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Metabolic reprogramming is one of the hallmarks of tumor. Growing evidence suggests
metabolic changes that support oncogenic progression may cause selective
vulnerabilities that can be exploited for cancer treatment. Increasing demands for
certain nutrients under genetic determination or environmental challenge enhance
dependency of tumor cells on specific nutrient, which could be therapeutically
developed through targeting such nutrient dependency. Various nutrients including
several amino acids and glucose have been found to induce dependency in genetic
alteration- or context-dependent manners. In this review, we discuss the extensively
studied nutrient dependency and the biological mechanisms behind such vulnerabilities.
Besides, existing applications and strategies to target nutrient dependency in different
cancer types, accompanied with remaining challenges to further exploit these metabolic
vulnerabilities to improve cancer therapies, are reviewed.
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Tumor metabolism has emerged to be an attractive topic in the field for many years, considering
that substantial evidence and insights are presented by a huge number of great studies.
Reprogramming and rewiring of metabolic pathways to either adapt to stressful environments or
to meet their own dramatic demands during tumor expansion is widely recognized and plays an
indispensable role in cancer development (1–3). Extracellular nutrients, including amino acids,
glucose and lipids, are major resources to drive the metabolic engine within tumor cells. Under
certain circumstances, like genetic mutations, alterations of metabolic gene expression and
limitations of nutrient supply in the tumor environment, tumor cells exhibit relatively high
addition to one particular nutrient, which creates nutrient dependency that could be
therapeutically targeted in cancer treatment (4–6). Thus, restricting nutrient availability by
various means such as dietary approaches and amino acids degrading enzymes causes growth
arrest, cell death and, partly, if not all, tumor suppression, which acts as an anti-cancer strategy and
is definitely worth further study (7–9). In addition, nutrient availability also affects numerous cell
types within tumor microenvironment and malignant cells undergo many challenges as well as
compensations from other types of cells in the context, which is assumed as heterocellular metabolic
interactions that impede our precise understanding of tumor metabolism (10).
February 2022 | Volume 12 | Article 8201731

https://www.frontiersin.org/articles/10.3389/fonc.2022.820173/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.820173/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:windway626@sina.com
mailto:zhangyilei@xjtu.edu.cn
https://doi.org/10.3389/fonc.2022.820173
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.820173
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.820173&domain=pdf&date_stamp=2022-02-01


Fan et al. Nutrient Dependency and Cancer Treatment
Interfering with nutrient availability can be secretively lethal
to tumor cells, which serves as a cancer-specific Achilles’ heel. To
date, selective dependencies of tumor cells on amino acids such
as asparagine, arginine, methionine, glutamine and cysteine, or
the major energy source glucose have been wildly documented,
although the underlying mechanisms vary and are highly context
dependent (9). How do genetic mutations influence metabolic
fluxes? How does metabolic reprogramming control nutrient
dependency? What vulnerabilities do these alterations expose
and can they be therapeutically targeted? In this review, we focus
on the regulation of metabolism in tumor cells and discuss the
key concepts for targeting nutrient dependency developed in the
past few years as well as the most recent progresses on this
emerging topic.
NUTRIENTS CAUSING DEPENDENCY OF
TUMOR CELLS

Nutrients like amino acids, glucose, lipids, vitamins, inorganic
salt and trace elements are required for the growth of all types of
cells and maintaining a steady state in response to environmental
challenges. Therefore, it’s rarely impossible to specifically target
nutrient availability in tumor cells while leaving normal cells
Frontiers in Oncology | www.frontiersin.org 2
untouched. Due to cell-autonomous metabolic reprogramming,
tumor cells are relatively more dependent on one or more
nutrients to support their core functions: biomacromolecules
synthesis, energy formation, redox control and stress response
(3). So far, the roles of several amino acids and glucose in
nutrient dependency are extensively studied, which will be
further discussed in the following section (Figure 1). In
addition, we will also briefly discuss nutrient dependency
caused by lipids and vitamins to spark any ideas about
targeting their metabolism in cancer treatment.

Arginine
Arginine is a conditionally essential amino acid or semi-essential
amino acid, which means it occasionally needs supplement from
dietary intake (11). In vivo, Arginine is synthesized from
aspartate or citrulline through argininosuccinate synthetase
(ASS1) and argininosuccinate lyase (ASL) (12), which act as
key regulators in determining the arginine-dependency of tumor
cells. Due to deregulation of ASS1 or ASL (such as loss of ASS1),
tumor cells have much a higher demand on extracellular arginine
than their normal counter parts, leading to arginine auxotrophy
(13–16). Consequently, depleting arginine through arginase
(ARGase, converting arginine into ornithine and urea) or
arginine deiminase (ADI, converting arginine into citrulline
and NH3) shows great potential in triggering cell death or
FIGURE 1 | Nutrients that frequently causing dependency in tumor cells. The major pathways and key enzymes (labeled in red) involved that modulating the
dependency of discussed nutrients (labeled in purple) are summarized in the diagram. SLCs, solute carrier-type transporters; GLUTs, glucose transporters;
ASS1, argininosuccinate Synthase 1; ASL, argininosuccinate lyase; ASNS, asparagine synthetase; MS, methionine synthase; CBS, cystathionine beta-synthase;
PGD, phosphogluconate dehydrogenase; G6PD, glucose-6-phosphate dehydrogenase; HK, hexokinase; PHGDH, phosphoglycerate dehydrogenase; IDH,
isocitrate dehydrogenase; GLS, glutaminase; TSP, transsulfuration pathway; PPP, pentose phosphate pathway; TCA cycle, the tricarboxylic acid cycle; HCys,
homocysteine; NADPH, reduced nicotinamide adenine dinucleotide phosphate; G6P, glucose 6-phosphate; 3PG, 3-phosphoglycerate; 6PD, 6-
phosphogluconate; Ru5P, ribulose 5-phosphate; OAA, oxaloacetate; a-KG, a-ketoglutarate.
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reducing tumor growth in various cancer types including non-
small cell lung cancer, glioblastoma, bladder cancer, pancreatic
cancer, liver cancer, leukemia and melanoma (11, 16–21).
However, the anti-cancer effects haven’t reached our
expectation when using ARGase treatment for cancer patients,
possibly due to limited efficacy of ARGase in vivo or
compensatory arginine supply from amino acids-related
salvage pathways (9). Alternatively, ADI treatment-mediated
arginine deprivation exhibits acceptable tolerance and has been
brought into clinical trials in several types of cancers (22, 23),
encouraging persistent dedication to deeply exploring the
applications of targeting arginine dependency in cancer
treatment. Of note, treatment with pegzilarginase, an
engineered human ARGase with superior stability and
catabolic activity, indirectly augments immune response and
dramatically improves M1-like antitumor macrophages,
eventually synergizing with anti-PD-L1 treatment to suppress
tumor (24). This finding provides new insights for the clinical
evaluation of targeting arginine dependency in conjunction with
immune checkpoint blockade therapy.

Asparagine
Asparagine is a non-essential amino acid which could be
synthesized through asparagine synthetase (ASNS)-from
aspartate in an ATP-dependent manner (25). However, the
demonstration of its metabolic requirement for tumor cell
growth makes it an ideal target in cancer treatment (26).
Indeed, enzymatic degradation of asparagine by L-asparaginase
(ASNase, converting asparagine into aspartic acid and ammonia)
treatment exhibits efficient tumor regression in acute
lymphoblastic leukemia (ALL) and is the most successful and
best documented nutrient dependency-targeting therapy in anti-
cancer treatments (27). The efficacy of ASNase treatment seems
to be dependent on ASNS expression within tumor cells (28, 29),
though the detailed reasons for asparagine dependency of
leukemias remain further investigations. Therefore, ASNS
might be a suitable biomarker considering its low expression at
least in part benefits ASNase therapy in ALL treatment. If so, a
better understanding of the mechanistic regulation of ASNS in
ALLs would contribute to deep exploration on asparagine-
limitation induced anti-cancer effects. To date, epigenetic
regulations of ASNS like DNA methylation, histone
methylation and acetylation have been proved to control ASNS
expression in human leukemic cell lines as well as leukemia
patients (30, 31). Thus, it prompts a logical theory of combined
treatment with ASNase, which depletes asparagine in the
extracellular context, and DNA demethylase or histone
acetyltransferase inhibitors, which bring down the expression
level of ASNS inside cells, and ideally this should be more
relevant to ASNase-resistant ALLs, yet to be demonstrated in
the future study. An encouraging study shows that compound
APR-246 which directly targets ASNS induces synergistic growth
suppression when combined with ASNase treatment in ALL cells
(32). Like all other chemical drugs, ASNase is not absolutely
specific and able to degrade glutamine due to its partial
glutaminase activity, which causes cytotoxicity and side-effects
during treatment (33, 34). Presumably, the anti-cancer effects of
Frontiers in Oncology | www.frontiersin.org 3
dual-enzyme activities of ASNase could be explained by the co-
dependency of glutamine/glutamate and asparagine/aspartate
observed in several studies (35, 36). In addition to glutamine,
thiamine-restriction also sensitizes a subset of leukemia cells to
ASNase treatment (37). These findings call for more
comprehensive studies on therapeutic response to ASNase.

Glutamine
Glutamine is a non-essential amino acid that can be synthesized
from glucose but plays an essential role in maintaining the growth
of some cancer cells in vitro, which is known as “glutamine
addiction” (38, 39). Glutamine has multiple independent
functions: serving as the key nitrogen donor for protein and
nucleotide synthesis, supporting the uptake of certain essential
amino acids andmaintaining tricarboxylic acid (TCA) cycle as well
as redox balance through glutaminolysis (40–42). Therefore,
targeting glutamine dependency has been reported in different
contexts involving its intrinsic functions as mentioned above. For
instance, pancreatic ductal carcinoma (PDAC) cells with
oncogenic KRAS are particularly dependent on glutamine
metabolism-mediated NADPH generation, which potentially
maintain cellular redox state (43). Similarly, colorectal cancer
with oncogenic PIK3CA mutations exhibits strong dependency
on glutamine due to up-regulated expression of glutamate pyruvate
transaminase 2 (GPT2) (44). In addition, other key regulators like
glutamine synthetase (GS), LKB1 (liver kinase B1), KEAP1, c-Myc
and FLT3 are also found to control glutamine dependency in
various contexts (45–49). Therefore, the application of glutamine
targeted therapies is routinely exploited in different cancer types.
Strategies of targeting glutaminase (which generates glutamate
from glutamine) or glutaminolysis pathway proteins are
developed to suppress tumor growth in leukemia, liver and
pancreatic cancers, all of which showed therapeutical efficacy at
least in preclinical studies (50–55). Considering the interplay
between glutamine and other nutrients, targeting one nutrient
might lead to co-dependency on glutamine. Metformin treatment-
induced glucose oxidation inhibition can cause dependency on
reductive glutamine metabolism in prostate cancer cells (56).
Moreover, tumor cells are able to survive and adapt to the poor
nutrient environment through metabolic rewiring of mTORC1
activity, which stabilizes GS to support tumor growth under
nutrient-deprived microenvironments (57). These findings
provide potential additional therapeutic targets such as glucose
transporters and mTORC1, inhibition of which could be
synergized with glutamine dependency targeted therapies, yet to
be demonstrated in the future.

Methionine
Methionine is one of the major essential amino acids playing vital
roles in protein synthesis, generation of S-adenosylmethionine
(SAM, the sole methyl donor for methylation of DNA, histones
and proteins), redox homeostasis (contribute to cysteine and
glutathione synthesis) and nucleotide biosynthesis (polyamines)
(58). As early as the 1970s, malignant and transformed cells, unlike
normal cells, have been found not growing or surviving in
methionine-deficient and homocysteine-supplemented media,
which is referred to as methionine dependency of cancer or the
February 2022 | Volume 12 | Article 820173

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fan et al. Nutrient Dependency and Cancer Treatment
Hoffman effect (59). The high reliability of cells on methionine
have been demonstrated in multiple types of cancers including
breast, pancreatic, colon, prostate, lung, kidney cancer and
leukemia (58, 60). The mechanisms causing methionine
dependency in tumor cells have been discussed by these
excellent reviews (61, 62), mainly due to the deregulation of
methionine synthesis and salvage pathways. In addition, a
metabolic cell cycle checkpoint related to methionine
metabolism-controlled SAM/SAH (S-adenosylhomocysteine)
ratio is crucial for tumor cell survival when undergoing
methionine-deprived conditions (63). Recently, oncogenic
mutation of PI3KCA has been shown to divert homocysteine
into trans-sulfuration pathway, resulting in less generation of
methionine from homocysteine and promoting methionine
dependency in breast cancer cells (64). While the detailed
mechanisms by which methionine dependency is formulated in
tumor cells remain unclear, the efforts of utilizing this vulnerability
in cancer therapy are already devoted for many years. Dietary
methionine restriction has shown significant anti-tumor effects in
pre-clinical animal models and no obvious side-effects in Phase I
human clinical trials (65–68). Besides, methioninase, a methionine
depleting enzyme, is an alternative way to deplete extracellular
methionine source of tumor, which has been tested to successively
suppress tumor growth (69–71). In addition, methioninase
exhibits synergistic efficacy against tumors in vitro and in vivo
when administered in combination with chemotherapy (72–74),
highlighting its potency of enhancing first-line therapy in
cancer treatment.

Cysteine
Cysteine is one of the few sulfur-containing amino acids, which is
mainly derived from the reduction of cystine (the oxidized form of
two cysteines) imported from extracellular environment or
transsulfuration pathway (generating cysteine from methionine
metabolism). In addition to its proteogenic role, cysteine is a rate-
limiting factor in the synthesis of glutathione (a tripeptide
comprised of cysteine, glutamic acid and glycine), which is
crucial for redox homeostasis (75). Cancer cells generally have
high levels of metabolic turnover which easily results in
accumulation of reactive metabolites, such as ROS (76). While
elevated oxidative stress on one hand promotes oncogenesis below
the lethal level, on the other hand, these reactive metabolites can
covalently modify both proteins and DNA, eventually killing cells
at high levels (77). Therefore, disruption of cysteine or glutathione
metabolism which mediates the detoxification of toxic
intermediates is presumed to have more adverse effects on
cancer cells rather than normal cells. The major supply for
intracellular cysteine is amino acid transporter SLC7A11/xCT-
mediated cystine uptake and the subsequent reduction of cystine
to cysteine (78). SLC7A11 has been found upregulated in multiple
types of tumors and transcriptional inhibition of SLC7A11 is
linked to tumor suppression controlled by tumor suppressor genes
including p53, BAP1 and KEAP1 (79–82). Therefore, targeting
SLC7A11-mediated cystine uptake to destroy antioxidative
system in cancer cells with impaired glutathione synthesis
or compromised transsulfuration pathway should be a
feasible strategy to induce cystine auxotrophy (83, 84).
Frontiers in Oncology | www.frontiersin.org 4
Indeed, a chemical drug called erastin targeting SLC7A11 is
identified and exhibits great lethality in human tumor cells
through an oxidative cell death known as ferroptosis (85), which
rapidly becomes a hot topic in the research field of regulated cell
death (RCD). Systemic depletion of cystine through cyst(e)inase or
genetically knockout of SLC7A11 significantly suppresses tumor
growth in leukemia stem cells and genetically-engineered mouse
models with chronic lymphocytic leukemia or pancreatic tumor
(86–88). Thus, SLC7A11/xCT represents a novel therapeutic
target for tumors that selectively experienced oxidative stress
and exhibit a higher demand for antioxidants such as
glutathione. This might also be determined by genetic status of
other key players in reshaping cancer metabolism. For example,
ARID1A (AT-rich interaction domain 1A)-deficient cancer cells,
of which enhanced SLC7A11 expression by ARID1A-mediated
chromatin remodeling disappears, are more susceptible to
inhibition of the antioxidant glutathione due to excessive
amounts of ROS-triggered apoptosis (89).

Serine
Serine is another non-essential amino acid that causes dependency
in a context-dependent manner, which can be taken up from
extracellular resources or synthesized de novo from glycolysis
intermediates or amino acids like glycine. Except for its
proteogenic function, serine participates in several biosynthetic
pathways including folate and methionine cycle through one-
carbon metabolism, ultimately contributing to nucleotides
synthesis, methylation reactions and redox buffering (90, 91).
Serine auxotrophy has been discovered in rat myoblast line
almost 50 years ago, possibly due to the limited biosynthetic
capacity of these cells cultured in vitro (92). The first enzyme in
the de novo serine synthesis pathway (SSP)—phosphoglycerate
dehydrogenase (PHGDH) is found up-regulated inmelanoma and
breast cancers through genomic amplification by increasing the
copy number of the gene, which adequately support cancer cell
growth in the absence of serine (93, 94). The expression of another
SSP enzyme phosphoserine aminotransferase (PSAT), which is
downstream of PHGDH, also has a decisive role in terms of
controlling serine dependency in breast tumors (95). Therefore,
insufficient synthesis and increased demand of serine during
tumor growth make the extracellular serine supply become a
limiting factor that suppresses tumor development in various
contexts. Serine starvation in p53-deficient tumor cells induces
oxidative stress and reduces cell viability in vitro and in vivo,
highlighting the potential role of targeting serine dependency in
the treatment of tumors with p53 deficiency (96). Similarly, serine
restriction sensitizes glioma cells to hypoxia-induced cell death
through disrupting redox homeostasis (97). Besides, metabolic
rewiring caused by genetic factors or pharmacologic intervention
imposes tumor cells relying on exogenous serine to survive. For
instance, oncogenic transcription factor EWS-FLI1 can impact
Ewing sarcoma cellular metabolism and serine deprivation
strongly inhibits Ewing sarcoma cell proliferation and
tumorigenesis (98). Small molecule targeting PKM2 to activate
glycolysis impedes serine synthesis pathway and induces serine
auxotrophy in lung cancer cells (99). Practically, it still lacks an
efficient way to deplete serine in anti-cancer treatment.
February 2022 | Volume 12 | Article 820173
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The alternative choice is to use low-serine diet or PHGDH
inhibitors, which appears promising in preclinical mouse
models, yet remains to be exploited for therapeutic benefit in
patients with cancer (90, 100, 101).

Glucose
The critical role of glucose in supporting tumor growth has been
widely studied since Otto Warburg discovered that cancer cells
consume tremendous amounts of glucose for glycolysis even in
the presence of oxygen in the 1920s (77, 102, 103). This
phenomenon, also known as the Warburg effect, represents a
striking metabolic characteristic that distinguishes tumors from
normal tissues. Based on this difference, up-regulated glucose
uptake by cancer cells has been successfully applied in diagnosis
and evaluating response to treatment of patients with various
types of solid tumors, through the use of fluorodeoxyglucose
positron emission tomography (FDG-PET) imaging (104).
Glucose metabolism contributes to tumor growth in multiple
ways, including energy production, intermediated metabolites
generation for the synthesis of nucleotides, amino acids and
lipids as well as maintaining redox homeostasis (105). Targeting
glucose metabolism, including downstream branches of
glycolysis, pentose phosphate pathway and TCA cycle, has
been extensively studied for several decades, and some of the
drugs against key transporters or enzymes involved in glucose
metabolism have been brought into clinical trials of cancer
therapy, such as 2-Deoxy-D-glucose (2-DG) and metformin
(105–108). Currently, two major features are considered as hall
marks of glucose metabolism in tumor cells: increased glucose
uptake and aerobic glycolysis. Oncogenic functions of genes such
as Ras, cMyc, PI3K and LKB1 are found to elevate glucose uptake
or up-regulate enzymes participating in glycolysis to promote
tumorigenesis (109–112). Conversely, tumor suppressor genes
like PTEN (phosphatase and tensin homolog) and p53 have the
capacity to “cool down” glucose metabolism through inhibiting
glycolysis or PPP (pentose phosphate pathway) (113, 114).
Glucose limitation-caused redox imbalance has long been
studied, largely due to the fact that PPP contributes to the
most NADPH (nicotinamide adenine dinucleotide phosphate)
generation in cytosol (115). Therefore, tumor cells undergoing
high oxidative stress should be susceptible to glucose
deprivation-mediated therapy. This is exactly the case in tumor
cells with high SLC7A11/xCT expression, which is demonstrated
to consume large amounts of NADPH during reduction of
imported cystine in recent publication (116). Thus, SLC7A11-
high tumors would be dependent on glucose/PPP-generated
NADPH to prevent oxidative damage and more sensitive to
glucose depletion or glucose transporters (GLUTs) inhibitor
treatment (116, 117). Furthermore, changes of genetic
background which leading SLC7A11 up-regulation such as
KEAP1 mutation, can impose metabolic vulnerability of lung
cancer cells to GLUTs inhibitors (82). These findings provide
new insights when studying nutrient dependency, since the huge
demand of one nutrient (such as cystine) may cause
co-dependency of another nutrient (such as glucose) to
maintain the metabolic balance inside cells (118).
Frontiers in Oncology | www.frontiersin.org 5
Lipids
Lipid metabolism within tumors is much more complicated
considering the complex groups of biomolecules and a large
number of forms for each subgroup that constituting lipids.
Besides the indispensable role in cellular membrane
construction, lipids also act as signaling molecules, provide
energy sources and maintain redox homeostasis (119). There is
no doubt that lipids are essential for cancer cell proliferation, and
emerging evidence underlying their metabolic dysregulation
have prompted new approaches toward cancer therapy (120–
123). However, refined technologies including chromatography
and mass spectrometry are required to differentiate specific lipid,
resulting in fewer perspectives developed on lipid dependency
from studies in vitro. Here we discuss two examples to give an
intriguing idea about the crucial regulation of lipids within
tumor cells. Sphingolipid metabolism is broadly reviewed in
previous publications (124, 125), highlighting its use as
promising target in cancer therapy. Indeed, preclinical use of
acid sphingomyelinase which cleaves the sphingolipid or
sphingomyelin into ceramide has been demonstrated in cancer
therapy (126). In addition, molecules such as fenretinide,
safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II,
a-galactosylceramide, fingolimod and sonepcizumab that
modulating sphingolipid signaling have been exploited to
induce cancer cell death through apoptosis or autophagy
dependent manners (127). However, it remains unclear to
what extent cancer cells exhibit dependency on extracellular
sphingolipids, since sphingolipids imported from fetal calf
serum in vitro are entirely catabolized by cultured cells and the
role of sphingolipid-transporting proteins as cancer therapeutic
targets remains elusive (128, 129). Cholesterol dependence is
originally described in NS0, a nonsecreting mouse myeloma cell
used for recombinant antibody production and dependent on an
exogenous supply of cholesterol for survival and growth (130,
131). Increasing evidence demonstrate cholesterol metabolism
and auxotrophy as targetable vulnerability in several cancers
including pancreatic adenocarcinoma, glioblastoma, lymphoma
and clear cell renal carcinoma, while key proteins facilitating
cholesterol uptake like low-density lipoprotein receptor (LDLR),
liver X receptor (LXR) and scavenger Receptor B1 (SCARB1)
serve as ideal druggable targets to disrupt cholesterol metabolism
(132–137). Additional choices could be to target de novo
cholesterol synthesis enzymes or employ cholesterol lowering
reagents like statins, which involve the complex signaling
pathways in the regulation of cholesterol biosynthesis (138, 139).

Vitamins
Vitamins are a group of organic compounds present in minute
amounts within natural foods and important for biological
functions including protein and energy metabolism, nutrient
digestion, building blocks and redox balancing. Like amino acids
mentioned above, increasing demands and/or deregulated
expression of transporters are prone to generate vitamin
dependence. Down-regulation of thiamine (also known as
vitamin B1) transporter SLC19A3 in breast tumors presents a
nutritional vulnerability and imposes cancer cells susceptible to
February 2022 | Volume 12 | Article 820173
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acute thiamine starvation caused by thiaminase I enzyme
treatment (140–143). However, thiamine deficiency is possibly
linked to delirium (reduced mental abilities in thinking and
sensing the environment) in cancer patients according to a
retrospective descriptive study, suggesting a potential damage
to the brain health caused by thiamine deprivation (144). A
CRISPR/Cas9 functional genomic screen targeting metabolic
enzymes found that pyridoxal kinase (PDXK, an enzyme that
produces pyridoxal phosphate (PLP) from vitamin B6) acts an
acute myeloid leukemia (AML)-selective dependency (145).
However, the effects of vitamin B6 on tumor progression and
therapeutic responses seemed controversial in previous reports,
since high expression of PDXK has been implicated to constitute
a good prognostic marker in patients with NSCLC (146). The
distinguished effects of vitamin B6 metabolism could be at least
partially explained by the different cell types, because depletion
of vitamin B6 in culture media suppressed the proliferation of
AML cells but not that of fibroblasts. Pharmacological inhibition
of the vitamin B6 pathway significantly suppressed proliferation
of leukemia cells and improved survival in mice, signifying the
great potential of targeting vitamin B6 metabolism in anti-
leukemia treatment (145). Further studies are needed to assess
whether other molecules targeting vitamin B6 metabolism would
have similar anti-cancer effects or not, like PDXK inhibitor
artemisinins (147).

Recently, a systematic survey of nutrient dependencies has
been performed t to identify genetic dependencies needed for the
growth of AML cells in vivo, and myo-inositol transporter
SLC5A3 was identified as a unique dependency to AML (148).
Myo-inositol is not an essential nutrient considering it can be
synthesized from glucose 6-phosphate through several enzymes
like ISYNA1 and IMPA1, but myo-inositol was once considered
to belong to the vitamin B family (148). Recurrent transcriptional
silencing of ISYNA1 might largely contribute to the SLC5A3-
mediated myo-inositol dependency in AML patients, since gain-
and loss-of-function experiments were employed to unveil a
synthetic lethal genetic interaction between ISYNA1 and
SLC5A3 (148), indicating that combined treatments with
SLC5A3 and ISYNA1 inhibition together could be exploited
in AML.

Possible Mechanisms Causing
Nutrient Dependency
Based on the discussions above, we are trying to summarize the
common reasons that introduce specific nutrient dependency,
aiming to help improve our current understanding of the
regulation of such metabolic vulnerability in tumor
cells (Figure 2).

Deficiency or Insufficiency in De Novo or
Salvage Synthesis
Generally, the capacity of synthesizing amino acids directly
determines the extent of dependency on specific amino acid
imported from extracellular nutrient pools. Down-regulation or
even loss of ASS1 and ASL that required for arginine
synthesis from aspartate causes arginine-dependency (13–16);
Frontiers in Oncology | www.frontiersin.org 6
The expression of ASNS controls de novo asparagine synthesis
and modulates tumor cell sensitivity to ASNase treatment
mediated asparagine depletion (28, 29). Low levels of
methionine synthase (MS) or deletion of methylthioadenosine
phosphorylase (MTAP) which salvage methionine through
polyamine metabolism could explain methionine dependence
(62, 149). Blocking serine synthesis pathway through silencing
PSAT causes serine auxotrophy in luminal breast tumors (95). By
contrast, functional supply of nutrients from de novo synthesis
readily supports tumor growth under limiting conditions.
Lineage-specific expression of glutamine synthetase (GS)
makes luminal-type breast cells less glutamine-dependent
compared with basal-type breast cells, which implies the ability
of GS in predicting glutamine metabolism and dependency
among breast tumor subtypes (45). The transsulfuration
pathway that generating cysteine through methionine
metabolism is favorable to tumor cell growth in the absence of
extracellular cyst(e)ine (150). Alterations of the expression of
rate-limiting enzymes involved in de novo or salvage synthesis
for these nutrients represent a basic mechanism to cause tumor
likely dependent on respective nutrient (Figure 2A). Therefore,
the fundamental mechanisms underlying dysregulation of these
enzymes in different tumor contexts likely lead to new options
for targeting nutrient dependency, yet to be investigated in
the future.

Genetic Alteration-Induced
Metabolic Reprogramming
Common genetic alterations including gene amplification,
mutation and deletion in genes that play a central role in
regulating gene expression and growth factor signaling cascade
are able to drive specific metabolic shifts (Figure 2B). Such
changes benefit cancer cells by enabling them to generate
metabolic ingredients needed for supporting biomass synthesis
as well as for adapting fluctuated stress environment. The
oncogenic functions of RAS and Myc have been linked to
nutrient fluxes regulation of glucose, glutamine and amino
acids (110, 111, 151, 152). Active form of RAS (G12V) causes
suppression of mitochondria function and elevated glycolysis to
enhance tumor development in vivo (110). Upregulation of Myc
promotes expression of genes involved in glutamine metabolism
such as glutaminase and leads to glutamine addition (153, 154).
Activation of PI3K/AKT pathway triggered by growth factor
stimulation, oncogenic mutation of PIK3CA (encoding the
p110a catalytic subunit of PI3K and/or loss-of-function
mutations and deletions in PTEN (a negative regulator of PI3K
signaling), is known to coordinate multiple metabolic programs
for supporting tumor cell growth and proliferation (112).
Particularly, AKT-mediated up-regulation of GLUT1 and
GLUT4 directly promotes glucose uptake (155). Oncogenic
mutation of PI3KCA reroutes metabolite from methionine
cycle to trans-sulfuration pathway in cysteine metabolism
which consequently causes methionine dependency (64 Loss of
tumor suppressors could potentially mitigate nutrients
dependency and make cancer cells survive under extreme
conditions. P53- or BAP1-deficiency in tumor cells increases
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SLC7A11 expression and decreases cystine dependency, which is
important for tumor growth in vitro and in vivo (79, 80). Of note,
loss of tumor suppressor KEAP1 in lung cancers leads to glucose
dependency through upregulating cystine metabolism-mediated
NADPH consumption (82), suggesting an emerged metabolic
vulnerability due to genetic alteration of such gene. While
concurrent mutations of oncogenes and tumor suppressors are
widely distributed according to cancer genomic studies, a
broader insight into metabolic reprogramming in such context
is necessary. KRAS/LKB1 co-mutant tumors have a higher
activation of the hexosamine biosynthesis pathway (HBP),
making them more dependent on the HBP enzyme glutamine-
fructose-6-phosphate transaminase 2 (GFPT2) and defining a
new metabolic vulnerability in such types of cancers (156).
Frontiers in Oncology | www.frontiersin.org 7
Metabolic Co-Dependency on
Different Nutrients
The complexity of the metabolic pathways and the interactive
functions of intermediate metabolites are likely far way ahead of
our understandings and always in a dynamic change based on the
specific genetic and/or biochemical contexts with differing nutrients
availability. Many nutrients have redundant roles in regulating
essential biological functions such as amino acids synthesis and
redox homeostasis (42, 77, 117, 157). Thus, limiting one nutrient
can lead to dependency on alternative nutrients for tumor cells to
survive (Figure 2C). Glutamate is a crucial nitrogen donor for
transamination reactions that promoting the synthesis of non-
essential amino acids (NEAAs), while depletion of intracellular
glutamate level by genetic mutation of KEAP1 or pharmacological
A

B C

FIGURE 2 | Mechanisms underlying nutrient dependency. (A) Deficiency or insufficiency in amino acid synthesis within cells causes dependency on
extracellular nutrients. (B) Genetic factors including oncogenes and tumor suppressors either directly regulate the expression of transporters and enzymes
mediating nutrient metabolism or indirectly control the demands needed for cell growth, which imposing specific dependencies on certain nutrients. (C)
Nutrients involving crosstalk in their metabolic pathways are prone to be co-dependent on each other to maintain cellular homeostasis. SLCs, solute carrier-
type transporters; GLUTs, glucose transporters; ASS1, argininosuccinate Synthase 1; ASL, argininosuccinate lyase; ASNS, asparagine synthetase; MTAP,
methylthioadenosine phosphorylase; MS, methionine synthase; CBS, cystathionine beta-synthase; PPP, pentose phosphate pathway; HCys, homocysteine;
MTA, S-methyl-5’-thioadenosine; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NEAAs, non-essential amino acids.
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inhibition of glutaminase promotes dependency on exogenous
supply of NEAAs (158). This suggests an effective therapy for lung
cancer patients with wide-type KEAP1 through combined treatment
of glutaminase inhibition and NEAA deprivation. Surprisingly, high
demandorutilizationof onenutrientmight also generate adruggable
dependencyonexogenousnutrients. SLC7A11, aswedescribedearly,
imports a key amino acid cystine that is required for providing
cysteine andmaintaining redox balance throughGSH synthesis (78).
However, recent studies, including ours, have discovered that high
expression of SLC7A11 mediated cystine uptake causes elevated
dependency on exogenous glucose (117, 159). Further
investigations confirm that reduction of cystine to cysteine
consumes large amounts of NADPH generated through PPP,
which is substantially inhibited when glucose is removed or glucose
transporters are inhibited by GLUTs inhibitor (116). It appears that
SLC7A11 acts as a double-edged sword in cellular redox regulation,
making SLC7A11 an ideal metabolic target. Theoretically, you can
always find a way to fight against cancer based on SLC7A11
expression level: restricting cystine or methionine in SLC7A11-low
cells, or withdrawal of glucose in SLC7A11-high cells.

Therapeutic Application of Targeting
Nutrient Dependency
Therapeutic interventions through targeting nutrient dependency
show great promise in the treatment of cancer. There are three
Frontiers in Oncology | www.frontiersin.org 8
rational ways to do this: 1) deplete nutrients in the extracellular
context; 2) block transportation and suppress uptake of nutrients;
3) inhibit nutrient-derived metabolism. Accordingly, the below
strategies have been developed to achieve the goal (Figure 3).

Enzymatic Degradation- or Dietary
Restriction-Mediated Nutrient Depletion
As described above, many nutrients depleting enzymes are
demonstrated to be capable of degrading individual amino acid
in vitro and in vivo. Asparaginase (ASNase), arginase (ARGase),
arginine deiminase (ADI), methioninase and cyst(e)inase are
successfully developed enzymatic drugs targeting their individual
amino acids including asparagine, arginine, methionine and cyst
(e)inase (6, 7, 9, 160). Compared to traditional chemical agents,
the major advantage is their limited or controllable toxicity,
considering their existence and physiological functions within
human body. While bacterial-derived asparaginase has been
approved to treat acute lymphoblastic leukemia and non-
Hodgkin lymphoma, the therapeutic efficacies of other amino
acids- depleting enzymes in multiple types of cancers are still
under clinical investigation (9, 161). However, there are
additional concerns that potentially undermine their clinical
evaluation. If using therapeutic enzymes of non-human origin,
allergic reactions due to the immunogenicity of the enzymes
might preclude the continuous treatment if serious side effects
FIGURE 3 | Therapeutic strategies for targeting nutrient dependency. Based on the nutrient availability in surrounding environment, nutrient transport on cell
membrane and nutrient metabolism within cell, three therapeutic interventions that targeting nutrient dependency are wildly explored in the fields. Like the
two sides of a coin, there are pros and cons for each strategy as well. The more therapeutic targets that clearly identified in the metabolic network, the more
chance we are able to translate this strategy into clinical application. However, blocking any one of these targets may only have moderate biological
functions in vivo, since each target has very limited functions compared to the whole metabolic network.
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such as anaphylactic shock arise (162). Besides, despite the
relatively high specificity of amino acid depleting enzymes,
they might have dual-enzyme activities and target secondary
amino acid or substrate, particularly when the level of prime
target is low. ASNase, which mainly catalyzes the hydrolysis of
asparagine, also exhibits glutaminase activity that generates
glutamate from glutamine, which is not required for its anti-
cancer capability and even induces cytotoxicity in leukemia cells
(33, 34). In addition, like all other types of drugs, the stability and
penetrance preclude to widely apply amino acids-depleting
enzymes in solid tumors that are usually surrounded by stroma
and immune cells as well as connecting tissues. To overcome
these challenges, new strategies such as chemical modification
and engineered-biomaterials are employed to boost the efficacy
of therapeutic enzymes. Pegylated enzymes that are covalently
linked to polyethylene glycol (PEG), including PEG-
asparaginase, PEG-arginase, PEG-arginine deiminase and PEG-
methioninase, have been developed to decrease the
immunogenicity and prolong the half-life (19, 23, 163, 164).
Erythrocyte-encapsulated asparaginase (eryaspase) has less
toxicity and improves patient survival in clinical trials for the
treatment of patients with pancreatic cancer or acute
lymphocytic leukemia when combined with chemotherapy
(165, 166). These findings shed light on the translation of
amino acids-depletion enzymes into clinical application in
cancer treatment.

In contrast to dietary supplementation of specific nutrients,
dietary restriction of individual nutrient is not as feasible and
effective as we expected in the clinical study, considering the
complex components in the food we digest and each patient’s
compliance in the real world. For now, only dietary methionine
restriction has moved into clinical trials, in which tested patients
just showed modest decreases in plasma methionine levels (66).
However, methionine-free diet combined with chemotherapy
such as 5-fluorouracil and mitomycin C caused better responses
in patients with gastric cancer compared with control treatment
(methionine supplementation combined with the same
chemotherapy) (167), while the underlying mechanisms
remain unclear. Dietary restriction of glucose is almost
impossible and usually achieved by alternative ways such as
fasting and ketogenic diets (which divert energy intake from
carbohydrate sources to fat). However, they might not be able to
reduce glucose level efficiently at the systemic level (168). In this
case (169), the exact role of dietary restriction like fasting in
cancer-protection is not simply due to modulation of glucose
dependency, which involves additional responses including T
cell-dependent response and insulin signaling (170). Therefore,
additional approaches to target nutrient dependency should be
explored further in clinical trials, alone or in combination with
other therapies.

Targeting Nutrient Transporters
Cells rely on transporter proteins in the plasma membrane to
acquire substrates such as amino acids and glucose. These
transporters belong to a large family known as solute carrier
(SLC) transporters that contain more than 300 different
members and mediate fundamental physiological functions
Frontiers in Oncology | www.frontiersin.org 9
(171–173). Given the broad substrate specificity of most
transporters, it leaves us little choice to choose the appropriate
target that regulates nutrient dependency. SLC7A11/xCT is such
a target we can utilize in nutrient transporter inhibition-
mediated tumor therapy. Several molecules have been
demonstrated to be capable of suppressing cystine uptake
promoted by SLC7A11, such as erastin, sulfasalazine and
sorafenib (174, 175). But the major issue for these compounds
remains the same: specificity. Initially, erastin was found to target
voltage-dependent anion channels (VDACs) and induce non-
apoptotic cell death, later named as ferroptosis (85, 176).
Sulfasalazine has been approved for medical use in the
treatment of rheumatoid arthritis, ulcerative colitis, and
Crohn’s disease several decades ago, yet the underlying
mechanisms are still elusive (177). The incidental findings that
sulfasalazine inhibits SLC7A11 make it attract more attentions in
the field of ferroptotic cell death study (85, 178), which is a classic
example of new uses for an old drug. Similarly, sorafenib is a
multikinase inhibitor, primarily targeting both Raf and VEGF
and PDGF receptor tyrosine kinase signaling (179). Glucose
transporter inhibitors (GLUTi) have long been of great interest
in the therapeutic study of targeting tumor metabolism, along
with the discovery of multiple potent GLUTi (180). Though
these drugs show clear inhibitive effects on glucose transporting
activity, in most cases, they fail to suppress tumor growth in vivo,
including the first highly GLUT-1 selective compound BAY-876
(181). There are many factors that affect the efficacy of a
particular drug in vivo, such as the origin of tissue, tumor
environment and genetics. Recent studies suggest high
SLC7A11 expression promotes glucose dependency, which
could serve as a biomarker for using GLUTi in cancer
treatment (116, 117, 159). Thus, in addition to the generation
of extremely specific molecules targeting individual nutrient
transporter, context-dependent mechanisms underlying the
efficacy of each molecule should also be extensively studied to
guarantee its clinical translation.

Pharmacological Inhibition of
Nutrient Metabolism
Once entering into cells, nutrients undergo various metabolic
pathways to meet the great demand for tumor growth or
maintaining intracellular homeostasis. Thus, the rational
intervention strategy would be targeting metabolic enzymes
involved in these pathways. Glutaminase, the key enzyme
responsible for the conversion of glutamine to glutamate, is
considered to be a valuable therapeutic target for modulating
glutamine/glutamate dependency. Small molecule CB-839 is one
of the few glutaminase inhibitors currently evaluated in clinical
trials (182).IPN60090 is a glutaminase-1 selective inhibitor with
exciting physicochemical properties in phase 1 clinical trials
(183). PHDGH inhibitors such as BI-4916 and BI-4924 that
aim to block serine biosynthesis have been reported for many
years, while none of them have yet entered into clinical stage
(184), calling for further improvement and modifications of
candidate inhibitors through pharmacological and biomaterial
engineering research. Glucose metabolism plays a dominant role
in regulating cellular functions, of which multiple potential
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TABLE 1 | Therapeutic exploitation of targeting nutrient dependency in cancer treatment.

Experimental cancer types References

d*

Prostate cancer, Non-small cell lung cancer, Solid
tumors, Glioma, Acute myeloid leukemia, Advanced
pancreatic cancer, Malignancies, Colon cancer,
Skin cancer, Glioblastoma, Breast cancer,
Hepatocellular carcinoma, Melanoma, Glioblastoma
multiforme, Pancreatic cancer, Lymphoma, Soft
tissue sarcoma, Mesothelioma

(6, 7, 11, 16–
19, 21–24, 160)

, Adenocarcinoma, Glioblastoma, Glioma, Non-small
cell lung carcinoma, Ovarian cancer, NK/T-cell
lymphoma, T-cell lymphoma, Bladder cancer,
Pancreatic cancer, Acute myeloid leukemia, Acute
lymphoblastic leukemia, Triple-negative breast
cancer, Non-Hodgkin lymphoma

(6, 7, 27–29,
33, 35, 37,

164–166, 185)

Myeloma, Glioma, Head and neck squamous cell
carcinoma, Non-small cell lung cancer, Breast
cancer, Acute myeloid leukemia, Hepatocellular
carcinoma, Lymphoma, Glioblastoma multiforme,
Bladder cancer, Sarcoma, Triple-negative breast
cancer, Ovarian cancer, Colon cancer, Colorectal
cancer, Melanoma, Waldenstrom
macroglobulinemia, Plasma cell myeloma,
Astrocytoma, Acute lymphoblastic leukemia

(33, 34, 36,
50–55, 182,

183)

Colon cancer, Breast cancer, Neuroblastoma, Lung
cancer, Renal cancer, Lymphoma, Prostate cancer

(58, 60, 64,
70–74, 110)

d, Breast cancer, Prostate carcinoma, Chronic
lymphocytic leukemia, Pancreatic cancer, Colorectal
cancer, Head and neck squamous cell carcinoma,
Hepatocellular carcinoma, RAS-mutant cancers,
Non-small cell lung cancer

(78, 79, 83–88,
116, 150, 174,
175, 177, 179)

Triple-negative breast cancer, Non-small cell lung
carcinoma, Melanoma, B-cell lymphoma, Colon
cancer

(90, 95, 96,
99–101, 184)

(Continued)
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Depleting
enzymes

Transporter
inhibitors (Target)

Metabolic inhibitors
(Target)

Pre-clinical Clinical FDA approv

Amino acids
Arginine (PEG-) ARGase NA DFMO (ODC) ARGase ARGase

(Phase III)
NA

(PEG-) ADI ADI ADI (Phase I/II)
DFMO

Asparagine (PEG)-ASNase NA APR-246 (ASNS) NA APR-246
(Phase I/II)

(PEG)-ASNase
EryaspasebEryaspase

Glutamine Glutaminase Benzylserine, g-
FBP, GPNA, V-
9302 (SLC1A5)

CB-839, IPN60090,
C968, BPTES (GLS)

Glutaminase CB-839 (Phase
I/II)

NA

EGCG, R162 (GLUD) Benzylserine, g-FBP,
GPNA, V-9302

IPN60090
(Phase I)

AOA
(Aminotransferase)

C968, BPTES

EGCG, R162
AOA

Methionine (PEG-)
Methioninase

NA FIDAS-5, PF-9366,
AG-270 (MAT2A)

FIDAS-5 AG-270 (Phase
I)

NA

PF-9366 Methioninase
(Phase I)

Cysteine Cyst(e)inase Erastin, IKE, SSZ,
Sorafenib,
Lanperisone
(SLC7A11)

BSO (GCL) Cyst(e)inase, Erastin,
IKE, SSZ,

BSO (Phase I) Sorafenibc, SS
Lanperisonee

ATA (CSE) ATA
RSL3, ML162, ML120
(GPX4)

RSL3, ML162, ML120

Serine NA NA BI-4916, BI-4924,
PHGDH-hit, CBR-
5884, PH-755
(PHGDH)

BI-4916, BI-4924,
PHGDH-hit, CBR-
5884, PH-755

NA NA
e

a

Z
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TABLE 1 | Continued

erimental cancer types References

a, Ovarian cancer, Kidney cancer,
ung cancer, Malignant gliomas,
Non-small cell lung cancer, Breast
carcinoma, Skin cancer

(105–108, 117,
180, 181, 185)

, Breast cancer, Acute myeloid
cancer, Head and neck cancer
, Neuroblastoma, Colon cancer,
Melanoma, Non-small cell lung
phageal tumor, Ovarian cancer,
ncer, Glioblastoma

(121–127, 129)

er, Breast cancer, Lung cancer,
, Pancreatic cancer, Myelogenous

(130–139)

(Continued)
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Depleting
enzymes

Transporter
inhibitors (Target)

Metabolic inhibitors
(Target)

Pre-clinical Clinical FDA approved*

Glucose
Glucose NA BAY-876,

Apigegnin,
WZB117, STF-31
(GLUT1)

2-DG, Lonidamine, 3-
BP (HK2)

BAY-876, STF-31, 3-
BP, WZB117

Apigegnin,
Lonidamine
(Phase I/II), 3-
BP (Phase I)

Ritonavirf Multiple myelom
Renal cancer, L
Osteosarcoma
cancer, Bladde

Ritonavir (GLUT4) Shikonin, Alkannin,
Orlistat (PKM2)

Shikonin, Alkannin,
Orlistat

2-DG (Phase II)

2, 5-AM (GLUT5) DHEA, 6-
Aminonicotinamide,
RRx-001 (G6PD)

2, 5-AM, 6-
Aminonicotinamide

DHEA (Phase
II)

Phloretin (SGLT1/2) 3PO, PFK15 (PFKFB3) 3PO, PFK15, Phloretin RRx-001
(Phase III)

KA (GAPDH) KA
Lipids
Sphingolipids Sphingmyelinase NA C8-CPPC (DES), CHC

(CERT), NVP-231
(CERK), LCL521 (AC)

C8-CPPC, CHC, NVP-
231, LCL521

Sonepcizumab
(Phase II)

FTY720g Prostate cance
leukemia, Lung
cells, Leukaem
Bladder cancer
carcinoma, Eso
Hepatobiliary c

SK1-I, PF543 (SPHK
1), ABC294640 (SPHK
2)

SK1-I, PF543,
ABC294640

Sonepcizumab (S1P) Sphingmyelinase
FTY720, VPC03090
(S1PR 1), JTE013,
AB1 (S1PR 2)

JTE013, AB1,
VPC03090

Cholesterol NA Ezetimibe (NPC1L1) Statins :lovastatin,
mevastatin,
atorvastatin, uvastatin,
rosuvastatin,
pitavastatin,
simvastatin,
pravastatin, fluvastatin
sodium (HMG-CoA)

YM-53601 TAK-475
(Phase III)

Ezetimibeh, Statinsi Colorectal canc
Prostate cance
leukemia

YM-53601, TAK-475
(SQS)

R048-8071 Exemestane
(Phase IV)

Terbinafinej

R048-8071 (OSC),
Exemestane (ARO)

Avasimibe
(Phase III)

Avasimibe (ACAT1) Lonafarnib,
Tipifarnib
(Phase III)

Lonafarnib, Tipifarnib
(farnesyltransferase
and certain
bisphosphonates)
Terbinane (SQE or
OSC)
,
r

r

ia
,

a

r
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TABLE 1 | Continued

Translational exploration Experimental cancer types References

l Clinical FDA approved*

e I NA NA Lymphoid leukemia, Clear cell renal cell carcinoma,
Breast cancer

(140–143)

NA Artemisinink Acute myeloid leukemia (145, 147)

C, Ornithine decarboxylase; ASNase, Asparaginase; ASNS, Asparagine synthetase; g-FBP, g-Folate binding protein; GPNA, L-g-
T2A, Methionine adenosyltransferase 2A; IKE, Imidazole ketone erastin; SSZ, Sulfasalazine; BSO, L-buthionine sulfoximine; GCL,
hal small molecule 3; GPX4, Glutathione peroxidase 4; PHGDH, Phosphoglycerate dehydrogenase; GLUT, Glucose transporter; 2,
; 3-BP, 3-Bromopyruvate; HK2, Hexokinase 2; PKM2, Pyruvate kinase M 2; DHEA, Dehydroepiandrosterone; G6PD, Glucose-6-
-(2-quinolinyl)-2-propen-1-one; PFKFB, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases; KA, Koningic acid; GAPDH,
de desaturase; CHC, 3-chloro-8b-hydroxycarapin-3,8-hemiacetal; CERT, Ceramide transfer protein; CERK, Ceramide kinase; AC,
1, NPC1 like intracellular cholesterol transporter 1; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; SQS, Squalene synthase
se 1; SQE, Squalene epoxidase; PDXK, Pyridoxal kinase; FDA, U.S. Food and drug administration; *Note, listed drugs may not be
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Depleting
enzymes

Transporter
inhibitors (Target)

Metabolic inhibitors
(Target)

Pre-clinic

Vitamins
Thiamine (PEG-)

Thiaminase I
NA Pyrithiamine,

Oxythiamine,
Amprolium (thiamine
antagonists)

(PEG-) Thiamina
Pyrithiamine,
Oxythiamine,
Amprolium

Pyridoxine NA NA Artemisinin (PDXK) NA

PEG-, Polyethylene glycol; ARGase, Arginase; ADI, Arginine deiminase; DFMO, Difluoromethylornithine; O
glutamyl-p-nitroanilide; GLS, Glutaminase; GLUD, Glutamate dehydrogenase; AOA, Aminooxyacetate; MA
Glutamate cysteine ligase; ATA, Aurintricarboxylic acid; CSE, Cystathionine g-Lyase; RSL 3, Ras-selective le
5-AM, 2, 5-Anhydro-D-maaitol; SGLT, Sodium-dependent glucose transporters; 2-DG, 2-Deoxy-D-glucos
phosphate dehydrogenase; 3PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; PFK15, 1-(4-pyridinyl)-3
Glycerladehyde-3-phosphate dehydrogenase; C8-CPPC, C8-cyclopropenylceramide; DES, Dihydroceram
Acid ceramidase; SPHK, Sphingosine kinase; S1P, Sphingosine-1-phosphate; S1PR, S1P receptor; NPC1
inhibitor; OSC, 2, 3-Oxidosqualene cyclase; ARO, Steroidal aromatase; ACAT1, Acetyl-CoA acetyltransfera
approved to treat cancers.
a, FDA approved drug to treat acute lymphoblastic leukemia and lymphoblastic lymphoma;
b, FDA approved drug to treat acute lymphocytic leukemia;
c, FDA approved drug to treat hepatocellular carcinoma;
d, FDA approved for the treatment of ulcerative colitis and rheumatoid arthritis;
e, FDA-approved muscle relaxant;
f, Protease inhibitors for treatment of AIDS;
g, FDA approved drug for multiple sclerosis;
h, FDA approved agent to inhibit cholesterol absorption in the intestine;
i, FDA approved drugs to reduce the amount of low-density cholesterol;
j, FDA approved drug for the treatment of onychomycosis of the toenail or fingernail due to dermatophyte
k, FDA approved drug to treat malarial.
NA, Not available.
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targets for cancer therapy are exploited in drug development.
Hexokinase (HK), phosphofructokinase (PFK) and pyruvate
kinase isozymes M1/M2 (PKM1/2) are ideal targets in
glycolytic pathways (185). Glucose-6-phosphate dehydrogenase
(G6PD), the first enzyme in the PPP pathway, is important for
promoting redox homeostasis through generating NADPH and
upregulated in many tumors (186). Besides, mutants of isocitrate
dehydrogenase (IDH) involved in the TCA cycle that produce
oncogenic metabolites contribute to tumorigenesis, which makes
mutant IDH an ideal therapeutic target (187). Accordingly, small
molecule inhibitors targeting these metabolic enzymes are
consistently developed to take advantage of metabolic
vulnerability within cancers (77). To give a better idea about
the therapeutic translation of targeting nutrient dependency in
cancer treatment, we summarize the most relative information
in Table 1.
CHALLENGES AND FUTURE DIRECTIONS

Growing evidence keep refreshing our understanding of tumor
metabolic regulation, which literally are influenced by
surrounding environment, cancer genetics and lineage. Tumor
microenvironment represents a complex context either directly
or indirectly interacting with tumor metabolism in response to
alteration of nutrient availability (10, 188). Thus, a clear picture
drawing the interaction between tumor metabolism and
environmental perturbation is likely required for successful
translation of targeting nutrient dependency of cancers in vivo.
Physiochemical property and target specificity of nutrient
degrading enzymes and small molecule inhibitors discussed
above should be the threshold for the successful translation of
nutrient dependencies into clinical interventions. Chemical
modification, biomaterials and nanoengineering-mediated drug
delivery have been introduced to improve the drug stability and
efficacy, including pegylated modification and nanoparticle-
mediated capsulation, which definitely deserves more
investigation (19, 20, 22, 23, 164, 189). Another challenge is
Frontiers in Oncology | www.frontiersin.org 13
the limited efficacy of drugs targeting nutrient dependency as a
single agent. However, accumulating studies demonstrate
synergistic effects when nutrient depleting therapy is combined
with other first-line anti-cancer treatment, such as immune
check point inhibition and chemotherapy (9, 24). Therefore,
increasing understanding of metabolic regulation within tumor
cells allows for rational design and validation of combination
therapies. For example, glucose deprivation-induced inactivation
of PRC1 (polycomb-repressive complex 1) promotes ER
(endoplasmic reticulum) stress and cell death, leading to the
strategic combination of PRC1 inhibitor and GLUTi treatment
in cancer cells (190). In summary, a deep understanding of
tumor metabolism and nutrient dependency is the premise to
bring our battle against cancer to the final stage.
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