
fnana-15-764458 September 28, 2021 Time: 16:7 # 1

MINI REVIEW
published: 04 October 2021

doi: 10.3389/fnana.2021.764458

Edited by:
Sei Saitoh,

Fujita Health University, Japan

Reviewed by:
Toshitaka Oohashi,

Okayama University, Japan
Hiroshi Kitagawa,

Kobe Pharmaceutical University,
Japan

Yuki Hirota,
Keio University, Japan

*Correspondence:
Eri Arikawa-Hirasawa

ehirasaw@juntendo.ac.jp

Received: 25 August 2021
Accepted: 14 September 2021

Published: 04 October 2021

Citation:
Kerever A and

Arikawa-Hirasawa E (2021) Optimal
Extracellular Matrix Niches

for Neurogenesis: Identifying
Glycosaminoglycan Chain

Composition in the Subventricular
Neurogenic Zone.

Front. Neuroanat. 15:764458.
doi: 10.3389/fnana.2021.764458

Optimal Extracellular Matrix Niches
for Neurogenesis: Identifying
Glycosaminoglycan Chain
Composition in the Subventricular
Neurogenic Zone
Aurelien Kerever1 and Eri Arikawa-Hirasawa1,2*

1 Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan, 2 Department
of Neurology, Juntendo University School of Medicine, Tokyo, Japan

In the adult mammalian brain, new neurons are generated in a restricted region called
the neurogenic niche, which refers to the specific regulatory microenvironment of neural
stem cells (NSCs). Among the constituents of neurogenic niches, the extracellular
matrix (ECM) has emerged as a key player in NSC maintenance, proliferation,
and differentiation. In particular, heparan sulfate (HS) proteoglycans are capable of
regulating various growth factor signaling pathways that influence neurogenesis. In
this review, we summarize our current understanding of the ECM niche in the adult
subventricular zone (SVZ), with a special focus on basement membrane (BM)-like
structures called fractones, and discuss how fractones, particularly their composition
of glycosaminoglycans (GAGs), may influence neurogenesis.

Keywords: fractone, heparan sulfate chains, neurogenesis, subventricular zones, extracellular matrix, growth
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INTRODUCTION

In the adult mouse brain, neurogenesis occurs continuously in the subventricular zone (SVZ) of the
lateral ventricle (Altman, 1963; Doetsch et al., 1997) and the subgranular zone of the hippocampal
dentate gyrus (Seki and Arai, 1993; Eriksson et al., 1998). In the adult SVZ, type B stem cells give
rise to type C transit-amplifying cells, which, in turn, produce type A neuroblasts (Doetsch, 2003).
These neuroblasts migrate toward the olfactory bulb along the rostral migratory stream, where they
mature into GABAergic interneurons (Lois and Alvarez-Buylla, 1994; Alvarez-Buylla et al., 2002;
Kriegstein and Alvarez-Buylla, 2009). The complex microenvironment that supports this series of
events is commonly referred to as the neurogenic niche. This niche consists of various cell types
that surround neural stem cells (NSCs), such as neural stem and progenitor cells, ependymocytes,
mature and immature neurons, and astrocytes, as well as the vasculature. The extracellular
matrix (ECM) is another critical component of this niche. Notably, NSCs have been shown to
contact the basement membrane (BM) of the vasculature at sites lacking astrocyte endfeet and
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pericyte coverage (Tavazoie et al., 2008). In addition, vascular
BM NSCs also contact a local ECM structure called fractones
(Figures 1A,B).

FRACTONE: EXTRACELLULAR MATRIX
NICHE IN THE SUBVENTRICULAR ZONE

Fractones are extravascular ECM structures that are localized
along the ventricular wall. These structures were initially
observed through laminin immunostaining as small punctate
structures of 2–5 µm, located behind the ependyma (arrow,
Figures 1A–C). However, transmission electron microscopy
revealed that fractones are electron-dense structures with
branched morphology that allow them to contact numerous
surrounding cells, including ependymocytes, astrocytes, NSC,
and progenitor cells (Mercier et al., 2002, 2003). The ependymal
wall contains interstitial clefts that allow the diffusion of
signaling molecules from the cerebrospinal fluid (Brightman,
2002). Fractones are located at the end of these narrow
channels and are ideally placed to receive growth factors and
cytokines produced by the choroid plexus (Kerever et al., 2007;
Mercier, 2016). Fractones first appear around postnatal day 5
and are composed of a ubiquitous BM component (Kerever
et al., 2007; Nascimento et al., 2018; Sato et al., 2019). The
presence of fractones rich in BM protein may participate in
increasing the tissue stiffness of the neurogenic niche (Kjell
et al., 2020). Recent studies have proposed ependymocytes
(Nascimento et al., 2018) and GFAP-expressing cells (Sato et al.,
2019) as cells that produce fractones. This suggests that the
formation of fractones results from the contribution of various
cells in the niche.

While fractone protein composition closely resembles
that of the vascular BM, the fractone heparan sulfate
(HS) composition is unique. HS chains belong to the
Glycosaminoglycans (GAGs) family. GAGs are long,
unbranched, hydrophilic, highly charged chains composed
of repeating disaccharide units that can be classified into
four groups based on their core disaccharide structure:
keratan, hyaluronan, chondroitin sulfate/dermatan sulfate,
and HS. Only HS chains can be found in vascular BM and
fractones. N-sulfated HS chains recognized by 10E4 epitope
immunoreactivity suggests that fractones HS present higher
levels of sulfation than HS from the vascular BM (Figure 1C;
Kerever et al., 2007).

Fractones are composed of ubiquitous BM components.
Collagen type IV, the most abundant component of the
BM, forms a network-like structure and is linked to a
network of laminins with the help of nidogen/entactin
(Pozzi et al., 2017). In addition, fractones contain two
major types of heparan sulfate proteoglycans (HSPGs),
perlecan and agrin (Figure 1D). The other main member
of the BM type of HSPG, collagen XVIII, remains
undetected in either fractones or vascular BM in the SVZ
(Kerever et al., 2007).

Fractones may play various roles in the neurogenic niche
through laminin-integrin interactions (Shen et al., 2008;

Nascimento et al., 2018; Sato et al., 2019) by regulating heparin-
binding ligand availability (Kerever et al., 2007) in the niche and
promoting growth factor signaling (Douet et al., 2012; Kerever
et al., 2014; Mercier and Douet, 2014). NSC interaction with
laminin through α 6 β 1 integrin expressed on its cell surface
is essential to maintain NSC quiescence (Shen et al., 2008).
Laminins are heterotrimeric glycoproteins composed of 1 α,
1 β, and 1 γ chains. The β and γ chains coil around the α

chain to form a cross-like structure with three short and one
long arms. Short arms are responsible for self-polymerization
and interactions with other BM molecules (Hohenester and
Yurchenco, 2013). The longer arm most notably interacts
with integrin and dystroglycan on the cell surface, leading
to cytoskeleton rearrangement and impacting cell behavior.
Various laminin isoforms can be found in fractones and the
vascular BM in the neurogenic niche. While laminin α1 and
γ2 are absent from both fractones and the vascular BM,
laminin α5, β1/2, and γ1 are present in both. In addition,
laminin α2 and α4 are present only in the vascular BM,
but α3 is only present in fractones (Kerever et al., 2007;
Nascimento et al., 2018; Sato et al., 2019). Other glycoproteins
such as secreted modular calcium-binding protein 1 and 2
(SMOC1/2) and the laminin-related molecule netrin 4, which
shares homology with the N-terminal portion of laminin
β1, (Sun et al., 2011) have also been detected in fractones
(Sato et al., 2019).

The capacity of fractones to specifically capture heparin-
binding growth factors from the extracellular milieu highlights
a critical role for its HSPG perlecan and agrin. Perlecan,
also referred to as HSPG 2, is a major BM type of HSPG,
and deficiency of perlecan causes perinatal lethality in
mice and humans (Arikawa-Hirasawa et al., 1999, 2001).
The core protein is composed of five distinct domains
and interacts with a variety of molecules from the ECM
(laminin, nidogen, collagen IV; Figure 1D). Through its protein
core and its HS chains, perlecan is involved in numerous
biological processes, including embryonic development,
tissue homeostasis, and pathology (Gubbiotti et al., 2017; Yu
et al., 2017). In the neurogenic niche, perlecan is present
in both vascular BM and fractones, and we previously
reported that the presence of perlecan in fractones through
its HS chains promoted FGF-2 stimulation of neurogenesis
(Kerever et al., 2014).

Agrin is another major HSPG component of the BM,
and plays a critical role in the hematopoietic stem cell
niche (Mazzon et al., 2011; Pozzi et al., 2017). Agrin
is also a key component of the microenvironment that
regulates synapse differentiation at the neuromuscular
junction (Gautam et al., 1996) and in neurons of the
hippocampus (Böse et al., 2000), as well as in newborn
neurons of the olfactory bulb (Burk et al., 2012). In the
SVZ, agrin is found in both the vascular BM and fractones
(Kerever et al., 2014).

In addition to the cell/ECM interaction that plays a role in
maintaining NSC quiescence through laminin/integrin signaling,
fractones also play a role in regulating growth factor signaling.
Both perlecan and agrin bear HS chains, and might therefore
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FIGURE 1 | Fractone: extracellular matrix (ECM) niche in the SVZ. (A) A schematic of a mouse brain coronal section at bregma 0.1 mm, with an inset displaying the
localization of the lateral ventricle shown in panels (B,C). (B) 3D rendering of the SVZ neurogenic niche showing a single NSC (blue) contacting the ventricle lumen, a
capillary, and numerous fractones (yellow). (C) Confocal image of the lateral ventricle displaying laminin (red) and N-Sulfated HS epitope 10E4 (green)
immunoreactivity in the SVZ. Arrows indicate the fractones that are immunoreactive for both laminin and N-sulfated HS epitope 10E4. Arrowheads indicate
laminin-immunoreactive SVZ capillaries. Scale bar: 50 µm. (D) A schematic of major fractones ECM component.

contribute to the regulation of heparin-binding growth factor
signaling in the SVZ.

HEPARAN SULFATE CHAIN
STRUCTURES REGULATE GROWTH
FACTOR SIGNALING

The building blocks of HS are glucuronic acid (GlcA)
and N-acetylglucosamine (GlcNAc). They are alternatively
transferred to a linker composed of one xylose residue, two
galactose residues, and one GlcA residue. This polysaccharide

subsequently undergoes extensive modification in the Golgi
apparatus, which is catalyzed by a series of enzymes. First,
N-deacetylase/N-sulfotransferase (NDST) acts on a subset of
GlcNAc residues to produce N-sulfated glucosamine (GlcNS).
This enzyme also generates a small number of N-unsubstituted
glucosamine residues due to incomplete N-sulfation. Then, a
glucuronyl C5-epimerase (GLCE) acts on the GlcA residue
to create Iduronic acid (IdoA), followed by the action of
HS 2-sulfotransferases that catalyze the transfer of a sulfate
to the C2-position of uronic acid residues. Subsequently, HS
6-sulfotransferases (HS6ST) catalyze the transfer of sulfate
onto the C6 position of the glucosamine residue in HS.
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Finally, HS 3-sulfotransferases (HS3ST) can transfer sulfate
to the 3-OH position of the glucosamine residues of HS
(Sugahara and Kitagawa, 2002; Kreuger and Kjellén, 2012).
Upon release into the extracellular space, secreted endosulfatase
(Sulf1 and Sulf2) can catalyze the removal of a subset of
6O sulfated group from the HS chains. The modification
reactions in heparan sulfate biosynthesis occur in clusters along
the polysaccharide, resulting in a highly sulfated region (S
domain) separated by regions devoid of sulfate (NA domain)
(Figure 2). Together, these steps contribute to the formation of a
sulfated polysaccharide with tremendous chemical heterogeneity,
allowing HS chains to specifically interact with a wide range of
molecules (Annaval et al., 2020).

Binding of HS to a ligand may impact signaling in various
ways, thereby key stem cell function (Ravikumar et al., 2020).
In addition, extracellular modification of HS sulfation by
endosulfatase can actively modulate growth factor signaling.

6O-Sulfation
6O-sulfation is regulated both during biosynthesis by HS6ST
enzymes that add a sulfate group to the glucosamine residue
and post synthetically in the extracellular space by endosulfatase
that can remove a subset of 6O sulfate group (Annaval et al.,
2020). Level of 6O-sulfation than has a great impact on numerous
cell-signaling pathways.

For instance, 6O-sulfated HS bind Wnt with high affinity and
thereby negatively regulate Wnt activity by preventing access
to its receptor (Frizzled) on the cell surface. Removal of 6O-
sulfation has been shown to reduce Wnt affinity for HS, allowing
the formation of an HS/Wnt/Fz complex (Ai et al., 2003). Such
regulation has great implications in the neurogenic niche, as Wnt
has been shown to play a critical role in regulating the fate of
NSCs (Hirota et al., 2016; Kriska et al., 2016).

A similar mechanism has been reported for bone
morphogenetic protein (BMP). The BMP antagonist Noggin
binds to highly sulfated HS, but Sulf activity leads to the
release of Noggin and restores BMP signaling (Viviano et al.,
2004). Noggin expressed by ependymocytes has been shown to
promotes neurogenesis by blocking BMP signaling (Lim et al.,
2000). BMP4 and BMP7 have been shown to specifically bind
to Fractones HS and inhibit cell proliferation in the neurogenic
niche (Douet et al., 2012; Mercier and Douet, 2014).

Another strategy involves HS acting as a coreceptor with FGF-
2 as a prime example. HS is necessary for the formation of the
ternary complex of basic fibroblast growth factor (FGF-2), FGF
receptor (FGFR), and HS (Mohammadi et al., 2005).

6O-sulfation is not required for FGF2 binding to HS, but
it is necessary for the formation of the ternary complex and
subsequent cell signaling (Guimond et al., 1993; Pye et al.,
1998). Therefore, Sulf provides the possibility to finely tune
FGF-2 activity by converting a coreceptor type of HS into one
that stores FGF-2 and prevents downstream signaling. In the
neurogenic niche, FGF-2 specifically binds to fractones HS,
and this interaction is necessary for FGF-2 stimulation of cell
proliferation (Kerever et al., 2007; Douet et al., 2013).

Regulation of HS capacity to act as a co-receptor by Sulf has
also been reported for numerous other growth factors, including

FIGURE 2 | Scheme of HS chain biosynthesis. After sequential addition of
glucuronic acid (GlcA) residue and an N-acetylglucosamine (GlcNAc) residue
onto a linker composed of one xylose residue (Xyl), two galactose residues
(Gal), and one glucuronic acid residue, the polysaccharide undergoes a series
of modifications (N-sulfation, epimerization, 2O-, 6O-, 3O-sulfation) in the
Golgi apparatus, leading to the formation of highly sulfated domains with
precise sulfation patterns. An additional level of HS modification occurs in the
extracellular space, where secreted endosulfatases can catalyze the specific
6O-desulfation of HS chains, leading to the formation of long polysaccharide
chains with high sulfation heterogeneity. We proposed short oligosaccharide
sequences recognized by 10E4, AO4B08, and HS4C3 epitopes.

amphiregulin (Narita et al., 2007), hepatocyte growth factor
(HGF; Lai et al., 2004), heparin-binding epidermal growth factor-
like growth factor (HB-EGF; Lai et al., 2003), FGF-1, stromal
cell-derived factor-1 (SDF-1), and vascular endothelial growth
factor (VEGF; Uchimura et al., 2006). These results demonstrate
that the regulation of 6O-sulfation alone can impact numerous
signaling pathways. 6O-sulfation was detected using the anti-
HS phage display antibody AO4B08. This antibody recognizes
a short oligosaccharide sequence that includes N-sulfation, C5-
epimerization, 2O-sulfation, and high levels of 6O-sulfation
(Dennissen et al., 2002; ten Dam et al., 2003; Kurup et al.,
2007). A short oligosaccharide sequence recognized by AO4B08
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antibody is presented in Figure 2. We recently reported that
fractones display high AO4B08 immunoreactivity (Kerever et al.,
2021). Vascular BM in the SVZ displayed weaker AO4B08
immunoreactivity. In addition, it is noteworthy that AO4B08
immunoreactivity in fractones is heterogeneous. Thus, fractones
on the dorso-lateral side of the ventricle displayed stronger
AO4B08 immunoreactivity than fractones on the ventral side of
the ventricle (Kerever et al., 2021).

3O-Sulfation
HS 3-sulfotransferases enzymes that catalyze the transfer of a
sulfate on the 3O-position of the glucosamine residue have
been shown to display different subcellular localizations. In
particular, HS3ST2 can be found in the plasma membrane, while
HS3ST3B resides in the Golgi apparatus (Delos et al., 2018). This
difference in localization may result in the formation of distinct
sulfation motifs. 3O-sulfation has been reported to modulate
ligand binding (Chopra et al., 2021). Detection of 3O-sulfation
can be performed using the anti-HS phage display antibody
HS4C3 (van Kuppevelt et al., 1998; ten Dam et al., 2006; Hirano
et al., 2012). HS4C3 recognizes a short oligosaccharide sequence
that includes N-sulfation, C5-epimerization, 2O-sulfation, 6O-
sulfation, and 3O-sulfation. A short oligosaccharide sequence
recognized by HS4C3 antibody is presented in Figure 2.
We recently reported that fractones displayed strong HS4C3
immunoreactivity (Kerever et al., 2021).

AGING OF THE NEUROGENIC NICHE

Fractones have been shown to be altered under some pathological
conditions. In the SVZ of BTBR t + tf/J mice, a mouse model
of autism spectrum disorder, fractones were reported to be
drastically reduced in size and number (Mercier et al., 2011,
2012). In contrast, the size of fractones has been reported
to increase following long-term hydrocephalus in adult mice
(Campos-Ordoñez et al., 2014). In addition, we previously
reported that the structure and composition of fractones were
altered in aged mouse SVZ (Kerever et al., 2015; Yamada et al.,
2017). With aging, neurogenesis declines, (Maslov et al., 2004)
and the neurogenic niche undergoes structural and functional
remodeling (Luo et al., 2006; Rojas-Vázquez et al., 2021).
Ependymal cells present altered morphology, their number
decreases while the number of astrocytes interposed between
ependymocytes increases (Luo et al., 2008; Capilla-Gonzalez
et al., 2014). Additionally, the blood brain barrier in SVZ
capillaries is compromised, leading circulating pro-inflammatory
molecules to potentially affect the niche (Obermeier et al., 2013;
Segarra et al., 2021).

Fractone size gradually increases with age (Kerever et al., 2015;
Nascimento et al., 2018). In addition, the HS composition of

fractones was also modified in the aged SVZ. We previously
reported on disaccharide analysis of the young and aged SVZ
that total 6O-sulfation decreased in the aged SVZ. This loss
of 6O-sulfation was accompanied by impaired FGF-2 signaling
(Yamada et al., 2017). The aged fractones also displayed reduced
immunoreactivity for the N-sulfated epitope 10E4 (Kerever
et al., 2015) and reduced AO4B08 immunoreactivity (Kerever
et al., 2021). This suggests dramatic changes in the sulfation of
fractones HS, and these changes may affect growth activity and
participate in the age-related decline of neurogenesis.

CONCLUSION

As we have described, minute modification of sulfation along the
HS chains leads to dramatic changes in HS regulation of growth
factor signaling. Therefore, it is critical to identify strategies to
reveal precise HS sequences. The biochemical approach, which
consists of breaking apart the HS chains into disaccharide
units, is helpful to obtain broad information pertaining to HS
composition, but it fails to elucidate the actual organization
within the HS chain and cannot provide information on
HS heterogeneity in the microenvironment. As we previously
reported in the context of the SVZ, immunoreactivity for 10E4
shows that HS displays dramatically different sulfation signatures
in the vascular BM than in fractones. The development of
specific anti-HS antibodies is a great tool for deciphering the
HS code (van Kuppevelt et al., 1998; Dennissen et al., 2002;
Thompson et al., 2009), and studying the influence of local
changes in HS composition on cell signaling in health and
pathological conditions.
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