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Abstract

In a rapidly changing world, quantifying ecosystem resilience is an important challenge. Histori-
cally, resilience has been defined via models that do not take spatial effects into account. These
systems can only adapt via uniform adjustments. In reality, however, the response is not necessar-
ily uniform, and can lead to the formation of (self-organised) spatial patterns — typically localised
vegetation patches. Classical measures of resilience cannot capture the emerging dynamics in spa-
tially self-organised systems, including transitions between patterned states that have limited
impact on ecosystem structure and productivity. We present a framework of interlinked phase
portraits that appropriately quantifies the resilience of patterned states, which depends on the
number of patches, the distances between them and environmental conditions. We show how clas-
sical resilience concepts fail to distinguish between small and large pattern transitions, and find
that the variance in interpatch distances provides a suitable indicator for the type of imminent
transition. Subsequently, we describe the dependency of ecosystem degradation based on the rate
of climatic change: slow change leads to sporadic, large transitions, whereas fast change causes a
rapid sequence of smaller transitions. Finally, we discuss how pre-emptive removal of patches can
minimise productivity losses during pattern transitions, constituting a viable conservation strategy.
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INTRODUCTION

The increasing incidence of extreme climatic events, disease
outbreaks and other environmental perturbations have led to
a global recognition of the need to conserve ecosystems, and
thus to understand the (lack of) resilience of threatened
ecosystems (Hodgson et al., 2015; Willis ez al., 2018). Classi-
cally, resilience has been defined as the capacity of an ecosys-
tem to persist or maintain function in the face of exogenous
disturbance (Holling, 1973; Walker er al., 2004). Holling
(1973) quantified this capacity as the magnitude of change an
ecosystem can withstand: typically small ecosystem changes
are manageable, whereas larger changes may lead to critical
transitions or catastrophic shifts (Holling, 1973; Scheffer
et al., 2001, 2009). Specifically, the paradigm has been highly
influential in the development of ecosystem restoration theory
(Suding et al., 2004) and the operationalisation of a safe oper-
ating space for humanity within the Anthropocene (Rock-
strom et al., 2009; Steffen er al., 2015). However, insights
from pattern formation theory have identified system charac-
teristics that may hamper application of classical resilience
measures in spatially extended ecosystems.

Pioneering studies of resilience utilised models that do not
take spatial effects into account (Holling, 1973; Noy-Meir,
1975; May, 1977). Such systems can thus only adapt via spa-
tially uniform adjustments. In reality, an ecosystem’s response
to environmental change is not necessarily spatially uniform,

and can lead to the formation of (self-organised) spatial pat-
terns in the system (Klausmeier, 1999; von Hardenberg et al.,
2001; Rietkerk et al., 2002; Rietkerk & Van de Koppel, 2008)
— even in the absence of (driving) spatial inhomogeneities in
the environment. In so-called patterned ecosystems, these pat-
terns emerge when resource scarcity is high and constitute a
way to optimise resource usage when uniform coverage can
no longer be sustained (Siteur et al., 2014). In this way, pat-
terns already lead to an improved ecosystem resilience. Addi-
tionally, a set of environmental conditions (parameters) allows
for a wide variety of patterns; that is, these model and real
systems have a multistability of patterned states (Bel er al.,
2012; Siteur et al., 2014; Bastiaansen et al., 2018b). As a con-
sequence, if environmental changes force a patterned ecosys-
tem to change, a pattern adaptation occurs, causing the
system to shift from one patterned state to another — mean-
while limiting the effect on the ecosystem’s productivity dur-
ing the ecosystem shift — see Figure 1. It is difficult to predict
the precise pattern adaptations that are going to occur. Previ-
ous studies have indicated that this is related to both the
severity and rate of the changes in the ecosystem’s environ-
ment. Depending on these, the pattern adaptations might be
minor adjustments, with little effect on the productivity, or
larger alterations — or even ecosystem collapses — with stron-
ger effects on the productivity (Siteur et al., 2014).

Patterns are ubiquitous and can be found in variety of
ecosystems, including intertidal systems (Van Der Heide
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et al., 2010; Liu et al., 2014), boreal (Eppinga et al., 2010)
and tropical peatlands (Larsen & Harvey, 2010), and fresh-
water marshes (Koppel & Crain, 2006). However, dryland
ecosystems are often used as the prototypical example
(Rietkerk & Van de Koppel, 2008) — as we will do in this
paper. In these resource limited areas, patterns are self-or-
ganised (Rietkerk er al., 2004; Rietkerk & Van de Koppel,
2008) and reported patterns include gaps, mazes, spots and
bands (von Hardenberg et al., 2001; Rietkerk et al., 2002;
Rietkerk & Van de Koppel, 2008). Here, (further) decreases
in resource availability lead to pattern adaptations, triggering
shifts from one patterned state to another — or to a desert
state without vegetation (Rietkerk et al., 1997; Siteur et al.,
2014). In this context, the difference between a gradual and
a catastrophic shift has large impact on biomass in these sys-
tems — and on the many livelihoods that depend on these
ecosystems (Vetter, 2009; Sissoko et al., 2011). Thus, it is
quite urgent to develop more accurate measures of resilience
that are able to distinguish between gradual and non-gradual
shifts. Recent findings suggest that such measures should
capture the adaptability of patterned dryland ecosystems
under various (changing) environmental conditions — which
can be utilised to minimise biomass losses during pattern
transitions.

To adequately assess ecosystem resilience two questions are
important: (1) how much change in environmental conditions
(considering both the magnitude and rate of change) will trig-
ger an ecosystem transition; and (2) what is the state the
ecosystem will transition to. Classical resilience theory has
been developed based on the theory of (simple) ordinary dif-
ferential equations, which only have a limited amount of (al-
ternative) stable states corresponding to a vastly different
system structure and behaviour. In these systems, answering
the former question — which can be done by means of classical
indicators (e.g. critical slowing down, increasing temporal
variance, increasing auto-correlation; see e.g. table 1 in Dakos
et al. (2012) for a comprehensive list) — thus automatically
answers the second question. However, for multistable sys-
tems — including patterned ecosystems — this is no longer true;
for these systems, classical indicators can still answer the first
question, but answering the second question requires novel
indicators that properly account for the aforementioned pat-
tern adaptations to distinguish gradual and catastrophic
ecosystem shifts. Hence, for systems that exhibit multistability
and rate-dependent pattern adaptations, new methods are
needed to quantify ecosystem resilience that are based on
models that account for spatial effects — such as models con-
sisting of partial differential equations.
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Figure 1 Differences between classical views on ecosystem resilience and resilience in patterned ecosystems. Classically, a change in environmental
conditions corresponds to a minor adjustment of the ecosystem state, until changes drive the system over a tipping point and a critical shift occurs (a). In
multistable systems, every set of environmental conditions allows for multiple patterned states (b); here, instead of one critical shift, multiple smaller
pattern transitions from one patterned state to another occur — that have minor impact on the system’s function. Moreover every green line in (b)
corresponds to a (fixed) number of patches in the system. However, resilience of a state is determined not only by the number of patches, but also by their
configuration. In (c) a zoomed-in sketch of one such line is given, where the green area indicates feasible configuration types for various levels of the
rainfall parameter «. It is found that regular configurations — when water is distributed equally among the patches — are the most resilient, and can persist
for lower rainfall values than the more irregular configurations. When environmental change drives a system state outside of the feasible region, not all
patches can be maintained any longer and, as a consequence, a pattern transition occurs in which some patches wither. How many (and which) patches
disappear during such transition again depends on the type of configuration: regular patterns typically lose half their patches (i.e. a period doubling),
whereas irregular patterns lose only one (the weakest patch). Moreover — and very importantly in patterned ecosystems — the patches in a pattern are not
static; on the contrary, patches slowly try to rearrange themselves into a regular configuration. Hence, under worsening climatic conditions two effects
compete: (i) the movement of patches trying to rearrange themselves into a regular configuration and (ii) the shrinking of the feasible region due to climatic
change. It depends on the rate of change which effect prevails, and as such two distinct trajectories can be identified (b and c). First, if change is slow (blue
in (b and c)), patches have enough time to rearrange themselves into a regular configuration, and stay in that configuration until, for a relatively low
rainfall value, a pattern transition occurs in which half of the patches disappear. The process then continues in the same way until the system has degraded
into the desert state. Second, if the change is fast (red in (b and c)), patches do not have time to rearrange. Therefore the patterned state leave the feasible
region relatively soon, and one patch disappears in the then occurring pattern transition. The process then repeats itself, and patches keep dying out one-
by-one until the system is captured in the desert state.
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In this paper, we present a mathematical method to
describe the adaptability and resilience of patterned ecosys-
tems. This method considers so-called ‘strongly localised’
patterns that constitute several patches with vegetation, and
bare soil between them — the typical states for systems that
experience severe resource scarcity. As an archetypical
example, we use a (relatively) simplified ecosystem model of
reaction-diffusion type and use mathematical techniques
from Bastiaansen & Doelman (2019) to capture the essential
behaviour of these patterns in the model. These give
insights in the spatial (re)arrangement of patches and the
pattern adaptation that occurs when resources can no
longer sustain a specific patterned state. This also shows
how these adaptations lead to an overall improved ecosys-
tem resilience. Moreover this application of mathematical
techniques provides a framework to study the degradation
process of ecosystems based on the rate of climate change,
making a distinction between gradual and catastrophic
ecosystems shifts possible. Finally, we employ numerical
simulations to assess several ecosystem conservation strate-
gies that aim to minimise biomass losses during this degra-
dation process.

THEORETICAL FRAMEWORK

To describe the dynamics of vegetation patterns in semi-arid
climates, a large variety of theoretical models have been cre-
ated — mostly reaction-diffusion models (Klausmeier, 1999;
von Hardenberg et al., 2001; Rietkerk et al., 2002; Gilad
et al., 2004). These models describe the interaction between
the available water and the vegetation in these ecosystems. A
general feature in these models is the difference in timescales
between the spreading of water (minutes to hours) and of
vegetation (months to years). This separation of (space-time)
scales has been identified as the driving mechanism behind
the formation of spatially separated patterns (Turing, 1953;
Rietkerk & Van de Koppel, 2008); it is responsible for the
following two feedback loops that cause pattern formation:
(1) a long-range negative feedback loop of vegetation on
itself, via modulation of resource availability and (2) a short-
range positive feedback loop of vegetation on itself, via an
increase in the soil’s permeability. Ecosystem models show
that these coupled feedback loops can generate many sorts
of patterns, such as bands, gaps and mazes (Klausmeier,
1999; von Hardenberg ez al., 2001; Rietkerk er al., 2002).
Importantly, these patterns are not only observed in models,
but have also been commonly observed in dryland ecosys-
tems around the globe (von Hardenberg et al., 2001; Rietk-
erk et al., 2002; Deblauwe et al., 2011; Gandhi et al., 2018;
Bastiaansen et al., 2018D).

One of the most well-studied models — and the archetype
considered in this article — is an extended version of Klaus-
meier’s ecosystem model (Klausmeier, 1999). The extended-
Klausmeier model describes water, w, and vegetation, v,
dynamics by a set of two coupled partial differential equa-
tions. A dimensional version of this model and the physical
meanings of the parameters are given in Box 1. In non-dimen-
sionalised version it is given by the partial differential
equation.

Box 1. Scalings

Throughout this paper, a scaled, non-dimensionalised ver-
sion of the extended-Klausmeier model is used. In this box,
we relate the results of and assumptions on the scaled
model, as presented in the main text, to those of the non-
scaled dimensional model.

DIMENSIONAL EXTENDED-KLAUSMEIER MODEL

The extended-Klausmeier model captures the interplay
between water (W, measured in mm) and vegetation (V,
measured in kg m~2) in semi-arid ecosystems. The dimen-
sional version of this model reads.

{ =Dy W XS g LW — RWV; )
{9T

Dy MV+ RIWVZ.

Here rainfall is modelled as a constant supply of water, at
rate + A (measured in mm year~'). Water is lost due to
evaporation at rate -LW (where L has units year™'), and
through uptake by vegetation at rate -RWV? (with R mea-
sured in mm year™' kg?). The parameter J (in kg L")
models the increase of biomass per unit of water consumed
by the vegetation, which leads to a plant reproduction
rate + RJWV?. Vegetation is lost due to plant mortality at
rate -MV (with M in year™"). The parameter S is the speed
at which water flows downhill, which is proportional to the
terrain’s slope gradient (and measured in m year ).
Finally, Dy respectively D, are the diffusion coefficients of
water respectively vegetation (both carrying units m’
year™"). See also Siteur et al. (2014).

In this paper, a non-dimensionalised version of the
extended-Klausmeier, (6), is used. This one can be obtained
from the dimensional version, (1), by the following set of
scalings:

)= YRJ — VR _ I _
w=EW v="S2V x=-op=X 1=LT (2)
a=YHA m=iM s=—l=5 D= (3)

DIMENSIONAL PULSE LOCATION DIFFERENTIAL
EQUATION

The dimensionless pulse location differential eqn, (10), can
be brought back to the original, physical parameters and
variables with the use of the scalings (2)—(3). We denote
the location of the patches in the original variables as

Py,...,Py, where P; = ‘/ﬁpj(] 1,...,N). Then, their evo-

lution is given by

ar; _ [ WP} ) = Wy )]

- RVRP A “)
wherea = \/7DW AT
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Box 1. Continued

ASSUMPTION THAT PATCHES DISAPPEAR ON A
FAST TIMESCALE

From Bastiaansen & Doelman (2019) it is known that the
eigenvalues 4 associated to the disappearance of vegetation
patches are of order m, that is, 1 = O(m). Hence, patches
disappear roughly at rate m. So patches disappear very fast
compared to the change in aridity if }% < m. In the origi-
nal phys1cal parameters this gives the assumption
dT} << M This quantity can be found based on esti-
mates on the size of parameters from Klausmeier (1999);
Siteur et al. (2014). From this, it is revealed that patches
(in reality) disappear on a fast timescale — and satisfy the
mentioned assumption — if the mean annual rainfall does
not change faster than several tens of mm year 2.

DISTINCTION BETWEEN SLOW AND FAST CLIMATE
CHANGE

In this article, the difference between slow and fast climate
change is determined by which of the two effects prevails:
(1) the dynamics on M according to the pulse location dif-
ferential eqn (10) or (ii) the shrinking of the feasible part
of My. For the purposes of this article, we refer to climate
change as slow if the first effect happens on a (much) faster
timescale compared to the second effect. With a proper
rescaling as in Bastiaansen & Doelman (2019), it can be
determined that (i) happens on a timescale of order Da’
Pinpointing the precise evolution of the boundary of the
feasible part of My is a complicated, technical procedure;
however, in Bastiaansen & Doelman (2019) it is derived
that this boundary has to satisfy an equation of the form.

f1B(1))

a(r)?

where B(r) represents the boundary of the feasible part of
My, f(B) some function and C a constant that is time-inde-
pendent. Differentiation with respect to ¢ of this condition
reveals that changes in the boundary B(r) — that is, process
(ii) — occurs on a timescale of "“! /a.

Thus, from this we infer that climate change is slow if
d"| <L = D” . Scaling this back to the original, phy31cal parame-
tdl JDr R A
ers this condltlons becomes | | < by . Based on
estimates from Klausmeier (1999); Siteur ez al. (2014) this
gives a quantified distinction between slow and fast climate
change: if the mean annual rainfall decreases (much) slower
than several mm year™ the change is slow; otherwise it is fast.

=C, (%)

aw _ gzxg (w) Ya—w— wv2 ¢
dv D2 () v ( )

In these equations, movement of water is modelled as a

combined effect of diffusion (227”) and advection ( ‘") The

latter is due to the gradients of the system’s topography,

which is proportional to s(x), the slope parameter. Dispersal

[22%

D measures the ratio between the diffusion rate of vegetation
and the diffusion rate of water and is small because of the
separation of scales. The reaction terms give the change in
water as a combination of rainfall (+«), evaporation (—w) and
the water uptake by vegetation (—wv?). Vegetation biomass
changes because of mortality (—mv) and plant growth (+wv?).
For simplicity, in this article we restrict the model to one spa-
tial dimension and focus on constantly sloped terrains, that is,
s(x) =s. Note that general behaviour observed in the 1D
model typically corresponds well to the behaviour of 2D pat-
terns (Siero et al., 2015).

As eqn (6) includes the spatial processes of diffusion, advection
and dispersal, it is clear that the model system not only describes
changes in water availability and vegetation over time, but also
changes in the system components in space. Because of this, it is
possible to study the spatial structures — patterns — in an ecosys-
tem. However, understanding the behaviour of a partial differen-
tial equation is much harder than that of a model without spatial
effects, such as models that consist of ordinary differential equa-
tions. The dynamics of the latter can be captured in phase por-
traits (Holling, 1973), which describe the behaviour of the system
based on the components’ current value. Therefore the phase
portrait of ordinary differential equations has as many dimen-
sions as the number of state variables in the model; in simple
models (with only one to three variables) it is often possible to
draw the complete phase portrait. The concept of phase portraits
can be extended to partial differential equations. Because of the
spatial variation in these models, the phase portraits in these
cases are always infinite-dimensional, regardless of the number
of state variables. Therefore it is, in general, practically impossi-
ble to visualise the (whole) phase portraits associated to partial
differential equations.

Interestingly, there are mathematical techniques that can be
used to understand the phase portraits of partial differential
equations. When there is a large separation of scales — like in
dryland ecosystems — it is possible to get a grip on the infi-
nite-dimensional phase portrait. In these situations, vegetation
is strongly localised and patterns consist of one or several
(confined) patches of vegetation and bare soil elsewhere;
moreover, under these constraints, a patch can be fully char-
acterised by its centre, and the collection of all of these loca-
tions thus fully defines the system state. Therefore, the
evolution of the system can be understood completely by fol-
lowing the evolution of the patch locations. That is, for these
patterns it is possible to split the infinite-dimensional phase
portrait into several finite-dimensional phase portraits that are
linked to each other (Promislow, 2002; Doelman & Kaper,
2003; Kolokolnikov et al., 2005; Bellsky et al., 2013). In the
case of dryland ecosystem models, each of these finite-
dimensional phase portraits describes how a finite number of
vegetation patches behaves according to the model — which
can be captured in ordinary differential equations. The differ-
ent phase portraits correspond to a different number of vege-
tation patches; so one phase portrait describes the behaviour
of a system containing one vegetation patch, another phase
portrait that of a system with two vegetation patches and so on.

of vegetation is described by diffusion (i;) The parameter

© 2020 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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Box 2. Overview of derivation of PDE to ODE reduction

For the interested reader, we present a short outline of the
performed reduction from the full partial differential equa-
tion (PDE) to an ordinary differential equation (ODE)
stipulating the movement of vegetation patches. For a full
mathematical treatment of this reduction, including all
technical results and assumptions, we refer to Bastiaansen
& Doelman (2019); Chen & Ward (2009); Bellsky et al.
(2013). This reduction can only be performed on so-called
localised patterns (that arise under relatively arid condi-
tions in the model); that is, it is assumed that vegetation is
only present at some localised regions — the patch loca-
tions. At these locations, the vegetation takes up water
such that in the soil there is not much water left. In
between patches, there is no vegetation, and the incoming
water via precipitation will either evaporate or flow to a
vegetation patch. An equation describing the movement of
the patches can now be found by zooming in on both type
of regions — within patches and in between patches — and
connecting them to each other at the edge of the regions.
Typically, this requires additional scalings in one or both
type of regions. Here we illustrate this process for the
extended-Klausmeier model. For other models the general
idea is the same, although explicit expressions may vary.

First, zooming in on a patch location can be done by
assuming water dynamics does not play an important role
here, and vegetation changes only slowly over time (this is
called a ‘quasi-stationary’” approach in the mathematical lit-
erature). Hence, as an approximation, one can set % =01in
(6) and assume w is small and approximately constant in a
patch. Thus, v can be obtained from the equation.

o 0%
ot Ox2

Defining the centre of the j-th patch (at time 7) as p,(7), it
is readily checked that this equation is solved by.

2
vi(x, 1) = %w_:}(qt) sech <\/71%X—ij(l)) ; )

—my+wv’ =0, (7)

where the subscript j denotes that this stipulates the con-
centration of vegetation around patch j, and w(r) denotes
the small, constant amount of available water at this patch
location (at time 7).

The only dynamical components of eqn (8) are the
change in patch location over time, and the (small) amount
of available water within this (moving) patch. Thus,
eqn (8) shows that the variation of vegetation in space and
time can be described by p,(f) and w(f). Hence, substituting
(8) into the full PDE, (1), opens up the possibility to
reduce this PDE equation into an ODE equation describing
the movement of the vegetation patch. This leads to the
derivation of the patch-location ODE (10). We refrain
from giving the details of this process here, as they are
quite technical and require a certain level of profundity of
mathematical ‘asymptotic analysis’; details can be found in
Bastiaansen & Doelman (2019).

Box 2. Continued

Second, zooming in on the region between patches can be
done by setting v =0 in (6) (as no vegetation is present
there). Moreover as water moves relatively quickly, it config-
ures itself into an equilibrium state on a fast timescale — com-
pared to the timescale on which the patches migrate. Hence,
one can additionally set % = 0. Then, in between patches,
the water, w, satisfies the relatively simple equation.

B @ n I(sw)
~ Ox Ox

accompanied with boundary conditions at the patch loca-
tions stipulating (almost) no water is present there.

So, to determine the direction (and speed) of a moving
patch, one first solves (10) between patches. From that
solution, the derivatives wy(p;) and wy(p;) of water at
both sides of the patches can be readily obtained. In turn,
these expressions must be substituted into the patch-loca-
tion ODE (10), which then gives the patch movement (at
the current time). Doing this recursively allows to track the
patch movement over time.

We note here that the patch-location ODE (10) does not
capture all the dynamics of the PDE; as explained in the
main text, in particular it does not check whether a config-
uration is feasible, that is, if there are enough resources
available for each vegetation patch to survive. Feasibility
of a given patch configuration can be checked by a linear
stability analysis of the PDE system, as described in Basti-
aansen & Doelman (2019). In short, this method computes
the eigenvalues and eigenfunctions corresponding to the
patch configuration; only if all eigenvalues are negative, the
patch configuration is feasible.

0 +a—w 9)

All of these phase portraits are interlinked via the behaviour
of the full ecosystem model, as is detailed below. Here we do
not present a full (mathematical) treatment of the model; we
refer to Bastiaansen & Doelman (2019) for that. Instead, in
this paper we focus on the implications for system responses
for realistic parameter values (according to Siteur et al.
(2014); Klausmeier (1999)).

Migration of vegetation patches

For the extended-Klausmeier model this reduction has been
performed in Bastiaansen & Doelman (2019) — a short outline
of the mathematical procedure can be found in Box 2. We
define My as the phase portrait of a system with N vegetation
patches. Denoting the location of these patches by py,..., pn,
their location changes according to the pulse location differen-
tial equation (see Box 1 for a rescaling back to the original
dimensional variables).

dp.f - D

dt — my/m
where wx(p_,-i) is the water gradient at respectively the right
and the left side of the vegetation patch; thus, to solve this

[1vx(pj+)2 - wx(p_;)z}, (10)

© 2020 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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ordinary differential equation one first needs to find these
water gradients (which, in turn, are influenced by the loca-
tions of all vegetation patches) — see Box 2 for more informa-
tion on how to solve this type of equations. According to this
ordinary differential equation, vegetation patches move
towards locations where most water is available, which is in
line with early hypotheses about pattern formation in these
systems (Thiery et al., 1995). Because the movement of vegeta-
tion will change water availability over a long range, neigh-
bouring patches will be affected by this movement — that is,
vegetation patches influence each other indirectly via this
mechanism. From the pulse location differential equation it is
clear that a vegetation patch will no longer move (that is,
% = 0) when the water gradient on its right is equal in size to
the water gradient on its left (that is, wx(p/-*)2 = wx(pj*)z).
These gradients will only be equal if the distance between
neighbouring patches is the same. Therefore, on constantly
sloped terrains, vegetation patches tend to distribute them-
selves regularly over the available space (Bastiaansen & Doel-
man, 2019). Thus, the phase portrait My has one (attracting)
equilibrium: the configuration in which the N vegetation
patches are regularly distributed. Moreover for more complex
topographies — that fall outside the scope of this article — the
pulse location differential equation can explain many of the
(from a simple model’s perspective counter-intuitive) observa-
tions like downhill migration of vegetation patterns (Basti-
aansen et al., 2018a; Bastiaansen & Doelman, 2019).

Disappearance of vegetation patches

The pulse location differential equation does not fully capture
the model dynamics; eqn 10 describes the behaviour of the sys-
tem on the timescales associated with movement of patches.
However, the full model also includes processes that happen on
a faster timescale. Specifically, patches disappear when they
can no longer acquire sufficient resources for persistence; this
disappearance of patches occurs on a much faster timescale
and therefore needs to be considered separately. That is, it
needs to be checked whether there are enough resources avail-
able for a vegetation patch to persist. Because of the competi-
tion between vegetation patches, there is only enough water
available for a patch when other patches are sufficiently far
away (precisely what ‘sufficiently far’ entails, depends on the
rainfall parameter «). Therefore, part of the N-patch phase por-
trait is rendered unfeasible. When the system evolves to a point
in the unfeasible region of My, there are not enough resources
to maintain all vegetation patches. Once in this region, flow is
directed away from My and a solution ‘drops off” of M. At
this moment a pattern adaptation occurs. As a result some of
the patches disappear and the solution ‘lands’ on M, (with
M < N), the phase portrait that describes the evolution of the
remaining patches. How many and which patches disappear
during such a pattern transition depends in a complex way on
many factors, which are described in the rest of the text.

A graphical visualisation of part of the full infinite-dimen-
sional phase portrait for the model can thus be made — as
shown in Figure 2. In the figure, the finite-dimensional phase
portrait My, that describes the evolution of N vegetation
patches — that is, the change in locations of the vegetation

patches — is illustrated as a 2D surface. In this plane, the blue
arrows indicate how patches rearrange themselves, with the
fixed point in the centre denoting the regular configuration.
Moreover red arrows indicate the flow perpendicular to My —
that describes the disappearance of vegetation patches. The
green part of My corresponds to the feasible region and the
red part to the unfeasible region. Close to the feasible region,
the full system is directed towards M, and close to the unfea-
sible region it is directed away from My (and towards M,
for some M < N).

Effect of decreasing rainfall

The size of the feasible part of My — that is, the collection of
possible configurations with N vegetation patches for which
there are enough resources available — depends on the amount
of resources, that is, on the amount of rainfall . In principle,
for relatively arid conditions, the higher the rainfall, the larger
the feasible part of M. When the rainfall decreases, this fea-
sible part decreases as well. Ultimately, for some critical rain-
fall rate a. y, the stable part of My consists of only one patch
configuration: the configuration in which all N patches are
regularly distributed over the available space. Because more
resources are necessary to maintain more vegetation patches,
these critical values are ordered as 0 <a.; <a., <
<da.ny 1< a,n<a.y+1<...Hence, a sustained decrease
in rainfall rate may induce a cascade of destabilisations where
the destabilisation of a vegetation pattern with N patches does
not immediately lead to a catastrophic desertification, but it
might lead to a new configuration with M vegetation patches
(M < N) that is again feasible until the rainfall is decreased
even further. These destabilisations — with only part of the
patches disappearing — can thus follow each other, leading to
a more subtle and more cascading desertification process (as
illustrated in Figure 1).

The boundary between the feasible and unfeasible part of
My describes when a N-patch configuration becomes unfeasible
and patches disappear. It does not, however, indicate which
patches disappear. A study of eigenfunctions (those can be seen
as generalisations of eigenvectors, but for partial differential
equations) has revealed that this depends on the degree of regu-
larity of the N patch configuration that becomes unstable (Bas-
tiaansen & Doelman, 2019). If the pattern is a regularly
distributed configuration of vegetation patches, multiple
patches disappear simultaneously — typically leading to the loss
of half of the vegetation patches. On the other hand, if the pat-
tern is irregular, then only one patch disappears: that one patch
that has access to the least amount of water, or — equivalent in
the mathematical model — that patch that has the least amount
of biomass. Thus, the type of pattern adaptation that occurs is
related to the regularity of the pattern undergoing the transi-
tion: regular patterns experience larger transitions in which
many patches die out, while irregular patterns experience smal-
ler transitions in which one patch dies out. This leads to the
insight that patterns with the highest resilience (i.e. the regular
patterns) undergo the largest ecosystem shifts, while those with
lower resilience only experience smaller shifts.

We will now further explore the difference between system
responses to slow and fast climate change, based on these
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High rainfall Medium rainfall Low rainfall

Figure 2 Conceptual illustration of part of the infinite-dimensional phase portrait of the complete PDE. With an reduction it is possible to capture the
dynamics of N-patch solutions in a finite-dimensional phase portrait, My, which is illustrated as a 2D surface in this figure. The blue arrows on this surface
indicate the flow of solutions on My — following these lines corresponds to a change in position of the configuration’s vegetation patches. Part of My,
indicated in green, consists of feasible patch arrangements, that is, there is enough water available to sustain all the patches. The red part consists of
unfeasible solutions. For these patch arrangements there is not enough water available and one or more patches disappear. The feasible part of My shrinks
as the rainfall ¢ decreases. For smaller values of a, the feasible part of My can completely disappear; there is a critical value a. y — its value depending on
the number of pulses — below which My is completely unfeasible. Precisely at the critical value ¢ = a,. y the regularly distributed patch configuration loses
its stability. These critical values are ordered 0 < a.; <a.» < ...<deny -1 < deny < deny + 1 < .... The red lines in this figure indicate the (fast) dynamics
that occur close to My: near the green regions a solution is attracted towards My (that is, vegetation patches are getting restored in case of disturbance),
while a solution is repulsed from it near the red regions of My — following these lines corresponds to the disappearance of vegetation patches. Ultimately,
when a configuration is positioned in the red part of My one or more vegetation patches die out. The new configuration — with M patches (M < N) — then

follows the dynamics as dictated by the phase portrait M,,.

findings. Moreover using several numerical simulations it is
explored how vegetation biomass can be maximised in these
ecosystems via human intervention.

THE DIFFERENCE BETWEEN SLOW AND FAST
CLIMATE CHANGE

The theoretical findings described in the previous section can
be combined to determine what happens to vegetation patches
under the influence of climate change. For simplicity, and for
the purposes of this article, climatic change is characterised
only by a change in rainfall, a. Here the focus is on scenarios
with decreasing rainfall a, which leads to the disappearance of
vegetation patches due to a lack of resources (in this context:
water). Finally, we assume that the disappearance of vegeta-
tion patches happens very fast — almost instantaneously —
compared to the timescales involved with climate change; that
is, we assume |%| < m — see Bastiaansen & Doelman (2019);
an equivalent condition using dimensional parameters can be
found in Box 1.

The system’s response to climate change depends on the rel-
ative rates of the following two processes. First, the dynamics
on My indicate that patches of vegetation slowly rearrange
themselves into a regular pattern. Second, the feasible part of
My shrinks when the rainfall parameter a decreases. Thus
there are essentially two different scenarios possible, distin-
guishable by which of these two processes prevails. This dis-
tinction can be made based on the rate of change of a. When
a decreases slowly this corresponds to a slow climate change
and when a decreases quickly this corresponds to a fast cli-
mate change. Here ‘slowly’ can be quantified as the require-

ment !%’ <« Do,

my/m’

see Box 1 for more information and a

translation to the original, physical parameters.

Slow climate change

When a decreases slowly, the feasible part of My also
shrinks slowly. Therefore, a generic N-patch configuration (in
the feasible part of My) is given enough time to follow the
dynamics on My to the fixed point of this phase portrait —
and thus it will rearrange itself into a regularly distributed
configuration, with equidistant patches. This regular configu-
ration is then maintained until a is decreased below the criti-
cal value a,, when this state becomes unfeasible. When this
happens, typically half of the vegetation patches die out, and
a wavelength doubling occurs in the pattern (in case N is
odd, an approximate wavelength doubling occurs as either
@ or % patches disappear). The process then continues on
M yjy, and, with persistent decreases in rainfall, several
wavelength doubling destabilisations then occur after each
other, until all patches eventually have died out. A schematic
illustration of the first part of this process is given in Fig-
ure 3a. Moreover a simulation of the full process is pre-
sented in Figure 4.

Fast climate change

In the other scenario, the rainfall a decreases on a relatively
fast timescale, and therefore the feasible part of My shrinks
fast. This ensures that a (generic, non-regular) vegetation pat-
tern does not have enough time to follow the flow on phase
portrait My — and the pattern does not become a regularly
distributed configuration. Instead, at some moment — when
a > a, y — the configuration is positioned in the (rapidly grow-
ing) unfeasible part of My. Because the pattern is not regu-
larly distributed, generally only one patch disappears: the
patch with the least amount of biomass (or, equivalently,
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Initial configuration Regular pattern achieved At/after destabilization

(@) Schematic illustration of pattern evolution and pattern transition during slow climate change

Initial configuration At/after destabilization

(b) Schematic illustration of pattern evolution and pattern transition during fast climate change

Figure 3 Schematic illustrations of pattern evolution and a pattern transition during respectively slow (a) and fast (b) climate change. Both start from a N
patch arrangement in the feasible part of My — indicated by * in the left most illustrations. In both situations the feasible part of My shrinks because of
climate change and simultaneously, the N patches migrate, following the dynamics on M. First, when the climate change happens on a slow timescale (a),
the feasible region of My shrinks slowly compared to the patch migration (indicated by the blue double arrows). As an effect, the N patch configuration
leaves the feasible part only after it has reached the equilibrium position on My, in which the patches are distributed regularly over the domain (a, second
panel). When the destabilisation then happens — when a = a, y — typically half of the vegetation patches are lost. The solution then ‘lands’ on M|y, and
the process of wavelength doubling destabilisations then repeats itself until all patches have disappeared and the system is captured in the desert state (see
the blue line in Figure 1b). Second, when the climate change happens on a fast timescale, the feasible region of My shrinks fast compared to the patch
migration (indicated by the green double arrows). As an effect, the N -patch configuration leaves the feasible part, before it has time to evolve to a
regularly distributed configuration (b, second panel). When this happens, the solutions drops off of M. Typically one vegetation patch disappears during
such transition. The process then continues on My_;, that consists of all patch arrangements with N — | vegetation patches, until all patches have

disappeared and the system is captured in the desert state (see the red line in Figure 1b).

access to the least amount of resources). This process then
restarts on My_; (in the feasible region) and patches will keep
disappearing one-by-one until all patches have disappeared
and the system is captured in the desert state. A schematic
illustration of the first part of this process is given in figure
3b. Moreover a simulation of the full process is presented in
figure 4.

In case of a regular configuration and fast climate change
(which could occur for instance when climatic change acceler-
ates), during the first destabilisation — when rainfall a drops
below a.y — a wavelength doubling occurs in which half the
patches die out. However, the remaining patches then typi-
cally will not have enough time to evolve to a regular configu-
ration and the process continues as explained above — that is,
patches disappear one by one.

MINIMISING BIOMASS LOSSES UNDER DECREASING
RAINFALL

During the process of desertification, the amount of biomass
in the system diminishes. To be able to maximise vegetation
biomass, it is therefore paramount to understand how this

decline sets in. In Figure 5 the amount of biomass, [ v(x)dx,
is plotted against the rainfall parameter a for systems experi-
encing fast and slow climate change, respectively. In a slowly
changing climate, the pattern first evolves to a regular pattern,
yielding higher biomass than an irregular pattern (Figure 5).
A direct computation of biomass for all possible two-pulse
patterns (that can be extended to any number of vegetation
patches) confirms this (Bastiaansen & Doelman, 2019). In the
regular configuration, each vegetation patch has access to the
same amount of water, which is the most efficient use of
resources for the ecosystem. Hence, given a fixed number of
vegetation patches, the most biomass is maintained when
these patches are arranged in a regular pattern.

Now that it is clear how vegetation patches should be
arranged, the next step is to determine the ideal number of
patches in a given system. On the one hand, more patches
(and the same amount of resources) leads to more competi-
tion between them, and thus might lead to less biomass. On
the other hand, more patches means there is a higher vegeta-
tion cover, and thus might lead to more biomass. Using for-
mulas from Bastiaansen & Doelman (2019) the amount of
biomass per patch can be computed as function of the
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Figure 4 A side by side comparison of simulations of slow (left; blue panels/arrows) and fast (right; red panels/arrows) climate changes. The black line in
the middle indicates the value of the rainfall parameter a, going from a = 0.5 (top; start of the simulations) to « = 0 (bottom; end of simulations). The
insets show the solution at the specified rainfall value, just before and just after a destabilisation. In the fast climate change simulation, patches hardly
migrate and they die one by one. In the slow climate change simulation, patches first arrange themselves in a regular pattern, thus increasing their
resilience. They can persist in this configuration for lower rainfall values, compared to the irregularly spaced configuration of the fast climate change
simulation. However, once the regular pattern becomes unfeasible, a period doubling occurs and multiple patches disappear at once. Note that the
simulations end with two pulses disappearing (and not only one), as two consecutive destabilisations happen within the numerical time step used.
Simulations made using the numerical method developed in (Bastiaansen & Doelman, 2019), with parameter values D = 0.01, m = 0.45, s = 0,

a(t) = 0.5(1 — t/T) where T
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Figure 5 Total biomass, Jv(x) dx, for simulations of a slow (blue) and a fast (red) climate change. Both simulations started with 88 vegetation patches at

the same random locations. During the simulation the rainfall parameter ¢ was decreased from a =

1toa = 0in 10° time steps (fast climate change; red)

or in 10° time steps (slow climate change; blue). Figure (b) is a zoom-in on the dashed box in (a) to better show of the difference in pattern transitions

occurring during slow and fast climate change.

distance to the patch’s neighbours, which in turn yields the
amount of biomass per unit length. This procedure indicates
that more patches have a positive effect on the total biomass,
consistent with recent observations (Bastiaansen et al., 2018b).
Hence, to optimise the biomass in a system, in general, the
goal is to fit as much vegetation patches as the system possi-
bly can sustain, which should be arranged in a regular fashion
to maximise biomass.

Since the critical value a, y indicates the lowest value of a for
which a regular N patch configuration can still be maintained,
the maximum number of patches in a system can be found as
follows: find the largest N such that a. y < a, where a is the sys-
tem’s rainfall (parameter). Note that the stability of regular veg-
etation patterns has been studied before (Siteur er al., 2014,
Bastiaansen et al., 2018b). These studies have linked the stabil-
ity of a pattern to its wavenumber (instead of the number of
patches as is used throughout this text), where a model-depen-
dent shape — called a Busse balloon — in the (wavenumber,
parameter)-space is made that illustrates all the stable regular
patterns. The boundary of this ‘balloon’ directly links to the
critical values a, y and therefore the highest number of patches
can be directly inferred from these Busse balloons.

However, this does not answer the practical question how
this can be achieved — and there is no straightforward answer
to this either; the long-term coarsening process of vegetation
patches is highly unpredictable and a short-term optimisation
of biomass does not necessarily lead to long-term optimisation
of biomass. For instance, in Figure 5, for high rainfall rates
clearly the regular configuration (i.e. the simulation with slow
climate change) maintains the highest amount of biomass.
Also, this pattern is resilient to changes in rainfall, as it will
only undergo a pattern transition when rainfall « is close to
the critical value a, v (with N = 88 initially in Figure 5). How-
ever, once this threshold is reached, a pattern transition
occurs in which half of the patches are lost — thereby skipping
many viable patterns with more patches and higher biomass
values. Over the same rainfall gradient, the irregular configu-
ration (i.e. the simulation with fast climate change) has been

losing patches one by one and therefore does reach those con-
figurations with larger number of patches; although these con-
figurations are irregular, they (can) still have a higher
productivity than a regular configuration with fewer patches.
As rainfall further decreases, the irregular pattern keeps losing
patches and, after enough patches have disappeared, the regu-
lar pattern will again have a higher biomass — until it under-
goes a new transition in which half of the patches die out and
the process repeats itself. This explains the ‘snaking’ in the
biomass plots in Figure 5, and also indicates that, because of
these processes going on, there is no universal approach to
maximising the resilience of a patterned system — as is also
illustrated in Figures 6 and 7.

Heuristically, it may seem that a pre-emptive removal of
one patch — close to a destabilisation of the whole configura-
tion — might help to stabilise the others, thereby avoiding a
larger pattern transition losing multiple patches. We have car-
ried out this procedure in simulations with fast and slow cli-
mate change. In these simulations, we have taken the 5-patch
configuration from Figure 4 and, just before the first destabili-
sation, we removed one of the patches and then let the simu-
lation continue. The resulting total biomass dynamics are
given in Figure 6. Under both fast and slow climate change,
removal of any one of the patches, does not lead to any speci-
fic consistent benefit. Although some removals lead to higher
biomass values initially, these are not consistent for all values
of the rainfall parameter ¢ and a clear trend does not present
itself; it cannot be predicted accurately whether removal of a
patch will be beneficial for lower rainfall values; in fact, the
removal can even cause the system to degrade into a desert
state at a higher rainfall (see Figure 0).

We have also tested an early, pre-emptive removal of one
path from a regular N-patch configuration undergoing slow
climate change (Figure 6) — where removal of one of the vege-
tation patches occurred long before destabilisation of the pat-
tern. This pre-emptive removal allows the system to evolve to
a regular (N — 1)-patch configuration, which can persist for
lower a-values. So the minor sacrifice of one (or a few)
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Figure 6 Total biomass, Jv(x) dx, for simulations of slow (a) and fast (b) climate change, where one of the patches was pre-emptively removed, just before
the first destabilisation of the S-patch configuration (of Figure 4). Note that in (a) the colours for removal of patch 1 (dark blue), patch 3 (green) and
patch 5 (orange) overlap as do those for removal of patch 2 (light blue) and patch 4 (yellow). Moreover in the case of a slow climate change (a), the effect
of an early removal is also given. Here the patch was removed when a =~ 0.35 such that the remaining patches had ample opportunity to rearrange
themselves into a regular 4-patch configuration; therefore, it does not matter which patch was removed at this early moment as removal of any patch will

yield the same results.

vegetation patch(es) increases the resilience of the remaining
vegetation in these cases. This method again has a clear short-
term positive effect on the biomass, but the long-term effects
can vary since the next destabilisation happens at higher rain-
fall values; it might lead to lower amounts of vegetation for
lower rainfall values, and, more importantly, final degradation
to the desert state might happen at a higher rainfall value.
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Figure 7 Total biomass, [v(x) dx, for two simulations during a slow
climate change. In one of the simulations (green) N/3 pulses are removed
as a precautionary measure right before the initial destabilisation of the
regular pattern, while no interventions were made during the other
simulation (blue). Both simulations started with N = 100 patches in the
same regular configuration. During the simulation the rainfall parameter
a was decreased from ¢ = 1to a = 0in 10° time steps.

Repeated application of this tactic might remove some of
these long-term drawbacks, but requires intensive monitoring
of the system and constant interventions to ensure patches are
removed neither too early — when it is not necessary yet — nor
too late — when there is not enough time left for the system to
rearrange itself into a regular configuration.

Alternatively, if it is not possible to intervene well in
advance, it is possible to still minimise the number of lost
patches in a destabilisation of a regular N -patch configura-
tion. These become unfeasible because all patches have access
to too little resources. Because of the regularity of the config-
uration, the system resolves this by the removal of |N/2]
patches. For regular configurations, this can also be achieved
by the removal of only |N/3] patches: removing every third
patch instead of every second patch. This does lead to signifi-
cant less biomass loss during destabilisation (see Figure 7),
but — again — has the drawback that the next destabilisation
happens at a higher rainfall value (since a.|y/31 > a.|n/21)- SO
this process does have a clear short-term advantage but may
have a potential long-term disadvantage.

DISCUSSION

Since their discovery on aerial photographs in the 1950s
(Macfadyen, 1950a,1950b), spatial vegetation patterns have
received considerable attention. Previous hypotheses state that
the mere presence of these patterns indicates an ecosystem’s
proximity to a catastrophic ecosystem shift (Rietkerk ez al.,
2004; Scheffer et al., 2009). However, these hypotheses implic-
itly adopted resilience concepts that were derived from non-
spatial models, in which ecosystem resilience is defined as the
magnitude of change an ecosystem can cope with (Holling,
1973). These views cannot be extrapolated completely to more
refined models that include spatial effects (Siteur ez al., 2016);
indeed, recent studies have shown that vegetation patterns are
more resilient than previously believed (Bel ez al., 2012; Siteur
et al., 2014; Gowda et al., 2018; Bastiaansen et al., 2018b),
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Box 3. Engineering and ecological resilience

As first proposed in Holling (1996), resilience of (eco)sys-
tems can be defined in two different ways, as engineering
resilience and as ecological resilience. Engineering resilience
deals with fail-safe design and is measured by the speed at
which an equilibrium state is restored after disturbance
(also sometimes called the stability). Ecological resilience is
related to safe-fail design and is quantified by the amount
of environmental change a system can withstand before it
flips to another regime of behaviour — or, more mathemati-
cally, another region of stability (or basin of attraction).

Both types of resilience have been studied and explained
theoretically using (the theory of) ordinary differential
equations. In this article, a framework is presented in
which the behaviour of localised patterned states, described
via spatially explicit partial differential equations, can be
tracked using ordinary differential equations. Hence, the
typical methods can be exploited to quantify engineering
and ecological resilience of the patterned states — which we
illustrate below. However, in these spatially extended sys-
tems, both fail to pinpoint critical shifts in the system; that
is to say, they do predict (hysteretic) shifts, but these do
not (always) have significant impact on the productivity of
the system — and certainly do not prelude a change in the
driving processes of the ecosystem that is normally associ-
ated with a loss of resilience. Thus, as also explained in the
main text, these classical methods can be employed to sig-
nal an imminent pattern transition, but they need to be
supplemented by new methods that can also predict the
kind of transition — a minor, non-critical ecosystem shift or
a larger, more critical shift.

ENGINEERING RESILIENCE

The engineering resilience of a patterned state with N
patches is given by the speed at which vegetation patches
restore their shape after disturbance. This speed is indicative
for the distance away from the stability boundary — and
does show a critical slowing down. Hence, irregular patterns
— that lie close to this boundary — get restored slower and
thus have a lower engineering resilience (compared to the
more regular configurations that lie more to the middle of
the feasible region and restore more quickly). Importantly,
as the smallest patch — the one closest to its neighbours — is
the first patch to disappear, it is the restorative speed of this
patch that is important here — and the one that shows a crit-
ical slowing down. For completeness, we note that the
(slow) rearrangement of patches is not a good measure for
engineering resilience, and also does not show critical slow-
ing down close to a pattern transition.

ECOLOGICAL RESILIENCE

When considering a regular patterned state with N patches,
the region of stability is given by all N patch configurations
which lie in the feasible region (the green regions in

Box 3. Continued

Figure 2). Over time, all configurations in this feasible
region will slowly rearrange themselves into the regular N
patch pattern if all parameters stay constant. As explained
in the main text, this stability region shrinks as « is
decreased and fully disappears when « drops below the crit-
ical value a.y. Hence, if a< a.y the system flips to
another stability region. Thus ecological resilience — the
amount of change in rainfall the regular patterned state
with N patches can withstand — is determined by the differ-
ence between the current rainfall value ¢ and the critical
value a. y — that is, by the value a — a, y.

and can adapt to changing environmental conditions in vari-
ous ways (Sherratt, 2013; Siteur et al., 2014; Bastiaansen &
Doelman, 2019). The precise extent and severity of these
adaptations depends for a part on the magnitude of change,
but is also influenced significantly by the rate of change
(Siteur et al., 2014, 2016). Therefore, the adaptability of vege-
tation patterns forms a more comprehensive indicator for the
ecosystem’s resilience (Bastiaansen et al., 2018b).

In this study, we have provided a framework by which the
self-organising capacities of patterning ecosystems as well as
their striking ability to adapt can be understood. We found
that, when an ecosystem is not under pressure and there is an
abundance of resources, the number of vegetation patches does
not change, but their location changes slowly. In this way, each
patch optimises its own water uptake, which causes the patches
to evolve towards a more regular pattern and enhances the
overall pattern’s capability to cope with (resource) droughts.
In case of such a drought, not all patches can be sustained any
more and one, or several, die out because of the lack of
resources, increasing the uptake of resources for the remaining
vegetation — again increasing the overall resilience of the
ecosystem. If this pattern adaptation happens after an ecosys-
tem has evolved into a regular pattern a significant shift in
wavelength can be measured, while otherwise only a small
change is expected. Hence, a clear difference is found between
the degradation of a patterned ecosystem during fast climate
change — when patches do not have enough time to optimise
their water uptake and disappear one by one — and one during
slow climate change — when patches evolve towards a more
regular pattern and disappearances occur via more catas-
trophic wavelength shifts. These interactions between the rate
of climate change, the timing of the transition, and the magni-
tude of the transition are not fully captured by the classical
definitions of ecosystem resilience — see also Box 3 for a more
elaborate discussion of (classical) engineering resilience and
ecological resilience in patterned ecosystems.

Over the years, several empirical studies have been con-
ducted on vegetation patterns in dryland ecosystems. These
vary from small-scale, individual level studies, typically per-
formed using in-situ measurements, to large-scale system-wide
studies, typically employing remote-sensing technology. Due to
the increased availability of (historic) aerial imagery and tech-
nological advancements, these latter system-wide studies have
become more common and more thorough in the last years
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(Barbier et al., 2006; Deblauwe et al., 2011). Recently, in-depth
studies on pattern properties corroborated model predictions
(Barbier et al., 2014), and empirical evidence was found for
multistability in study sites in Somalia (Bastiaansen et al.,
2018b). However, empirical studies on the (temporal) beha-
viour of vegetation patterns — especially on pattern-to-pattern
transitions — are limited. Most prominently, the persistent
decline of patterned vegetation has been highlighted and losses
of biomass have been reported in the Sahel region (Wu et al.,
2000; Fiorillo et al., 2017; Trichon et al., 2018). Additionally,
changes in patterns — pattern transitions — have been found in
this region (Barbier ez al., 2006; Deblauwe ez al., 2011) and
explicit examples are given, for instance, in figure 1 in Wu
et al. (2000), figure 7 in Barbier et al. (2006) and figure 6 in Tri-
chon et al. (2018). The (averaged) effect of these transitions on
the pattern properties has been studied in Wu et al. (2000),
which reports on an (averaged) increased nearest neighbour
distance — that is, a lowered number of vegetated areas. How-
ever, to the best of our knowledge, there has not yet been an
empirical study on the quantitative changes to the vegetation
patterns, linking these to pattern properties such as a pattern’s
regularity. That said, at this moment, it should be possible to
perform such studies, using for example the pattern wavelength
and techniques previously used on these systems in Deblauwe
et al. (2011); Couteron (2001); Barbier et al. (2006); Penny
et al. (2013); Bouvet et al. (2018); Bastiaansen et al. (2018b).

Interestingly, substantial differences in pattern dynamics
have been observed between regions. In the Sahel region,
especially near Niamey, almost all patterns have been chang-
ing over the last decades or so (Wu et al., 2000; Fiorillo et al.,
2017; Trichon et al., 2018). In contrast, patterns have
remained largely unchanged within, for example, the Horn of
Africa — with the exception of human caused pattern degrada-
tion (Gowda et al., 2018). It has been suggested this might be
related to a higher grazing pressure in the area near Niamey
(Wu et al., 2000; Siero et al., 2019); however, in-depth studies
of sites near livestock concentration points found little evi-
dence for its effect on the vegetation structure (Hiernaux &
Gérard, 1999). Alternatively, in light of current work, this dif-
ference between dryland ecosystems might also be related to
the regularity of the patterns in these regions, which allowed
vegetation in the Horn of Africa to self-organise into more
drought-resilient patterns.

In this way, the regularity of a pattern forms an indicator
for both the resilience of the patterned ecosystem as the nat-
ure of the coming pattern adaptation. However, it is not pos-
sible to predict imminent transitions based (solely) on the
pattern’s regularity. There is a vast literature on early warn-
ing signals for (critical) ecosystem shifts (Scheffer er al.,
,2009, 2001; Kéfi et al., 2010; Dakos et al., 2011; Scheffer
et al., 2012; Kéfi et al., 2014) which can be used on patterned
states to predict when a transition is going to happen. For
example, critical slowing down is to be expected near a pat-
tern transition; the speed at which a vegetation patch restores
its shape after disturbance slows down when a pattern transi-
tion is imminent (see also Box 3). However — to stress this
once more — the then occurring pattern adaption does not
(necessarily) change the ecosystem’s structure fundamentally;
rather, because of the multistability of these ecosystems, a

change from one patterned state to another happens with lim-
ited effect on the ecosystem’s productivity and resilience. This
important difference is caused by the multistability of pat-
terned ecosystems. Typically, studies have focused on systems
with a finite amount of stable states — most of the time bis-
table systems (Kéfi et al., 2010; Scheffer et al., 2012) — where
every state corresponds to a vastly different system structure
and behaviour. In these systems, a change from one state to
another corresponds, almost automatically, to a large ecosys-
tem shift. In multistable systems — where there are a lot of
different states — departure from one state to another is typi-
cally less dramatic. Hence for patterned ecosystems it is
important not only to determine when a transition is immi-
nent, but also what kind of transition is forthcoming. As
explained, we expect that the former can be done via the clas-
sical methods — which, ultimately, link the size of an ecosys-
tem state’s eigenvalues to temporal properties of the
ecosystem (Scheffer er al., 2009; Kéfi et al., 2010; Dakos
et al., 2011; Scheffer et al., 2012; Kéfi er al., 2014). For the
latter, information about the (destabilising) eigenfunctions is
needed, which, as our study shows, can be inferred via a
characterisation of the (spatial) properties of the pattern
itself. Specifically, the model in this paper links the severity
of an imminent pattern transition to the regularity of the
patch configuration undergoing said transition; other studies
have shown a link between the larger critical transitions and
the patch-size distribution (Kéfi ez al., 2007; Kéfi et al., 2011;
Sheffer et al., 2013).

The current study also inspected several pattern conserva-
tion strategies that aim to optimise the amount of biomass in
the ecosystem by pre-emptive removal of part of the vegeta-
tion. The basic premise here is that the removal of one patch
is beneficial for the remaining vegetation that then has access
to more resources, which thus results in an increase in the
overall ecosystem’s resilience. This can thus prevent an immi-
nent more severe pattern adaptation. This is particularly sig-
nificant since the desertification process is associated with
substantial hysteresis; after the disappearance of a patch, it
will not easily reappear — even when climateological circum-
stances do improve (Trichon et al., 2018). The optimal conser-
vation strategy depends on the rate of change and the form of
the pattern, but, in general, it is best to aim for as many
patches and arrange them as optimal as possible. Although
the right maintenance strategy leads to a short term optimisa-
tion of biomass, constant monitoring of the ecosystem is nec-
essary to prevent long term negative effects; if climatological
conditions continue to worsen, the next pattern adaptation
happens sooner when more patches are present.

The model used in this study is deliberately chosen to be as
simple as possible to be able to perform the mathematical tech-
niques. However, the presented results are expected to hold
(qualitatively) for more realistic ecosystem models. Neverthe-
less, because of the simplicity of the model, we have not been
able to study all possible mechanisms that might improve an
ecosystem’s resilience and all strategies that can lead to a higher
vegetation productivity. For instance, the used model is not
refined enough to study the effect of a partial removal of the
vegetation at a patch location (in the model, a patch either dis-
appears completely or is fully restored almost instantaneously).
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Moreover model studies indicate how the (additional) planting
of a pioneering plant species can cause vegetation recolonisa-
tion through its positive effect on the infiltration of water
(Zelnik & Meron, 2018). Another possibility is to plant trees
that provide shade, which reduces the evaporation of water
(Millennium Ecosystem Assessment, 2005) — practical successes
have already led to a wide-spread application for agriculture in
Sub-Saharan Africa in the ‘Régénération naturelle assistée’
(Farmer Managed Natural Regeneration) program; see for
instance Haglund et al. (2011) and references within. Of course,
in addition to these more recent insights in the inner workings
of dryland ecosystems, longstanding agricultural water conser-
vation methods can also be used to improve vegetation produc-
tivity in a more direct way (Brauman et al., 2007; Paz-Kagan
et al., 2017) — at least when used with care (Le Maitre et al.,
2007).

Although the generic ecosystem model studied in this
paper is motivated by observations from arid ecosystems, the
main findings do not critically depend on the specific
assumptions made to model these systems. Hence, these
main findings are relevant for other ecosystems as well.
Foremost, in all multistable systems, classical resilience con-
cepts and indicators, based on the theory of ordinary differ-
ential equations, fail to indicate the severity of an imminent
ecosystem shift. This information thus should be extracted
from other (new) indicators. In this paper, we have inspected
strongly localised vegetation patterns in dryland ecosystems
and found the (ir)regularity of a pattern — that is, the vari-
ance in interpatch distances — could provide a suitable indi-
cator for the type and severity of an imminent pattern
transition. This general insight also holds for localised pat-
terns in other systems (different indicators are probably nec-
essary for different type of multistable systems). Localised
patterns naturally emerge as a consequence of the presence
of scale-dependent feedback loops in (eco)systems (Turing,
1953; Rietkerk & Van de Koppel, 2008). These have been
identified in a multitude of patterned ecosystems, including
freshwater marshes (Koppel & Crain, 2006), intertidal
ecosystems (Van Der Heide er al., 2010) and mussel beds
(Liu et al., 2014).

The analytical methods presented in this paper have been
developed for a broad range of models of reaction-diffusion
type — including those that possess these scale-dependent
feedback mechanisms and/or phase separation (Alikakos
et al., 1991; Promislow, 2002; Doelman & Kaper, 2003;
Kolokolnikov et al., 2005; van Heijster et al., 2010; Bellsky
et al., 2013). Hence, they can be applied to models of activa-
tor-inhibitor or activator-depleted substrate type — which are
often used to model patterned ecosystems, including the
aforementioned ones. That is, their dynamics can be cap-
tured by a series of interlinked phase portraits that describe
(1) pattern rearrangement and (ii) pattern-to-pattern transi-
tions. This reduction needs to be repeated for each new
model, as quantitative differences exist from model to model.
However, in case of similar ecosystem processes — that is,
optimisation of resource distribution — system behaviour is
excepted to be qualitatively similar to that described in this
paper. Again, patterned ecosystem models often fit this
requirement.

Many patterned ecosystems perform important ecosystem
roles, but are currently experiencing severe environmental
change. Hence, there is an increased demand for reliable early
warning signals for these systems. However, these are typically
developed within the classical resilience framework, although
the characteristics of these ecosystems require a different
treatment to accurately account for pattern transitions — as
explained in this paper. Therefore, new early warning signals
are necessary — based on the insights into the adaptability of
patterned ecosystems. These new early warning signals should
be developed with both the type of ecosystem as well as their
usage in mind; should they signal for all pattern transitions,
only major ones or only for full ecosystem collapse? As the
present study provides insights into the adaptability and resili-
ence of those ecosystems and their response to changing cli-
matic conditions, it provides a roadmap towards assessing
resilience of patterned ecosystems, and thus to the develop-
ment of early warning signals, using a new combination of
analytic tools.

ACKNOWLEDGEMENTS

We thank Vincent Deblauwe for inspiring discussions and
insights in remote sensing of vegetation patterns. We thank
Jens Rademacher, Eric Siero and Koen Siteur for inspiration
and discussions that ultimately led to the development of the
current study. This study was financially supported by a joint
grant to A.D. and M.R. within the Mathematics of Planet
Earth program of the Netherlands Organization of Scientific
Research.

AUTHORSHIP

R.B., A.D.,, M.R. and M.B.E. designed research. R.B. and
A.D. performed research. R.B., A.D., M.R. and M.B.E. wrote
manuscript.

DATA ACCESSIBILITY STATEMENT

No new data were used.

REFERENCES

Alikakos, N., Bates, P.W. & Fusco, G., (1991). Slow motion for the
Cahn-Hilliard equation in one space dimension. Journal of Differential
Equations, 90, 81-135.

Barbier, N., Couteron, P., Lejoly, J., Deblauwe, V. & Lejeune, O. (2006).
Self-organized vegetation patterning as a fingerprint of climate and
human impact on semi-arid ecosystems. J. Ecol., 94, 537-547.

Barbier, N., Couteron, P. & Deblauwe, V. (2014). Case study of self-
organized vegetation patterning in dryland regions of central africa. In:
Patterns of Land Degradation in Drylands: Understanding Self-
Organised Ecogeomorphic Systems (eds Mueller, E.N., Wainwright, J.,
Parsons, A.J. & Turnbull, L.). Netherlands, Dordrecht: Springer, pp.
347-356.

Bastiaansen, R. & Doelman, A. (2019). The dynamics of disappearing
pulses in a singularly perturbed reaction-diffusion system with
parameters that vary in time and space. Physica D, 388, 45-72.

Bastiaansen, R., Chirilus-Bruckner, M. & Doelman, A. (2018a). Pulse
solutions for an extended klausmeier model with spatially varying
coefficients. arXiv preprint arXiv:1812.07804.

© 2020 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd



428 R. Bastiaansen et al.

Ideas and Perspectives

Bastiaansen, R., Jaibi, O., Deblauwe, V., Eppinga, M. B., Siteur, K.,
Siero, E. et al. (2018b). Multistability of model and real dryland
ecosystems through spatial self-organization. Proc. Natl Acad. Sci.
USA, 115, 11256-11261.

Bel, G., Hagberg, A. & Meron, E. (2012). Gradual regime shifts in
spatially extended ecosystems. Theor. Ecol., 5, 591-604.

Bellsky, T., Doelman, A., Kaper, T.J. & Promislow, K. (2013). Adiabatic
stability under semi-strong interactions: the weakly damped regime.
Indiana Univ. Math. J., 62, 1809-1859.

Bouvet, A., Mermoz, S., Le Toan, T., Villard, L., Mathieu, R., Naidoo,
L. & et al. (2018). An above-ground biomass map of African
savannahs and woodlands at 25 m resolution derived from ALOS
PALSAR. Remote Sens. Environ., 206, 156-173.

Brauman, K.A., Daily, G.C., Duarte, T.K. & Mooney, H.A. (2007). The
nature and value of ecosystem services: an overview highlighting
hydrologic services. Annu. Rev. Environ. Resour., 32, 67-98.

Chen, W. & Ward, M.J. (2009). Oscillatory instabilities and dynamics of
multi-spike patterns for the one-dimensional Gray-Scott model. Eur. J.
Appl. Math., 20, 187-214.

Couteron, P. (2001). Using spectral analysis to confront distributions of
individual species with an overall periodic pattern in semi-arid
vegetation. Plant Ecol., 156, 229-243.

Dakos, V., Kéfi, S., Rietkerk, M., van Nes, E. H. & Scheffer, M. (2011).
Slowing down in spatially patterned ecosystems at the brink of
collapse. Am. Nat., 177, E153-E166.

Dakos, V., Carpenter, S.R., Brock, W.A., Ellison, A.M., Guttal, V., Ives,
A.R. et al. (2012). Methods for detecting early warnings of critical
transitions in time series illustrated using simulated ecological data.
PLoS ONE, 7, ¢41010.

Deblauwe, V., Couteron, P., Lejeune, O., Bogaert, J. & Barbier, N.
(2011). Environmental modulation of self-organized periodic vegetation
patterns in Sudan. Ecography, 34, 990-1001.

Doelman, A. & Kaper, T.J. (2003). Semistrong pulse interactions in a
class of coupled reaction-diffusion equations. SIAM J. Appl. Dyn.
Syst., 2, 53-96.

Eppinga, M.B., Rietkerk, M., Belyea, L.R., Nilsson, M.B., De Ruiter,
P.C. & Wassen, M.J. (2010). Resource contrast in patterned peatlands
increases along a climatic gradient. Ecology, 91, 2344-2355.

Fiorillo, E., Maselli, F., Tarchiani, V. & Vignaroli, P. (2017). Analysis of
land degradation processes on a tiger bush plateau in South West
Niger using MODIS and LANDSAT TM/ETM + data. Int. J. Appl.
Earth Obs., 62, 56-68.

Gandhi, P., Werner, L., lams, S., Gowda, K. & Silber, M. (2018). A
topographic mechanism for arcing of dryland vegetation bands. J.
Royal Soc. Interface, 15, 20180508.

Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M. & Meron, E.
(2004). Ecosystem engineers: from pattern formation to habitat
creation. Phys. Rev. Lett., 93, 098105.

Gowda, K., Tams, S. & Silber, M. (2018). Signatures of human impact
on self-organized vegetation in the Horn of Africa. Sci. Rep., 8,
3622.

Haglund, E., Ndjeunga, J., Snook, L. & Pasternak, D. (2011). Dry land
tree management for improved household livelihoods: farmer managed
natural regeneration in Niger. J. Environ. Manage., 92, 1696-1705.

von Hardenberg, J., Meron, E., Shachak, M. & Zarmi, Y. (2001).
Diversity of vegetation patterns and desertification. Phys. Rev. Lett.,
87, 198101.

van Heijster, P., Doelman, A., Kaper, T. & Promislow, K. (2010). Front
interactions in a three-component system. SIAM J. App. Dynam. Syst.,
9, 292-332.

Hiernaux, P. & Gérard, B., (1999). The influence of vegetation pattern on
the productivity, diversity and stability of vegetation: The case of
brousse tigr'ee in the Sahel. Acta Oecologica, 20, 147-158.

Hodgson, D., McDonald, J.L. & Hosken, D.J. (2015). What do you
mean, ‘resilient’? Trends Ecol. Evol., 30, 503-506.

Holling, C.S. (1973). Resilience and stability of ecological systems. Annu.
Rev. Ecol. Syst., 4, 1-23.

Holling, C.S. (1996). Engineering resilience versus ecological resilience.
Engineering within Ecological Constraints, 31, 32.

Kéfi, S., Rietkerk, M. Alados, C. L., Pueyo, Y., Papanastasis, V. P.,
ElAich, A. et al. (2007). Spatial vegetation patterns and imminent
desertification in Mediterranean arid ecosystems. Nature, 449, 213-217.

Kéfi, S., Eppinga, M. B., de Ruiter, P. C. & Rietkerk, M. (2010).
Bistability and regular spatial patterns in arid ecosystems. Theor. Ecol.,
3, 257-269.

Kéfi, S., Rietkerk, M., Roy, M., Franc, A., de Ruiter, P. C. & Pascual,
M. (2011). Robust scaling in ecosystems and the meltdown of patch
size distributions before extinction. Ecol. Lett., 14, 29-35.

Kéfi, S., Guttal, V., Brock, W. A., Carpenter, S. R., Ellison, A. M.,
Livina, V. N. et al. (2014). Early warning signals of ecological
transitions: methods for spatial patterns. PLoS ONE, 9, €92097.

Klausmeier, C.A. (1999). Regular and irregular patterns in semiarid
vegetation. Science, 284, 1826—1828.

Kolokolnikov, T., Ward, M.J. & Wei, J. (2005). Pulse-splitting for some
reaction-diffusion systems in one-space dimension. Stud. Appl. Math.,
114, 115-165.

Koppel, J. & Crain, C. M. (2006). Scale-dependent inhibition drives
regular tussock spacing in a freshwater marsh. Am. Nat., 168, E136-
E147.

Larsen, L.G. & Harvey, J.W. (2010). How vegetation and sediment
transport feedbacks drive landscape change in the everglades and
wetlands worldwide. Am. Nat., 176, E66-E79.

Le Maitre, D.C., Milton, S.J., Jarmain, C., Colvin, C.A., Saayman, I. &
Vlok, J.H. (2007). Linking ecosystem services and water resources:
landscape-scale hydrology of the Little Karoo. Front. Ecol. Environ., S,
261-270.

Liu, Q.-X., Herman, P.M., Mooij, W.M., Huisman, J., Scheffer, M., OIff,
H. & et al. (2014). Pattern formation at multiple spatial scales drives
the resilience of mussel bed ecosystems. Nat. Commun., 5, 5234.

Macfadyen, W. (1950a). Vegetation patterns in the semi-desert plains of
British Somaliland. Geogr. J., 116, 199-211.

Macfadyen, W.A. (1950b). Soil and vegetation in British Somaliland.
Nature, 165, 121.

May, R.M. (1977). Thresholds and breakpoints in ecosystems with a
multiplicity of stable states. Nature, 269, 471-4717.

Millennium Ecosystem Assessment (2005). Ecosystems and human well-
being:  Desertification  synthesis. World  Resources Institute,
Washington, DC.

Noy-Meir, 1. (1975). Stability of grazing systems: an application of
predator-prey graphs. J. Ecol., 63, 459—481.

Paz-Kagan, T., Ohana-Levi, N., Shachak, M., Zaady, E. & Karnieli, A.
(2017). Ecosystem effects of integrating human-made runoff-harvesting
systems into natural dryland watersheds. J. Arid Environ., 147, 133-
143.

Penny, G.G., Daniels, K.E. & Thompson, S.E. (2013). Local properties of
patterned vegetation: quantifying endogenous and exogenous effects.
Philos. Trans. Royal Soc. A, 371, 20120359.

Promislow, K. (2002). A renormalization method for modulational
stability of quasi-steady patterns in dispersive systems. SIAM J. Math.
Anal., 33, 1455-1482.

Rietkerk, M. & Van de Koppel, J. (2008). Regular pattern formation in
real ecosystems. Trends Ecol. Evol., 23, 169—175.

Rietkerk, M., van den Bosch, F. & van de Koppel, J. (1997). Site-specific
properties and irreversible vegetation changes in semi-arid grazing
systems. Oikos, 80, 241-252.

Rietkerk, M., Boerlijst, M.C, van Langevelde, F., HilleRisLambers, R.,
van de Koppel, J., Kumar, L. (2002). Self-organization of vegetation in
arid ecosystems. Am. Nat., 160, 524-530.

Rietkerk, M., Dekker, S.C., de Ruiter, P.C. & van de Koppel, J. (2004).
Self-organized patchiness and catastrophic shifts in ecosystems. Science,
305, 1926-1929.

Rockstrom, J., Steffen, W., Noone, K., Persson, A, Chapin, F.S. LLI.L,,
Lambin, E. et al. (2009). Planetary boundaries: exploring the safe
operating space for humanity. Ecol. Soc., 14, 1-33.

© 2020 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd



Ideas and Perspectives

Resilience of spatially patterned ecosystems 429

Scheffer, M., Carpenter, S., Foley, J.A., Folke, C. & Walker, B. (2001).
Catastrophic shifts in ecosystems. Nature, 413, 591-596.

Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R.,
Dakos, V. et al. (2009). Early-warning signals for critical transitions.
Nature, 461, 53-59.

Scheffer, M., Carpenter, S.R., Lenton, T.M., Bascompte, J., Brock, W.,
Dakos, V. et al. (2012). Anticipating critical transitions. Science, 338,
344-348.

Sheffer, E., von Hardenberg, J., Yizhaq, H., Shachak, M. & Meron, E.
(2013). Emerged or imposed: a theory on the role of physical templates
and self-organisation for vegetation patchiness. Ecol. Lett., 16, 127-139.

Sherratt, J.A. (2013). History-dependent patterns of whole ecosystems.
Ecol. Complex., 14, 8-20.

Siero, E., Doelman, A., Eppinga, M., Rademacher, J.D., Rietkerk, M. &
Siteur, K. (2015). Striped pattern selection by advective reaction-
diffusion systems: Resilience of banded vegetation on slopes. Chaos, 25,
036411.

Siero, E., Siteur, K., Doelman, A., van de Koppel, J., Rietkerk, M. &
Eppinga, M. B. (2019). Grazing away the resilience of patterned
ecosystems. Am. Nat., 193, 472-480.

Sissoko, K., van Keulen, H., Verhagen, J., Tekken, V. & Battaglini, A.
(2011). Agriculture, livelihoods and climate change in the West African
Sahel. Reg. Environ. Change, 11, 119-125.

Siteur, K., Siero, E., Eppinga, M.B., Rademacher, J.D., Doelman, A. &
Rietkerk, M. (2014). Beyond Turing: The response of patterned
ecosystems to environmental change. Ecol. Complex., 20, 81-96.

Siteur, K., Eppinga, M.B., Doelman, A., Siero, E. & Rietkerk, M. (2016).
Ecosystems off track: rate-induced critical transitions in ecological
models. Oikos, 125, 1689-1699.

Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E, Fetzer, 1.,
Bennett, E.M. et al. (2015). Planetary boundaries: Guiding human
development on a changing planet. Science, 347, 1259855.

Suding, K.N., Gross, K.L. & Houseman, G.R. (2004). Alternative states
and positive feedbacks in restoration ecology. Trends Ecol. Evol., 19,
46-53.

Thiery, J., d’Herbes, J.-M. & Valentin, C. (1995). A model simulating
the genesis of banded vegetation patterns in niger. J. Ecol., 83, 497—
507.

Trichon, V., Hiernaux, P., Walcker, R. & Mougin, E. (2018). The
persistent decline of patterned woody vegetation: The tiger bush in the
context of the regional Sahel greening trend. Glob. Change Biol., 24,
2633-2648.

Turing, A.M. (1953). The chemical basis of morphogenesis. Bull. Math.
Biol., 237, 37-72.

Van Der Heide, T., Bouma, T.J., Van Nes, E.H., Van De Koppel, J.,
Scheffer, M., Roelofs, J.G. et al. (2010). Spatial self-organized
patterning in seagrasses along a depth gradient of an intertidal
ecosystem. Ecology, 91, 362-369.

Vetter, S. (2009). Drought, change and resilience in South Africa’s arid
and semi-arid rangelands. S. Afr. J. Sci., 105, 29-33.

Walker, B., Holling, C.S., Carpenter, S. & Kinzig, A. (2004). Resilience,
adaptability and transformability in social-ecological systems. Ecol.
Soc., 9, 5.

Willis, K.J., Jeffers, E.S. & Tovar, C. (2018). What makes a terrestrial
ecosystem resilient? Science, 359, 988-989.

Wu, X., Thurow, T. & Whisenant, S. (2000). Fragmentation and changes
in hydrologic function of tiger bush landscapes, south-west Niger. J.
Ecol., 88, 790-800.

Zelnik, Y.R. & Meron, E. (2018). Regime shifts by front dynamics. Ecol.
Indic., 94, 544-552.

Editor, Rampal Etienne

Manuscript received 4 July 2019

First decision made 12 August 2019
Second decision made 6 November 2019
Third decision made 25 November 2019
Fourth decision made NaN

Manuscript accepted 29 November 2019

© 2020 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd



