree for predicting the amyloidogenicity
of immunoglobulin sequences, and the ACC of the best
decision tree model reached 78.64% for the test set. Using
the data from David, Liaw et al. [47] constructed a random
forest model (AbAmyloid) to predict antibody amyloidosis.
The accuracy of AbAmyloid for cross-germline prediction
was 83.33%. The above-mentioned tools do not provide
any web server, or their web server becomes unavailable.
Rawat et al. [41] analyzed the sequence features of the
amyloidogenic and non-amyloidogenic LC and proposed
a machine learning model named “VLAmY-Pred.” It does
provide an available web server. However, its accuracy is
only 79.70% on the complete dataset. LICTOR [49] was
a random forest-based model for LC aggregation toxicity
prediction that used somatic mutations as predictor vari-
ables. Tested on an independent set, LICTOR achieved a
prediction accuracy of 83%. The authors further approved
that toxic sequences were more prone to aggregate than
non-toxic ones.

All the computational tools introduced above only aim
to predict the amyloidogenic regions of proteins or more
specifically, amyloidogenic antibody LCs, which can help to
reveal the etiology of amyloidosis. Regretfully, the perfor-
mance of the above tools is far from satisfying. In addition,
most tools cannot be used conveniently.

http://i.uestc.edu.cn/AB-Amy
http://i.uestc.edu.cn/AB-Amy/download.html
http://i.uestc.edu.cn/AB-Amy/download.html
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Figure 7. AB-Amy online web server (A and B) and the GUI of the standalone version (C and D).

Amyloidogenic LC and antibody developability

Therapeutic antibodies are highly specific and very effective
drugs [2]. However, developing them suffers from unfavor-
able physicochemical properties, especially those leading to
antibody aggregation during or after bioprocessing, storage
and administration [50]. Amyloidosis is a group of severe
diseases characterised by the deposition of misfolded pro-
teins in the form of amyloid fibrils [51]. AL amyloidosis
is the most common systemic amyloidosis. It is caused
by extracellular deposition of circulating LCs as amyloid
fibrils, resulting in the dysfunction of vital organs [40].
These circulating LCs are most commonly produced and
secreted by a plasma cell clone [52]. However, free LCs
are not necessarily amyloidogenic. The most widely known
free LCs in blood are Bence–Jones proteins (BJPs). It is
reported that only 15–20% of BJP are amyloidogenic and
the amyloidogenic property is associated with their variable
region [53]. In addition to AL amyloidosis, AH amyloidosis
and AHL amyloidosis are reported, indicating the amy-
loidogenic risk of heavy chains or whole antibodies [51].
Therefore, we infer that therapeutic antibody candidates
with amyloidogenic LCs might have a higher developability
risk. Consequently, excluding therapeutic antibody candi-
dates with an amyloidogenic risk in early development is
necessary.

In our study, we combine 263 amyloidogenic LCs
reported by David et al. with 527 amyloidogenic LCs from
the AL-base database to compose the positive dataset. The

LCs of approved antibodies or those in clinical trials are
extracted from the Thera-SAbDab database to make the
negative dataset as none of these LCs has been reported
to be amyloidogenic. Based on the datasets, a novel SVM-
based model called AB-Amy was built. Its accuracy and
AUC reached 92.95% and 0.9651, respectively, in an
independent test dataset. As shown in Table 3, AB-Amy
shows a better performance than those of existing tools.
However, we must agree that such comparison is not fair
as some of those tools are trained on different datasets and
some are even not based on machine learning models.

Nevertheless, this is the first study, at least to our knowl-
edge, that aims to assess the therapeutic antibody developa-
bility from the point of the AL amyloidogenic risk. Further-
more, we provided not only a user-friendly web server but
also standalone versions of AB-Amy. The latter allows to
assess the AL amyloidogenic risk in a high-throughput and
more secure way.

Future directions

In this study, the negative dataset is composed of the
LCs of therapeutic antibodies from the Thera-SAbDab
database. Thus, the current version of AB-Amy does not
fit for assisting the AL amyloidosis diagnosis. In future,
one direction is to make a new negative dataset from the B-
cell receptor repertoire sequencing data of healthy control
and then train a new model. In our opinion, this new
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model can be used to evaluate the B-cell receptor repertoire
sequencing data. This might help to identify the abnormal
B-cell or plasma cell clones that cause amyloidosis. By
doing this, AB-Amy might show the potential to provide
a good in silico diagnostic tool for the amyloidogenic
propensity of in vitro samples containing the sequences
of antibody LC. At present, AL amyloidosis is usually
suspected on the basis of symptoms of organ involvement,
which present very late in the disease course, and Congo
red stain is still the gold standard for the demonstration
of amyloid in tissue sections. Thus, such new models are
valuable.

In this paper, we only study the amyloidogenic risk model
for the LCs of therapeutic antibodies as there are adequate
data of known amyloidogenic LCs. With the accumulation
of data of amyloidogenic heavy chains or whole antibodies,
we can expect to build new and more models in future and
evaluate the amyloidogenic risk of therapeutic antibodies
more comprehensively.
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