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CMR-Derived Regional Strain and
Radiation-Induced Cardiotoxicity
The Importance of Myocardial Inflammation*
Giselle C. Meléndez, MD
R adiation therapy (RT) is used in more than
50% of all cancer patients and it is a critical
component of treatment regimens for Hodg-

kin’s lymphomas, and lung and breast cancers. Even
though contemporary techniques use strategies to
improve RT delivery, and methods to minimize
ionizing radiation exposure to tumor-adjacent tissues
without jeopardizing treatment efficacy, cardiac tis-
sue damage is frequently unavoidable (1). Conse-
quently, RT has been consistently associated with
cardiovascular morbidity and mortality due to coro-
nary artery disease, valvular heart disease, pericar-
ditis, and cardiomyopathy associated with diffuse
fibrosis and arrhythmias (2). Although left ventricular
(LV) dysfunction and cardiotoxicity are uncommon
findings early after RT, preclinical studies have
shown that myocardial tissue damage does occur
and, if left untreated, may progress to heart failure
(3). There is growing interest in the assessment of
LV function by echocardiography-derived global lon-
gitudinal strain as a strategy to detect early cardiotox-
icity due to its high sensitivity and reproducibility.
Strain may also be important in defining cancer
therapy-related cardiac dysfunction (CTRCD) prog-
nosis and the role of cardioprotective therapy (4,5).
However, cardiovascular magnetic resonance (CMR)-
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derived strain is also highly accurate and has the
additional benefit of a unique ability to identify sub-
clinical pathological changes of the myocardial tissue
through novel mapping techniques. T1 and T2 map-
ping relaxation times become prolonged in the pres-
ence of myocardial tissue injury and edema,
respectively (6).

In this issue of JACC: CardioOncology, Ibrahim et al.
(7) present a novel preclinical study in which they
explore the utility of CMR imaging to assess LV
function and use tissue characterization techniques
to establish early imaging markers of RT injury and
their association with myocardial histopathological as
well as cellular changes. These investigators used an
inbred salt-sensitive rat strain that has been previ-
ously shown by the authors to be a reproducible
model of cardiac tissue injury induced by a high sin-
gle dose of RT (24 Gy) (8,9). CMR-derived LV vol-
umes, and circumferential, radial, and longitudinal
strains as well as T1/T2 maps were acquired 8 and
10 weeks after RT and compared to nonirradiated
animals. Subsequently, cardiac tissue was examined
to assess interstitial fibrosis, cardiomyocyte vacuola-
tion and necrosis, and inflammatory cell infiltration
(mast cells). The authors make several important ob-
servations. First, the mean LV ejection fraction
increased by 11 and 12 percentage points at 8 and
10 weeks post-RT, respectively, when compared to
nonirradiated animals. This was accompanied by an
increase in LV mass. Interestingly and despite a pre-
served LV ejection fraction and a compensatory in-
crease in LV wall thickness, global circumferential
strain worsened at these time points and lateral seg-
ments of the myocardium were more severely
affected. These subacute abnormalities in strain cor-
responded with a w27% increase in T2 relaxation
times at 8 weeks which slightly decreased by
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10 weeks post-RT, but remained elevated compared
to nonirradiated rats. Both global circumferential
strain and T2 were associated with post-necropsy
qualitative assessment of myocardial necrosis and
vacuolation, denoting myocardial edema (10),
particularly in the lateral wall where strain was more
compromised. Interestingly, the investigators
observed a decrease in capillary density along with an
increase of mast cell infiltration; prior studies suggest
that mast cells are protective against RT myocardial
injury (11). However, strong experimental evidence in
other models of heart failure suggests that mast cells
play a critical role in the fibrotic remodeling of the
cardiac extracellular matrix by the production and
release of cytokines and growth factors that enhance
excess matrix deposition (12). In this study, intersti-
tial fibrosis measured by T1 mapping and histopa-
thology (diffuse and perivascular fibrosis) were
unchanged after RT. It is possible that inflammatory
cell recruitment precedes the initiation of cardiac
fibrotic remodeling. Importantly, these observations
raise the provoking question of whether modulation
of inflammation may thwart the progression of
adverse LV remodeling induced by RT. These findings
underscore the complexity of the pathophysiology of
myocardial remodeling induced by cancer therapies.

Although it seems clear by the findings reported
here that segmental strain deterioration and T2 pro-
longation are early imaging biomarkers, it remains to
be determined if these early changes forecast the
development of CRTCD. Furthermore, the complexity
of RT in clinical practice limits the interpretation and
translation of the results. First, it is important to
recognize that the rats in this study received 1 rela-
tively large dose of whole heart radiation that does
not resemble the typical fractionated scheme of RT
used in humans. Second, the study used healthy
adult rats that fail to account for pre-existing
cardiovascular risk factors (e.g., coronary artery dis-
ease, hypertension, and obesity) or more vulnerable
populations such as pediatric and elderly cancer pa-
tients. Similarly, an important factor that signifi-
cantly increases the risk of CTRCD after RT is the use
of concomitant cardiotoxic cancer therapies such as
chemotherapy and targeted therapies. Third, because
CMRs were performed on a 9.4-T scanner, it remains
uncertain whether the changes in imaging biomarkers
in small animals, especially regional differences, can
be detected using clinical 1.5-T and 3-T field
strengths, in addition to the lack of standardized
analysis protocols, and variability across different
vendors.

In summary, efforts such as those reported here
conducted by a team of clinicians and scientists
continue to be essential and should be encouraged.
Ibrahim et al. (7) have shown that CMR-derived
segmental strain incorporating tissue characteriza-
tion techniques are useful to identify subclinical
myocardial injury. Most importantly, the implications
of this report suggest that future investigations
should be directed toward successfully translating
the finding into clinical practice to improve the sur-
veillance and prevention of cardiotoxicity in cancer
patients undergoing RT.
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