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Abstract

Despite intensive therapies, pediatric patients with relapsed or refractory solid tumors have poor 

outcomes and need novel treatments. Immune therapies offer an alternative to conventional 

treatment options but require the identification of differentially expressed antigens to direct 

antitumor activity to sites of disease. B7-H3 (CD276) is an immune regulatory protein that is 

expressed in a range of malignancies and has limited expression in normal tissues. B7-H3 is highly 

expressed in pediatric solid tumors including osteosarcoma, rhabdomyosarcoma, Ewing sarcoma, 

Wilms tumor, neuroblastoma, and many rare tumors. In this article we review B7-H3-targeted 

chimeric antigen receptor (B7-H3-CAR) T cell therapies for pediatric solid tumors, reporting 

preclinical development strategies and outlining the landscape of active pediatric clinical trials. 

We identify challenges to the success of CAR T cell therapy for solid tumors including localizing 

to and penetrating solid tumor sites, evading the hostile tumor microenvironment, supporting T 

cell expansion and persistence, and avoiding intrinsic tumor resistance. We highlight strategies 

to overcome these challenges and enhance the effect of B7-H3-CAR T cells, including advanced 

CAR T cell design and incorporation of combination therapies.
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1. Introduction

Pediatric patients with relapsed/refractory solid tumors have dismal outcomes despite 

attempts at intensive multimodal therapies including chemotherapy, radiation therapy, and 

surgical resection [1–5]. These patients are urgently in need of novel therapies to improve 

outcomes. Chimeric antigen receptor (CAR) T cell therapy represents a promising potential 

strategy for treating pediatric patients with solid tumors. In contrast to CD19-CAR T 

cell therapy which has produced dramatic responses for pediatric B-ALL [6–10], initial 

attempts to translate CAR T cell therapy for pediatric solid tumors have demonstrated 

limited clinical activity [11–16]. However, a recent study with GD2-CAR T cells has 

demonstrated significant antitumor activity in pediatric patients with neuroblastoma and 

low disease burden [17]. Identifying target antigens that are differentially expressed in a 

broad range of pediatric tumors and not in healthy tissues remains a significant challenge. 

Likewise, for individual pediatric solid tumor types, there may be heterogeneity in antigen 

expression among individual patients, between metastatic and primary sites, and within an 

individual tumor [18].

B7-H3 (CD276) is an immunomodulatory protein that has emerged as an attractive target for 

immunotherapy, due to its expression on a range of malignancies including pediatric solid 

tumors [4,19–21]. Beyond antigen expression, CAR T cell therapy approaches for pediatric 

solid tumors must also overcome the challenges of localizing to and penetrating tumor sites, 

evading a hostile immune microenvironment, optimizing T cell dynamics, and avoiding 

antigen escape [11,12]. In this review we detail the expression of B7-H3 in pediatric solid 

tumors and brain tumors, discuss efforts in preclinical B7-H3-targeted CAR (B7-H3-CAR) 

T cell development, describe the current landscape of pediatric B7-H3-CAR T cell clinical 

trials, and explore strategies to improve B7-H3-CAR T cell approaches.

2. B7-H3 as an antigen for CAR T cell therapy

2.1. Physiologic role of B7-H3

B7-H3 is a surface glycoprotein encoded on chromosome 15 which can exist in two 

isoforms: containing either two or four immunoglobulin-like (Ig) regions, with the four 

Ig isoform predominating in humans [22–24]. The receptors of B7-H3 have not been 

definitively described, with conflicting reports existing on the role of potential candidates 

including TLT-2, IL-20Rα, and PLA2R1 [24–30]. Physiologically, B7-H3 plays a role 

in immunomodulation [30,31]. While initial reports proposed a costimulatory effect [32], 

subsequent studies have identified associated B7-H3 expression with inhibition of T cell 

activation and suppression of T cell-mediated antitumor responses [24,27,33]. Proposed 

mechanisms of immune inhibition include decreased signaling through the PI3K/AKT/

mTOR pathway [34], restriction of antigen-presenting cells [35], M2 macrophage 

polarization [36,37], and inhibition of natural killer cell-mediated lysis [38]. Beyond 

immune regulation, B7-H3 is proposed to directly support cancer cell invasion, proliferation, 

angiogenesis, and metabolism [30]. Through both immunologic and non-immunologic roles, 

B7-H3 has the potential to support tumor progression and immune evasion, while having 

antitumor effects under some circumstances [31].
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Minimal healthy tissue B7-H3 expression has been detected at the protein level by 

immunohistochemistry (IHC) and at the RNA level in sequencing-based assays [21,39,40]. 

Low-level expression has been reported in normal stomach [19,40,41], colon [41], 

salivary gland [40], skin [42], pancreas [19] and liver [19], with variable expression in 

normal adrenal tissue [19,21,40]. Importantly, initial clinical studies targeting B7-H3 with 

monoclonal antibodies did not identify concerns for significant on-target off-tumor toxicities 

[43–45]. Because of this favorable expression profile, a number of B7-H3-targeting 

therapeutic strategies are being explored, including bispecific antibodies, antibody-drug 

conjugates, radioimmunotherapy, and cellular therapy [42,45–51]. As B7-H3 continues to 

be explored as an immunotherapy target, it will be necessary to continue monitoring for 

off-tumor toxicities and further defining its physiologic role as we seek to understand 

potential mechanisms of treatment resistance.

2.2. B7-H3 expression in pediatric solid tumors

In contrast with low-level normal tissue expression, B7-H3 is highly expressed in 

pediatric solid tumors [4,11,19,21,39,40]. Pediatric sarcomas have particularly high B7-

H3 expression, including osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, and non-

rhabdomyosarcoma soft tissue sarcomas [19,21,39,40]. This includes >95% expression 

reported in samples from patients with osteosarcoma, coinciding with expression in a 

range of preclinical osteosarcoma models including in vitro assays and in vivo murine and 

spontaneously-occurring canine models [52–57]. In rhabdomyosarcoma, B7-H3 expression 

was identified in both alveolar and embryonal histologic subtypes, encompassing FOXO1 
fusion-negative and fusion-positive disease, with a relationship identified between PAX3--
FOXO1 and B7-H3 expression in functional studies [21,39,58,59].

Likewise in neuroblastoma, B7-H3 was identified in samples from patients with both 

localized and metastatic disease, with higher levels of B7-H3 identified through IHC 

or mRNA expression associated with poor prognosis [60,61]. This clinicopathologic 

observation is supported by preclinical studies demonstrating that knockdown of B7-H3 

in neuroblastoma models is associated with tumor cell proliferation [62], and overexpression 

of B7-H3 can confer chemotherapy resistance [60,63]. Importantly, B7-H3 expression can 

be retained in patients with GD2-low or negative disease after receipt of prior GD2-targeted 

immunotherapy [64]. In addition to the extended analyses in neuroblastoma and sarcomas, 

additional pediatric solid tumors with reported B7-H3 expression include Wilms tumor, 

malignant peripheral nerve sheath tumor, hepatoblastoma, melanoma, and desmoplastic 

small round cell tumor [19, 21,39].

2.3. B7-H3 as a pan-cancer antigen

Beyond extracranial pediatric solid tumors, B7-H3 is also highly expressed in a range of 

other malignancies. The majority of pediatric brain tumor samples evaluated express B7-H3 

across all subtypes including medulloblastoma, high-grade glioma, diffuse midline glioma 

(formerly diffuse intrinsic pontine glioma [DIPG]), ependymoma, and atypical teratoid 

rhabdoid tumor (ATRT) [19,65]. B7-H3 expression exceeds or is comparable to that of 

other immunotherapy targets of interest in pediatric brain tumors [65]. Increased intensity of 

B7-H3 IHC has been associated with high-grade features, and increased mRNA expression 
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associated with shorter overall survival [66]. B7-H3 expression is also noted in adult brain 

tumors including glioblastoma and anaplastic meningioma [67–69].

Like pediatric solid tumors, adult solid tumors also have marked B7-H3 expression [70]. B7-

H3 has been extensively evaluated in prostate, breast, and ovarian cancers, where increased 

expression is associated with increased risk of recurrence, decreased survival, and treatment 

resistance [30,71–76]. Notably, in prostate cancer increased B7-H3 expression is associated 

with biochemical recurrence after radiation therapy and increased androgen receptor 

activation [72,73]. In non-small cell lung cancer, B7-H3 is associated with advanced 

stage and metastatic disease [77,78]. Across a range of gastrointestinal cancers including 

hepatocellular, gastric, pancreatic, esophageal, and colorectal, B7-H3 is expressed and often 

associated with poor prognosis [40, 70,79–82]. In pancreatic cancer models, increased 

intensity of B7-H3 expression is seen in metastatic disease and associated with increased 

pathological stage [80]. In addition to solid tumors, B7-H3 is being explored as a target 

for hematologic malignancies including acute myeloid leukemia [83,84], anaplastic large 

cell lymphoma [85], and NK/T cell lymphoma [86]. The spectrum of malignancies which 

express B7-H3, overall differential expression from healthy tissues, and association with 

high-risk disease features, support the role of B7-H3 as a pan-cancer antigen and attractive 

immunotherapeutic target. This potentially broad impact further supports developing B7-H3-

targeting therapies for individually rare pediatric tumor types.

3. B7-H3-CAR T cell preclinical development

The efficacy of a CAR T cell construct is dependent on the interaction between each 

component of the CAR design, including antigen recognition domains, structural elements, 

and costimulatory molecules (Fig. 1). Variations of B7-H3-CAR T cells are undergoing 

translational development, with many groups exploring additional enhancements to improve 

CAR T cell function [48].

3.1. CAR design

Traditional CAR T cell antigen recognition domains are based on the single chain variable 

fragment (scFv) of a monoclonal antibody. For B7-H3, initial products proceeding in clinical 

development include those based on MGA271 [21,39,41,87] and mAb376.96 [40,88] 

scFvs. To evaluate the properties of B7-H3-CAR T cells with variable antigen recognition 

properties, single-chain antibody libraries have been produced to generate additional scFvs 

for preclinical evaluation [89]. As an alternative to traditional scFvs, nanobody-based 

libraries have also been explored to generate high-affinity recognition domains [90]. Beyond 

the antigen recognition domain, key components of the hinge and transmembrane can affect 

structure and activity of the CAR T cell construct [21,87]. While first generation CAR T 

cells consisted of antigen recognition and intracellular signaling domains, second generation 

CAR T cells include the addition of costimulatory molecules. Costimulatory molecules of 

the immunoglobulin superfamily including CD28 are associated with potent initial antitumor 

activity, while costimulatory molecules of the tumor necrosis factor receptor superfamily 

including 4–1BB and OX40 are associated with improved CAR T cell persistence [91]. Both 

classes of costimulatory molecules are being evaluated in B7-H3-CAR T cell constructs, in 
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addition to third generation CARs which incorporate multiple costimulatory domains [48]. 

When incorporating multiple costimulatory domains, the route of costimulation can affect 

function [21,91].

3.2. Functional safety studies

In addition to screening healthy tissue libraries for B7-H3 expression [21], functional 

preclinical studies support the safety of pursuing B7-H3-CAR T cell therapy. While 

several preclinical murine studies evaluating human B7-H3-CAR T cell constructs have 

not identified any unexpected toxicities [21,39,40], models are potentially limited by a 

lack of cross-reactivity between human and murine B7-H3. While there is 88% homology 

between human and murine B7-H3 at the amino acid level, many human B7-H3-directed 

antibodies do not specifically cross react with murine B7-H3 [22,92,93]. Thus, cross-

reactivity must be considered both in functional assessment of on-target off-tumor effects 

and in screening methods. To overcome this barrier, studies evaluating murine CAR T 

cells in immune competent models have also been performed, and have not unveiled any 

additional toxicity concerns [65,92]. Beyond murine studies, the MGA271 monoclonal 

antibody, from which the scFv in several B7-H3-CAR T cell constructs is derived, has been 

evaluated in a non-human primate model [41] and B7-H3-CAR T cells have been evaluated 

in naturally occurring spontaneous canine sarcoma. [53,57]. B7-H3-targeted therapies have 

demonstrated safety in these non-human primate and canine models.

3.3. Enhancing function

Due to challenges associated with initial attempts to translate CAR T cell therapy for solid 

tumors, many groups are developing next-generation B7-H3-CAR T cell constructs with 

additional enhancements (Fig. 2). A variety of gene editing techniques have been explored 

to enhance CAR T cell function, safety, and persistence across CAR T cell targets [94]. 

Hairpin RNA strategies have been explored to knockdown a panel of inhibitory molecules 

including PD-1, TIM-3, TIGIT, TGFβR, IL-10R, and IL-6R to improve antitumor activity of 

B7-H3-CAR T cells in a cholangiocarcinoma model [95]. B7-H3-CAR T cells engineered 

to include a PD-1 decoy receptor demonstrated improved persistence in a panel of solid 

tumor models [96]. An alternative strategy aimed at improving T cell persistence is the 

inclusion of STAT3- and STAT5-related activation motifs to generate less differentiated B7-

H3-CAR T cells, which showed superior activity in breast and ovarian cancer models [97]. 

In addition, expressing chimeric cytokine receptors to activate STAT-signaling pathways 

in B7-H3-CAR T cells has improved their effector function in xenograft models [98]. 

Beyond T cell persistence, CAR T cell design can be enhanced to improve CAR T cell 

trafficking and direct activity to tumor sites. In brain metastases models, overexpression of 

CCR2 in B7-H3-CAR T cells improves migration across the blood brain barrier through 

the CCL2/CCR2 chemokine axis [99]. In an attempt to localize antitumor activity of B7-

H3-CAR T cells to tumor sites, a microenvironment regulated system (MRS) was also 

developed to promote B7-H3-CAR T cell proliferation in the tumor microenvironment in 

an esophageal carcinoma model [100]. To further enhance targeting specificity for improved 

safety and expanded applications, B7-H3-targeted CAR T cells have been generated which 

use alternative intracellular domains such as ZAP-70 in a logic-gated platform, rather than 

traditional CD3ζ sequences [101]. The incorporation of a PDZ binding motif has also been 
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shown to improve effector cell functionality by enhancing synapse formation [102]. B7-H3 

has also been targeted in osteosarcoma models using a switchable CAR T cell system, which 

offers potential for broad translational efforts [55].

4. Pediatric B7-H3-CAR T cell clinical trials

Based on the encouraging preclinical data and safety profile, B7-H3 CAR T cells are now 

being evaluated in early phase clinical studies. Table 1 outlines “active” and “active, not 

recruiting” clinical B7-H3 CAR T cell studies for pediatric patients.

4.1. Pediatric solid tumor clinical studies

Systemic CAR T cell infusion is being studied for pediatric solid tumors (Table 1). In 

general, these studies are designed as basket trials, which enroll patients across a range of 

tumor types. Enrollment criteria vary regarding requirements for confirming B7-H3 antigen 

positivity and whether there is a focus on specific tumor types. The CAR T cell constructs 

being translated vary in the method and route of costimulation. They include plans for 

both single- and multiple-antigen targeting strategies, including the co-expression of CD19-

CARs in B7-H3-CAR T cells with the goal of improving their expansion and persistence. 

In general, these studies evaluate a systemic infusion of B7-H3-CAR T cells after 

administration of lymphodepleting chemotherapy (i. e. fludarabine and cyclophosphamide) 

(Fig. 1). These first-in-human studies are ongoing, and current data available in abstract 

form notes a tolerable safety profile with limited antitumor activity [103].

4.2. Pediatric primary central nervous system (CNS) clinical studies

For primary central nervous system (CNS) tumors, preclinical data favors locoregional 

CAR T cell administration [65,104,105]. This approach is being translated in active 

clinical studies, where B7-H3-CAR T cells are injected into the ventricular space 

or tumor resection cavity [106,107]. In contrast to systemic infusion with preceding 

lymphodepleting chemotherapy, these local approaches are administered as serial infusions 

without lymphodepleting chemotherapy (Table 1). Recently, three patients with DIPG were 

reported who had received intracranial B7-H3-CAR T cells, which were tolerated without 

dose limiting toxicity at the first dose level and associated with evidence of local immune 

activation [87]. One participant demonstrated clinical and radiographic response.

4.3. Lessons from adult B7-H3-CAR T cell clinical experience

Parallel studies in adult solid and CNS tumors have the potential to generate important 

safety and efficacy data regarding B7-H3-CAR T cell therapy [20]. Early evidence includes 

a report of partial response after intratumoral B7-H3-CAR T cell injection for a single 

patient with basal cell carcinoma [108]. Transient clinical activity has also been reported in 

an adult patient with glioblastoma multiforme after local B7-H3-CAR T cell administration 

[68]. Beyond brain tumors, adult studies are evaluating local administration for other solid 

tumors, including intraperitoneal delivery for ovarian tumors [40]. While data in adults can 

provide proof of principle for clinical activity, pediatric patients have unique physiologic 

considerations and tumor biology. Due to the urgent need to improve treatments for 
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pediatric patients with relapsed/refractory tumors, it is imperative that novel products be 

simultaneously studied directly in the pediatric population.

5. Strategies to improve B7-H3-CAR T cell therapy

Beyond antigen selection, there are several hurdles to establishing effective CAR T cell 

therapy for pediatric patients with solid tumors. These include CAR T cell homing to 

and penetrating tumor sites, overcoming the hostile tumor microenvironment, and having 

adequate T cell expansion and persistence [5,12]. As described above, investigators are 

pursuing enhanced CAR T cell design [94] and exploring locoregional delivery methods 

[68,87,104] to begin addressing these hurdles. Moving forward, additional strategies seek 

to evaluate B7-H3 CAR T cells in combination therapies, as part of multi-antigen targeting 

approaches, and through alternative immune effector cells (Fig. 2).

5.1. Combination therapies for immune and antigen modulation

Given the challenges of effectively targeting solid tumors with CAR T cells, combined 

immune therapy approaches have the potential to enhance T cell activity and improve 

penetration to a hostile tumor microenvironment. One approach is the combination of 

B7-H3-CAR T cells with oncolytic adenovirus (ADV) to deliver immune regulators. In a 

glioblastoma model, CXCL11-armed oncolytic ADV injected to the tumor site improves 

infiltration of B7-H3-CAR T cells and decreases proportions of inhibitory immune cells 

[109]. Also in glioblastoma models, interleukin-7-loaded oncolytic ADV has been co-

administered with B7-H3-CAR T cells, demonstrating improved T cell proliferation [110]. 

B7-H3-CAR T cell therapy can also be enhanced by modulating surface B7-H3 expression 

in tumor targets. The combination of a pan-histone deacetylase inhibitor (SAHA) has been 

shown to upregulate B7-H3 expression on solid tumors, in addition to downregulating 

CTLA-4 and TET2, leading to improved B7-H3 CAR T cells in preclinical models [111]. In 

a drug library screen, ingenol-3-angelate was also identified to increase B7-H3 expression 

through PKCα activation, which enhanced B7-H3-CAR T cell function [112]. Screening 

efforts have also identified small molecules which enhance B7-H3-CAR T cell activity 

through direct antitumor mechanisms. For example, the hedgehog signaling inhibitor JK184 

directly induced tumor apoptosis and had synergistic antitumor effects in combination with 

B7-H3-CAR T cells [113]. A recent study has highlighted that local treatment of solid 

tumors in xenograft models simulates robust immunogenic cell death, enhancing B7-H3-

CAR T cell expansion, persistence, and antitumor activity [114]. Local radiation by itself 

has also been shown to increase B7-H3 expression and promote a more favorable immune 

microenvironment [115,116].

5.2. Multi-antigen targeting

Targeting multiple antigens with CAR T cells has the potential to overcome key resistance 

mechanisms. Strategies which are dependent on the presence of both antigens for CAR T 

cell activation (AND gates) can improve specificity, overcome low antigen density, and help 

discern between tumor and normal tissues [117]. Strategies that allow for activation in the 

presence of either one or both antigens (OR gates) aim to address antigen heterogeneity 

and prevent resistance through development of, or selection for, antigen-loss variants. For 
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neuroblastoma, B7-H3 has been combined with other common antigens. GD2/B7-H3 CAR 

T cells developed in a SynNotch system sought to improve specificity [118], and ALK/

B7-H3-CAR T cells overcame low antigen density [119]. An OR gated strategy targeting 

GPC2 or B7H3 retained activity despite heterogeneous antigen expression [120]. Beyond 

neuroblastoma, CAR T cells targeting both CD70 and B7-H3 had activity against a range 

of solid tumors [121] and GPC3-CARs also secreting B7-H3-specific T cell engagers had 

activity in hepatocellular carcinoma [122]. In an osteosarcoma model, dual B7-H3- and 

CXCR2-specific CAR T cells had enhanced antitumor activity [57]. The inclusion of B7-H3 

or EpCAM targeting in a ROR1-CAR T cell construct focused antitumor activity to tumor 

sites, avoiding bone marrow toxicity observed with single-targeting ROR1 CAR T cells 

[123]. While multi-antigen targeting holds promise to improve CAR T cell activity and limit 

toxicity, there is significant complexity to the design of these constructs. Comprehensive 

preclinical and correlative studies will be necessary to establish the best methods of dual 

targeting, which may vary by antigen and tumor type.

5.3. Alternative immune effector cell sources

Because of the challenges of T cell expansion and persistence in the tumor environment, 

efforts are underway to identify ideal subsets of T cells for adoptive cellular therapy 

and explore alternative immune effector cell sources. Both γδ T cells and natural killer 

(NK) cells are subsets that exist at the intersection between the innate and adaptive arms 

of the immune system [124]. Benefits of these cell sources include natural tropism for 

tumor tissues, potential for intrinsic antitumor activity, and lack of alloreactivity supporting 

potential allogeneic approaches [124]. Engineering these immune cells to express B7-H3-

CARs can add an additional layer of specificity. The antitumor effect of Vγ9 Vδ2 T cells 

was enhanced with the addition of a B7-H3-CAR in glioma models [125]. Similarly, B7-H3-

CAR NK cells generated from the NK-92 line have demonstrated activity in melanoma and 

non-small cell lung cancer models [126,127]. Activity of B7-H3-CAR NK cells evaluated 

in a glioblastoma model were more resilient in a hostile immune environment through 

the addition of a TGF-β dominant negative receptor [128]. These examples highlight the 

potential benefits of exploring alternative immune effector cell sources for engineered cell 

therapy.

6. Conclusions

Targeting B7-H3 with CAR T cells presents a promising strategy for treating pediatric 

patients with solid tumors. B7-H3 represents an ideal target antigen due to diffuse tumor 

expression including a range of pediatric solid tumors and limited healthy tissue expression. 

Several B7-H3-CAR T cell products have demonstrated preclinical activity. Early phase 

clinical studies in pediatric patients are underway, evaluating systemic administration for 

extracranial solid tumors and locoregional administration for primary CNS tumors. Despite 

encouraging preclinical data, CAR T cell therapy for solid tumors, including for B7-H3, 

still faces significant barriers including localizing T cells to tumor sites, overcoming the 

immune suppressive microenvironment, avoiding intrinsic tumor resistance mechanisms, 

and promoting functional T cell persistence. Thus, producing safe and effective B7-H3-CAR 

T cell therapy to target pediatric solid tumors will likely require enhanced CAR T cell 
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design and thoughtful combinatorial approaches. Insights gained from correlative analyses 

on early phase clinical studies will be key in prioritizing next steps to advance this treatment 

approach.
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Fig. 1. 
CAR T cell therapy strategy for pediatric patients with solid tumors. Inserts highlight CAR 

T cell generation and CAR T cell tumor cell killing. For additional details see text.
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Fig. 2. 
Strategies to Enhance B7-H3-CAR T Cell Therapy. Primary challenges facing chimeric 

antigen receptor (CAR) T cell therapy for solid tumors; Neg: negative; +: combination 

therapy. For additional details see text.
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