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Introduction

According to GLOBOCAN estimates, approximately 14.1 million 
new cancer cases and 8.2 million deaths occurred in 2012 worldwide1. 
Transforming growth factor-β (TGF-β) plays an important role in 
epithelial and neural tissue development, immune system regulation, 
and wound repair2. TGF-β also participates in cancer development 
and progression. 

TGF-β can suppress tumorigenesis by inhibiting cell cycle 
progression and inducing apoptosis. Specific mechanisms 
that mediate the cytostatic effect of TGF-β have been mainly 
investigated in epithelial cell types. TGF-β inhibits the 
progression of G1 phase via two events shared by skin, lung, and 
mammary epithelial cells: (I) mobilization of cyclin-dependent 
kinase (CDK) inhibitors; and (II) suppression of proto-
oncogene c-MYC and ID proteins. Furthermore, the ability of 
TGF-β to induce apoptosis varies greatly depending on cell type. 
However, our knowledge of this area remains limited.

Malignant cells can evade suppressive effects of TGF-β and use 
TGF-β regulatory functions to their advantage. Thus, these cells 
acquire invasive and metastatic capabilities via angiopoiesis, immune 
surveillance suppression, epithelial-to-mesenchymal transition 
(EMT) promotion, and extracellular matrix (ECM) degradation. 

TGF-β expression is correlated with poor tissue differentiation, 
advanced TNM stages, short overall survival, and locally 
advanced or distant metastasis in various malignancies. However, 
controversial findings should be considered. TGF-β inhibition 
can elicit anti-tumor effect, especially when this mechanism is 
combined with radiotherapy; TGF-β levels increase. Preliminary 
clinical trials have been performed to evaluate the feasibility 
of TGF-β inhibitors as anti-tumor modalities. This review 
summarizes recent advances in this area and discusses potentially 
relevant mechanisms. Figure 1 shows a schematic of the role of 
TGF-β in malignancy development.

TGF-β pathway

The TGF-β superfamily includes TGF-β ligands (TGF-β1, -2,  
and -3), bone morphogenic proteins (BMPs), and activins/
inhibins. TGF-β factors are synthesized as dimeric prohormones 
and secreted into ECM. Canonical TGF-β/Smad signaling 
cascade is initiated when a TGF-β/BMP ligand binds to type 
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II serine/threonine kinase receptors; type II serine/threonine 
kinase receptors in turn recruit and phosphorylate type I 
receptors3. Phosphorylated type I receptors then propagate 
a signal by phosphorylating RSmad, which forms a complex 
with Smad4. TGF-β ligands transmit the signal through Smad2 
and Smad3, whereas BMPs employ Smad1, Smad5, and 
Smad84,5. Activated Smad complexes are transported into the 
nucleus, where these complexes, together with co-activators or  
co-repressors, regulate target gene transcription2. In non-canonical 
TGF-β signaling, ligand-bound TGF-β receptors activate other 
signaling pathways, such as p38 and Jun N-terminal kinase 
( JNK) mitogen-activated protein kinase (MAPK) pathways, 
phosphoinositide 3-kinase-Akt-mTOR pathway, small GTPase 
RhoA and Rac/Cdc42 pathways, and Ras-Erk pathway; the 
activation of these pathways likely enhances tumor growth after 
canonical TGF-β-Smad signaling is disrupted6,7.

Tumor-suppressive effect of TGF-β

Cytostatic mechanisms

Cell division cycle proceeds by the action of CDKs. TGF-β 
action inhibits CDKs, which stimulate the G1 phase of the 

cell cycle. In epithelial cells, TGF-β induces the expression of 
p15Ink4b, which inhibits cyclinD-CDK4/6 complexes; TGF-β 
also causes the expression of p21Cip1, which inhibits cyclinE/
A-CDK2 complexes8,9. In addition, TGF-β/Smad signaling 
stimulates p15Ink4b expression, thereby promoting the release of 
inactive p27Kip1 from cyclin D-CDK4 complexes to allow the  
p27Kip1-dependent inhibition of cyclin E/A-CDK2 complexes10. 
TGF-β also induces p16ink4a and p19ARF expression; this 
induction contributes to growth arrest and senescence response11. 
Furthermore, TGF-β reduces CDK activity; as a result, cyclin/CDK 
complex-induced phosphorylation of the tumor suppressor Rb 
protein is prevented. Thus, hypophosphorylated Rb can bind to 
transcription factors in the E2F family and impede the ability of 
these factors to promote G1/S phase cell cycle progression12. 

Another important event in the TGF-β anti-proliferative 
program is the inhibition of c-MYC expression. c-MYC 
can bind to an initiator element of p15Ink4b promoter; as a 
consequence, p15Ink4b expression is inhibited13. mRNA and 
protein levels of c-MYC rapidly decrease in response to TGF-β 
because the corresponding mRNA and protein are short- 
lived; thus, c-MYC-mediated p15Ink4b repression is relieved14. 
Comparing the genome-wide profile of TGF-β gene responses in  
non-tumorigenic and tumor-derived human mammary cells, 

Figure 1 A schematic illustrating role of TGF-β in tumor suppression, initiation, invasion, and metastasis.
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Chen et al.15 noted that the loss of TGF-β growth inhibitory 
effect in tumor-derived human mammary cells occurs with a 
selective loss of the corresponding c-MYC down-regulation.

TGF-β can inhibit ID1 and ID2 expression, in addition 
to  c-M YC  dow n-reg u lat ion.  I D p rote ins  f u nct ion as 
negative regulators implicated in cell differentiation. In ID1  
down-regulation, TGF-β stimulation rapidly induces the 
expression of activating transcription factor-3 (ATF3) in HaCaT 
skin keratinocytes, HPL1 lung epithelial cells, and MCF-10A 
mammary epithelial cells via a Smad3-containing transcriptional 
complex. ATF3 then coordinates with Smad3 and Smad4 to 
target ID1 and repress transcription16. A link between c-MYC 
and ID2 expression has been established by showing that the 
binding of c-MYC to E-box motifs in ID2 promoter supports 
ID2 expression. Thus, TGF-β-induced c-MYC down-regulation 
may also inhibit ID2 in specific cell types17.

Pro-apoptotic mechanisms

p38 MAPK activator DAXX is considered as a mediator of 
TGF-β apoptotic signals because this molecule physically 
interacts with TGF-β receptor and requires TGF-β-induced 
apoptosis. The carboxyl terminal of DAXX functions as a 
dominant negative inhibitor of TGF-β-induced apoptosis in B 
cell lymphomas; antisense oligonucleotides against DAXX also 
inhibit TGF-β-induced apoptosis in mouse hepatocytes18. The 
expression of the death-associated protein kinase (DAP-kinase) 
is increased during TGF-β-induced apoptosis in hepatoma cells. 
Overexpression of DAP-kinase triggers apoptosis in the absence 
of TGF-β, whereas inhibition of DAP-kinase activity protects 
cells from TGF-β-induced apoptosis. And this process relies on 
Smad function and sensitizes cells to undergo TGF-β/Smad 
apoptosis19. Apoptosis-related protein in the TGF-β signaling 
(ARTS) pathway is an unusual mitochondrial septin-like protein 
that functions as a tumor suppressor. In an embryonic kidney 
cell line, ARTS potentiates apoptosis in cells normally resistant 
to TGF-β-induced cell death; by contrast, reduced ARTS 
expression impairs TGF-β-induced apoptosis20.

Tumorigenic effects of TGF-β on 
premalignant cells

TGF-β receptor mutation

The loss of canonical TGF-β/Smad signaling pathway initiates 
tumors; this phenomenon occurs because some tumor cells may 
escape the inhibitory effects of the canonical pathway through 
mutations that can provide a growth advantage over benign 

tumors21. TGF-β receptors (TGF-β R-I and TGF-β R-II) are 
required for the proper transduction of TGF-β signaling pathway. 
Tumor cells may reduce the expression or function of either 
TGF-β R-I or TGF-β R-II to escape growth-inhibiting effects of 
TGF-β canonical pathway. This TGF-β receptor-induced loss of 
sensitivity to TGF-β canonical pathway can cause compensatory 
TGF-β overexpression; as a result, aggressive effects are 
elicited22. The loss of TGF-β R-II on myeloma cell surface can 
also be attributed to gene silencing through hypermethylation; 
this loss can promote myeloma cell resistance to anti-cancer 
effects23. TGF-β R-II mutations have also been described in 
association with microsatellite instable (MSI+) carcinomas. In MSI+ 
cells, DNA base mismatch repair is compromised; thus, errors in a  
10 bp poly-adenine repeat segment from the coding region [Poly(A) 
10 tract] of TGF-β R-II are frequently observed. These mutations 
often lead to frame-shift missense mutations or early termination 
that prevents proper translation of a functional TGF-β R-II protein24.

Disruption of downstream canonical signaling 
pathway 

In addition to the crucial role of the canonical signaling 
pathway in RSmad (Smad2/Smad3) phosphorylation, the 
role of the activation of the non-canonical pathway by TGF-β 
receptors likely create phospho-specific Smad2/Smad3.  
Non-canonical phosphorylation of the RSmads (Smad2/Smad3) 
via non-canonical pathways, such as MAPK pathway, can inhibit 
canonical phosphorylation induced by TGF-β receptor complex 
and disrupt anti-cancer effects of the canonical pathway25. 
Smad2/Smad3 phosphor ylation via the MAPK pathway 
is possibly implicated in the transformation of oncogenic 
pSmad2/3L into tumor suppressor pSmad2/3C26. Frequent 
Smad4 gene mutation is associated with poorer prognosis  
of colorectal adenocarcinoma27, pancreatic cancer28, and papillary 
thyroid carcinoma progression29. With canonical TGF-β/
Smad signaling, Smad7 uses a negative feedback mechanism  
to disrupt Smad2/3 phosphorylation through the competitive 
inhibition of TGF-β receptor complex; Smad7 also disrupts 
Smad2/3/4 complex formation and nuclear translocation 
by recruiting ubiquitin ligases that induce proteasomal 
degradation30.

Promotive effect of TGF-β on tumor 
invasion and metastasis

Genetic mutations and downstream alterations in TGF-β/Smad 
signaling components often inactivate growth inhibitory activities 
of TGF-β; thus, TGF-β can contribute to cancer progression31,32. 
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Related mechanisms include angiogenesis promotion, anti-tumor 
immunity suppression, and EMT induction.

Angiopoiesis

New blood vessel  formation in tumor t i ssues (tumor 
angiogenesis) is necessary to promote tumor cell growth and 
metastasis. The role of TGF-β in the angiogenesis of cancer 
cells is highly complex; this function involves the interaction of 
vascular endothelial growth factor (VEGF) and endothelin. 

Soufla et al.33 demonstrated that VEGF and TGF-β are 
involved in endometrial carcinogenesis through transcription 
activation and down-regulation, respectively; Soufla et al.33 also 
suggested the potential use of VEGF and TGF-β as molecular 
indicators of disease progression. Tumor-derived VEGF-A 
triggers enhanced tumor cell proliferation possibly through the 
paracrine inhibition of TGF-β signaling within a tumor34. 

Endoglin is a transmembrane glycoprotein involved in several 
processes and disorders associated with human circulatory 
system35. Endoglin acts as a type I transmembrane protein 
that functions as a co-receptor of TGF-β to modulate signaling 
by binding to TGF-β receptors and impairing downstream 
signaling activity36. TGF-β expression is also associated with 
tumor progression, as in the case of endoglin. TGF-β predicts 
poorer survival in endoglin-enriched tumors; this phenomenon 
indicates that TGF-β enhances disease progression in later 
stages of angiogenesis36,37. Previous studies with experimental 
models showed that highly expressed endoglin antagonizes the 
inhibitory effects of TGF-β and contributes to proliferation, 
migration, and capillary formation of endothelial cells, which 
are the three key events in angiogenesis. TGF-β also plays an 
important role in angiogenesis by promoting endothelial cell 
proliferation and migration at low concentrations and by causing 
vessel maturation at high concentrations38.

Immune system suppression

TGF-β-induced immunosuppression occurs when tumor 
cells escape attack by the immune system through various 
mechanisms, including interaction with CD4+CD25+Foxp3+ 
regulatory T cells (Treg cells), tumor-associated macrophages, 
tumor-associated neutrophils (TAN), and T helper 17 (TH17). 

CD8+CTLs (cytotoxic T lymphocytes) are necessary to 
control tumor progression. Treg cells are a specialized T cell 
subpopulation, which suppresses immune system activation39. 
In various tumor ty pes, natural and adaptive Treg cel l 
concentrations are increased in tumor sites and contribute 
to tumor-induced immunosuppression by suppressing CTL 

proliferation and function40. In vitro experiments have revealed 
that the TGF-β secreted by a renal carcinoma cell line and 
a prostate cancer cell line can induce the transformation of 
CD4+CD25− T cells in mouse spleen into Treg cells41. The extent 
of Treg cell infiltration is higher in high-TGF-β-expression 
group than in low-TGF-β-expression group; this result indicates 
that TGF-β expression in tumor tissues can increase Treg cell 
infiltration in a local tumor; thus, tumor cells evade immune 
responses42. Lu et al.43 showed that gastric cancer-induced 
infiltration of Treg cells predicts the poor prognosis of patients 
with gastric adenocarcinoma; some of these Treg cells are 
converted by tumor-produced TGF-β. 

Macrophages are also important immune cells in peripheral 
blood. Macrophages are necessary to prevent metastasis of cancer 
cells. Classically activated M1 macrophages can phagocytose 
tumor cells. Therefore, these macrophages are involved in 
immune function against infection and tumor cell invasion. 
M1 macrophages also play a critical role in cellular immunity 
against cancer. Alternatively activated M2 macrophages perform 
a distinct function from M1 macrophages. M2 macrophages 
can facilitate tumor cell proliferation, angiogenesis, and tissue 
remodeling. These effects are mainly achieved through TGF-β 
secretion44. Other mechanisms, such as TAN and Th17 pathways, 
associated with the anti-tumor immune effect of the TGF-β 
pathway have been reported45,46. 

TGF-β pathway and EMT

Tumor invasion and metastasis are initiated by decreased  
cell-to-cell adhesion, increased motility, and invasive properties 
that allow carcinoma cells to detach from primary tumor and 
invade surrounding tissues through collective or individual cell 
migration. TGF-β functions as a potent stimulator of cancer 
progression by inducing EMT; in this process, epithelial cells 
acquire a mesenchymal phenotype and exhibit enhanced 
motility and invasion47. Cells undergoing EMT down-regulate 
the expression of E-cadherin epithelial marker and increase 
the expression of N-cadherin, a mesenchymal marker48. Cells 
can respond to TGF-β through growth inhibition and EMT. 
Pino et al.49 reported that TGF-β induces EMT in colon cancer 
cell lines with a wild-type TGF-β R-II. However, no changes 
in cell morphological characteristics, differentiation marker 
expression, motility, and invasion have been observed in 
cells with homozygous TGF-β R-II mutations. This finding 
reveals that growth inhibition and EMT may share canonical  
TGF-β/Smad pathway as a common signaling pathway.

TGF-β levels are positively associated with tumor resistance 
to radiotherapy or chemotherapy; this positive association 
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may attribute to treatment-initiated EMT of tumor cells. Zhao 
et al.50 observed that increased TGF-β levels during radiation 
therapy are strongly correlated with poor prognosis among 
patients with non-small cell lung cancer. In addition, poor 
prognosis of glioblastoma (GBM) routinely treated with ionizing 
radiation has been attributed to the relative radioresistance 
of glioma-initiating cells (GICs). GICs are sensitive to 
treatment, but response is mediated by undefined factors in 
a microenvironment. GIC resistance to radiation, which is 
mediated by a tumor microenvironment, can be abolished by 
inhibiting TGF-β/Smad signaling pathway51. Tas et al.52 showed 
that patients with chemotherapy-unresponsive epithelial ovarian 
cancer present higher serum TGF-β levels than responsive 
patients (P=0.02). These studies support the current hypothesis 
that a subtle relationship exists among TGF-β, EMT phenotype, 
and therapy resistance. TGF-β may be a new molecular subtype 
that can cause resistance to therapy.

ECM degradation

Tumor ECM degradation is a critical step in tumor invasion and 
metastasis. TGF-β plays an important role in ECM degradation. 
ECM is mainly degraded by proteolytic enzymes, such as matrix 
metalloproteinases (MMPs). MMPs are a group of proteolytic 
enzymes that can degrade tumor ECM and are up-regulated in 
several tumor tissues. Yang et al.53 found that TGF-β expression 
levels exhibit a significantly positive correlation with MMP2 
expression in renal clear cell carcinoma. A similar finding has 
been observed in melanoma54. TGF-β is also significantly 
correlated with MMP9 expression; MMP9 can facilitate tumor 
cell infiltration in lymphatic or blood systems by degrading 
basement membrane components55. This effect is another 
mechanism in the tumor-promoting effect of TGF-β. 

Clinical significance of TGF-β

TGF-β plays an important role in cancer development and 
progression. TGF-β expression may predict the prognosis 
of patients with malignancy. Studies have investigated the 
prognostic role of TGF-β protein/mRNA expression in cancer. 
Some of the related studies are summarized in Table 1. These 
studies have indicated that a high TGF-β expression may 
predict poor prognosis, including poor tissue differentiation, 
advanced TNM stage, short overall survival, and locally 
advanced or distant metastasis. However, other studies have 

revealed controversial findings. Discrepancies may be attributed 
to several factors, such as differentiation status of analyzed 
tumors and disease stage. TGF-β pathway regulation occurring 
post-transcription may differ among samples. Discrepancies 
may also be caused by different methods used to detect TGF-β 
expression.

Opportunities and challenges in 
therapeutically targeting TGF-β 

Targeting TGF-β may elicit a significant anti-tumor effect 
because TGF-β is implicated in cancer development and 
progression. TGF-β inhibitors have been preclinically evaluated; 
some of these inhibitors are in early stage clinical studies. 
Preliminary studies are summarized in Table 2. TGF-β inhibition 
among cancer patients has also been evaluated through clinical 
trials by using an antibody (GC1008) or an oligonucleotide 
(AP12009). These trials suggest that TGF-β inhibition exhibits 
promising efficacy and safety. However, large clinical trials 
should be conducted to clarify the feasibility and safety of 
treatments. Other challenges related to this approach include 
targeting a tumor microenvironment by using TGF-β inhibitors 
without affecting TGF-β function in hosts to maintain systemic 
homeostatic processes.

Conclusion

TGF-β functions as a trigger of a canonical suppression 
pathway, inducer of tumor angiogenesis, tumor-derived 
immunosuppressor, promoter of carcinoma invasion and 
metastasis, and influencing factor of chemotherapy and 
radiotherapy; thus, the dual role of TGF-β has been extensively 
investigated. TGF-β levels determined during diagnosis and 
treatment may also be a reliable marker; this method may be 
used to predict the prognosis of patients with cancer. High 
TGF-β1 levels are also associated with poor tissue differentiation, 
advanced TNM stage, and decreased overall survival. TGF-β 
inhibitors, especially those used in late cancer stage, may 
elicit anti-tumor effects via novel mechanisms, such as tumor 
angiogenesis suppression, immune system promotion, and EMT 
reversal. However, the optimal timing of TGF-β blockade and 
the ideal combination of this approach with other therapies, 
such as radiotherapy and chemotherapy, remain unknown. These 
questions are currently addressed in ongoing preclinical studies 
and will be resolved in future clinical trials.
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Table 1 Relevance analysis between TGF-β expression and prognosis

Author (Year) Tumor type
Patient 
number

Sample type Detection method Relevance with higher expression

Robson et al.56  
(1996)

Colorectal 
adenocarcinoma

72 Biopsy specimen/
protein

IHC Shorter overall survival

Saito et al.57 (1999) Gastric carcinoma 101 Biopsy specimen/
protein

IHC Poorer pathological pattern/higher 
expression of VEGF/higher MVD

Boldrini et al.58  
(2000)

Non-small cell lung 
carcinoma

61 Biopsy specimen/
mRNA

PCR Longer overall survival

Hasegawa et al.59 
(2001)

Non-small cell lung 
carcinoma

53 Biopsy specimen/
protein

ELISA More advanced T or N stage/higher MVD/
shorter overall survival

Hashimoto et al.60 
(2001)

Invasive ductal carcinoma 
of the pancreas

62 Biopsy specimen/
protein

IHC Shorter overall survival

Logullo et al.61  
(2003)

Head and neck squamous 
cell carcinoma

140 Biopsy specimen/
protein

IHC Non-statistically significant survival rates 
in 5 years

Fukuchi et al.62  
(2004)

Esophageal Cancer 57 Blood/protein ELISA More advanced N stage/shorter overall 
survival

Okumoto et al.63 
(2004)

Hepatocellular carcinoma 70 Blood/protein ELISA Lower natural killer and lymphokine-activated
killer cells

von Rahden et al.64 
(2006)

Esophageal cancer 123 Biopsy specimen/
mRNA

PCR Poorer pathological pattern/more 
advanced T or N stage

Zhao et al.50 (2010) Non-small cell lung 
carcinoma

65 Blood/protein ELISA Shorter overall survival and  
progression-free survival

Reis et al.65 (2011) Prostate cancer 100 Biopsy specimen/
mRNA

PCR Gleason score

Valkov et al.66 (2011) Soft tissue sarcoma 249 Biopsy specimen/
protein

IHC Shorter disease-specific survival

Dave et al.67 (2012) Breast cancer 117 Blood/protein ELISA More advanced clinical stage/shorter 
overall survival

Fan et al.68 (2012) Cervical squamous cell 
carcinoma

91 Biopsy specimen/
protein

IHC Deeper infiltration/worse pathological 
pattern/more advanced N stage

Divella et al.69 (2013) Breast cancer 61 Blood/protein ELISA Higher rate of distant metastasis

Javle et al.70 (2014) Pancreatic ductal 
adenocarcinoma

644 Blood/protein 96-well multi-array 
human TGF-β assay kit

Shorter survival in patients with locally 
advance or distant metastasis

Table 2 Summary of TGF-β inhibitors as novel therapeutic targets

Drug Mechanism of action Development stage Malignancy type Referenced summary of results

AP12009 Antisense oligodeoxynucleotide specific 
for the mRNA of human TGF-β2

Phase I/II Glioblastoma/anaplastic 
astrocytoma

Superior efficacy and safety for 
AP12009 over chemotherapy and 
positive risk-benefit assessment71

CAT192 
(lerdelimumab)

Monoclonal antibody to TGF-β1 Preclinical Human lung epithelial cells 
(A549)

An approximate median inhibitory 
concentration (IC50) value of 3 mg/mL72

GC1008 Monoclonal antibody to TGF-β1 Phase I Advanced renal cell carcinoma 
or malignant melanoma

Safe and well tolerated73

AP11014 Antisense oligodeoxynucleotide specific 
for the mRNA of human TGF-β1

Preclinical Lung, colon, and prostate 
cancer cell lines

Decreased TGF-β secretion73

ID11 Monoclonal antibody to TGF-β Preclinical Breast cancer cell lines Suppressed breast cancer 
metastases to lungs74
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