Published in final edited form as:

J Alcohol Drug Depend. 2015 December; 3(6): . doi:10.4172/2329-6488.1000e128.

Self-Administration of JWH-018 A Synthetic Cannabinoid in Experimentally Naïve Rats

Takato Hiranita*

Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), USA

Editorial

A recent study by Dr. Maria Antonietta De Luca demonstrated intravenous (IV) self-administration responding (nose-poking) for the synthetic cannabinoid JWH-018 [1-pentyl-3-(1-naphthoyl)indole] (Figure 1) in an experimentally naïve, adult rat species [1]. This finding is unexpected since the phytocannabinoid (–)-trans- 9-tetrahydrocannabinol (9-THC, Figure 1), a primary psychoactive constituent in marijuana, has been reported to not maintain IV self-administration responding above vehicle levels in rats [2,3] and rhesus monkeys [4-6]. IV self-administration of synthetic cannabinoids is not unprecedented since several synthetic cannabinoids have been found to maintain IV self-administration responding in experimentally naïve rats [1,7-10], and mice [11-14]. However, the finding by Dr. De Luca is important because JWH-018 has been frequently found in K2/Spice preparations [15-17] and there continues to be an increase in the abuse and non-medical use of various synthetic cannabinoids worldwide [15-17]. Further, the use of marijuana has been recently legalized in two states of the U.S.

The finding by Dr. De Luca is unexpected since response-dependent changes in visual stimuli were not presented at the time when the compound was self-injected. Self-administration of synthetic cannabinoids in most studies has been demonstrated in the presence of response-dependent changes in visual stimuli [3,7-9,11,12,14]. The Dr. De Luca's finding is important because the dopamine D2-like agonist, quinpirole, was not self-administered above vehicle levels in experimentally naïve rats even when a response-dependent injection-paired visual stimulus was presented [18,19]. Further, (-)-nicotine was not self-administered above vehicle levels in experimentally naïve rats in the absence of an injection-paired visual stimulus [20]. In addition, the rate of acquisition of self-administration reported by Dr. De Luca is also unexpected: 100% of fourteen rats assessed [1]. To put this in context, maximal self-administration acquisition rates of the synthetic cannabinoid WIN 55,212-2 using drug naïve, adult rats were reported to be 85.7 % (12 out of 14) at 0.0125 mg/kg/injection [7] or 60.0% (3 out of 5) at 0.01 mg/kg/injection [3]. Finally, the finding by Dr. De Luca stands in marked contrast to the reinforcing effects of

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

^{*}Corresponding author: Takato Hiranita, Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road Jefferson, AR 72079-9501, USA, takato.hiranita@fda.hhs.gov.

Hiranita Page 2

9-THC. Despite the demonstrated effectiveness of 9-THC as a positive reinforcer in experimentally naïve squirrel monkeys [21], 9-THC has been reported to fail to maintain IV self-administration responding above vehicle levels in rats [2,3] and rhesus monkeys [4-6]. Thus, it appears that JWH-018 is a more effective positive reinforcer in rats than 9-THC.

As mentioned above, the abuse of synthetic cannabinoids is increasing [15,16]. Despite the low effectiveness of the phytocannabinoid 9-THC as a positive reinforcer in a rat species [2,3], Dr. De Luca found a relatively high capacity of the synthetic cannabinoid JWH-018 to induce self-administration responding above vehicle levels in experimentally naïve rats [1]. Unexpectedly, Dr. De Luca also demonstrated self-administration of the endocannabinoid 2-arachidonoylglycerol in experimentally naïve rats [22]. These findings suggest that rats will be a useful model for the further assessment of the abuse potential of various synthetic cannabinoids.

Acknowledgments

The present work was supported by the Division of Neurotoxicology/NCTR/U.S. FDA. The information in the present article is not a formal dissemination of information by the FDA and does not represent agency position or policy. The author thanks Dr. Merle G. Paule for comments on the preparation of the manuscript.

References

- 1. De Luca MA, Bimpisidis Z, Melis M, Marti M, Caboni P, et al. Stimulation of in vivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology. 2015; 99:705–714. [PubMed: 26327678]
- 2. Cha HJ, Lee KW, Song MJ, Hyeon YJ, Hwang JY, et al. Dependence Potential of the Synthetic Cannabinoids JWH-073, JWH-08, and JWH-210: In Vivo and In Vitro Approaches. Biomol Ther (Seoul). 2014; 22:363–369. [PubMed: 25143817]
- 3. Lefever TW, Marusich JA, Antonazzo KR, Wiley JL. Evaluation of WIN 55,212-2 self-administration in rats as a potential cannabinoid abuse liability model. Pharmacol Biochem Behav. 2014; 118:30–35. [PubMed: 24412835]
- Mansbach RS, Nicholson KL, Martin BR, Balster RL, et al. Failure of Delta(9)tetrahydrocannabinol and CP 55,940 to maintain intravenous self-administration under a fixedinterval schedule in rhesus monkeys. Behav Pharmacol. 1994; 5:219–225. [PubMed: 11224271]
- Harris RT, Waters W, McLendon D. Evaluation of reinforcing capability of delta-9tetrahydrocannabinol in rhesus monkeys. Psychopharmacologia. 1974; 37:23–29. [PubMed: 4413316]
- Carney JM, Uwaydah IM, Balster RL. Evaluation of a suspension system for intravenous selfadministration studies of water-insoluble compounds in the rhesus monkey. Pharmacol Biochem Behav. 1977; 7:357–64. [PubMed: 928494]
- Fattore L, Cossu G, Martellotta CM, Fratta W. Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats. Psychopharmacology (Berl). 2001; 156:410–416.
 [PubMed: 11498718]
- 8. Spano MS, Fattore L, Cossu G, Deiana S, Fadda P, et al. CB1 receptor agonist and heroin, but not cocaine, reinstate cannabinoid-seeking behaviour in the rat. Br J Pharmacol. 2004; 143:343–350. [PubMed: 15339858]
- 9. Flores A, Maldonado R, Berrendero F. The hypocretin/orexin receptor-1 as a novel target to modulate cannabinoid reward. Biol Psychiatry. 2014; 75:499–507. [PubMed: 23896204]
- Lecca D, Cacciapaglia F, Valentini V, Di Chiara G. Monitoring extracellular dopamine in the rat nucleus accumbens shell and core during acquisition and maintenance of intravenous WIN 55,212-2 self-administration. Psychopharmacology. 2006; 188:63–74. [PubMed: 16850116]

Hiranita Page 3

 Navarro M, Carrera MR, Fratta W, Valverde O, Cossu G, et al. Functional interaction between opioid and cannabinoid receptors in drug self-administration. J Neurosci. 2001; 21:5344–5350. [PubMed: 11438610]

- Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science. 1999; 283:401–404. [PubMed: 9888857]
- Mendizabal V, Zimmer A, Maldonado R. Involvement of kappa/dynorphin system in WIN 55,212-2 self-administration in mice. Neuropsychopharmacology. 2006; 31:1957–1966. [PubMed: 16292318]
- Martellotta MC, Cossu G, Fattore L, Gessa GL, Fratta W. Self-administration of the cannabinoid receptor agonist WIN 55,212-2 in drug-naive mice. Neuroscience. 1998; 85:327–330. [PubMed: 9622233]
- Seely KA, Lapoint J, Moran JH, Fattore L. Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 39(2):234–43. [PubMed: 22561602]
- 16. Papanti D. "Spiceophrenia": a systematic overview of "spice"-related psychopathological issues and a case report. Hum Psychopharmacol. 2013; 28:379–389. [PubMed: 23881886]
- 17. Baumann MH, Solis E Jr, Watterson LR, Marusich JA, Fantegrossi WE, et al. Baths salts, spice, and related designer drugs: the science behind the headlines. J Neurosci. 2014; 34:15150–15158. [PubMed: 25392483]
- 18. Collins GT, Woods JH. Drug and reinforcement history as determinants of the response-maintaining effects of quinpirole in the rat. J Pharmacol Exp Ther. 2007; 323:599–605. [PubMed: 17675585]
- 19. Collins GT, Woods JH. Influence of conditioned reinforcement on the response-maintaining effects of quinpirole in rats. Behav Pharmacol. 2009; 20:492–504. [PubMed: 19696656]
- 20. Palmatier MI, Evans-Martin FF, Hoffman A, Caggiula AR, Chaudhri N, et al. Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology (Berl). 2006; 184:391–400. [PubMed: 16249908]
- 21. Justinova Z, Panlilio LV, Moreno-Sanz G, Redhi GH, Auber A, et al. Effects of Fatty Acid Amide Hydrolase (FAAH) Inhibitors in Non-Human Primate Models of Nicotine Reward and Relapse. Neuropsychopharmacology. 2015; 40:2185–2197. [PubMed: 25754762]
- 22. De Luca MA, Valentini V, Bimpisidis Z, Cacciapaglia F, Caboni P, et al. Endocannabinoid 2-Arachidonoylglycerol Self-Administration by Sprague-Dawley Rats and Stimulation of in vivo Dopamine Transmission in the Nucleus Accumbens Shell. Front Psychiatry. 2014; 5:140. [PubMed: 25368584]

Hiranita Page 4

Figure 1.Chemical structures of JWH-018 [1-pentyl-3-(1-naphthoyl)indole] and 9-THC [(-)-trans-9-tetrahydrocannabinol].