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Abstract: Polarization encoding has been extensively used in quantum key distribution (QKD)
implementations along free-space links. However, the calculation model to characterize channel
transmittance and quantum bit error rate (QBER) for free-space QKD has not been systematically
studied. As a result, it is often assumed that misalignment error is equal to a fixed value, which
is not theoretically rigorous. In this paper, we investigate the depolarization and rotation of the
signal beams resulting from spatially-dependent polarization effects of the use of curved optics in an
off-axis configuration, where decoherence can be characterized by the Huygens–Fresnel principle and
the cross-spectral density matrix (CSDM). The transmittance and misalignment error in a practical
free-space QKD can thus be estimated using the method. Furthermore, the numerical simulations
clearly show that the polarization effect caused by turbulence can be effectively mitigated when
maintaining good beam coherence properties.

Keywords: QKD; polarization properties; free space; channel modeling

1. Introduction

Quantum key distribution (QKD) can provide an information theoretic security to
share keys between two distant parties [1–3]. Since its initial proposal, the QKD is believed
to be one of the technologies in quantum information science to reach the applications
of the quantum network. The rapid development of the ground-based QKD scheme and
implementation has resulted in the communication range reaching as far as 511 km with
modern technology in the optical fiber channel [4]. Scaling quantum communication
protocols over long distances is very challenging due to the losses experienced during the
propagation inside the optical fibers. Attempting to overcome the limits imposed by losses,
there has been increasing interest [5–9] in implementing QKD through free-space channels.

At present, the polarization-encoded photons from a weak coherent pulse (WCP)
source have been experimentally demonstrated to be more suitable than the phase-encoding
scheme in free-space QKD [10]. However, in some previous theoretical studies [11–13],
the fluctuation properties of quantum polarization through a turbulent atmosphere have
been ignored when estimating the performance of polarization-encoding QKD, where the
misalignment error is only assumed as a constant result (i.e., 1.5%) from the experiment [9],
which is not theoretically rigorous.

However, in a free-space polarization-encoded QKD, the spatially-dependent polariza-
tion effects resulting from the use of curved optics in an off-axis configuration will lead to
decoherence of the quits and rotation of the polarization angle [14–16], which will directly
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increase the misalignment error and further influence the performance of the key rate
in the polarization-encoded QKD. Specifically, when estimating the key rate of the QKD
system, the gain and the error rate of single photon states are required to be estimated in
the decoy-state QKD method [17–19], where the standard fiber-based channel model [20]
uses some assumed channel parameters. In this paper, we propose a method based on
the cross-spectral density matrix (CSDM) [21] to show a more practical free-space QKD
key rate estimation. Compared with other methods, our proposal exploits the unified
theory of coherence and polarization to model the spatially-dependent polarization effects
on the properties of quantum signals in propagation. Moreover, the fluctuation prop-
erties of quantum polarization through turbulent atmosphere can also be characterized
by our method.

2. Propagation Modeling and Key Rate Estimation
2.1. Propagation Modeling

In some practical applications, if one is to implement a QKD over a free-space channel
between a satellite platform and a ground station, the turbulence may cause the beam
depolarization and the rotation of polarization angle, as Figure 1 shows. This causes
continuous phase modulations on the optical beam, and thereby leads to random refraction
and diffraction effects, imposing distortions on the optical beam as it propagates through
the atmospheric channel.
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To model the propagation properties of quantum signals in a free-space channel, we
suppose that a coherent Gaussian Schell-model (GSM) is assumed as the quantum signal
beam [22], which is generated by the Alice located in the source plane z = 0 and propagates
along the transmission direction z = 0 into the detection Bob (the received plane z > 0). In
our model, the use of the elements of cross-spectral density matrix (CSDM) in the x and y
coordinates Wij(ρ1, ρ2; 0), i = x, y is exploited to show the changes in the polarization of
quantum light propagation, which can be expressed as [23]

Wij(r1, r2; 0) =
〈

Ei(r1; 0)E∗j (r1; 0)
〉

= Ai Aj exp[−( r2
1

4w2
0i
+

r2
2

4w2
0j
)]Bij exp(− |r1−r2|2

2δ2
ij

), i, j = x, y
(1)
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Here, Ei and Ej are, respectively, the components of the random optical field in the x
and y directions, and the asterisk represents the complex conjugate. r1 and r2 denote a pair
of points with arbitrary transverse position vectors in the source plane z = 0, 〈 〉 denotes
the ensemble average. In addition, Ai

(
Aj
)
= 1 and w0i

(
w0j
)

are the amplitudes and the
waist radius of beam in the x and y directions; The coefficient Bij = 1, i = j;

∣∣Bij
∣∣ ≤ 1, i 6= j

is the spectral degree of coherence. Without any loss of generality, δij is the coherence
length of the source and, therein, δxx

(
δyy
)

is the waist radius of the GSM beam in the x/y
direction, respectively. Subsequently, when the beam propagates along the transmission
direction z from the Alice (source plane z = 0) into Bob (received detection plane z > 0)
in atmospheric turbulence channel, the cross-spectral density matrix at z plane can be
expressed by the extended Huygens–Fresnel principle [24]

Wij(ρ1, ρ2; z) = Ai Aj

(
k

2πz

)2s
exp[−( r2

1
4w2

0i
+

r2
2

4w2
0j
)]µij(r1 − r2)

× exp[− ik
2z (|ρ1 − r1|2 − |ρ2 − r2|2)]

×〈exp[ψ(ρ1, r1) + ψ∗(ρ2, r2)]〉atdr1dr2

(2)

where k is the optical wave number related to the wavelength λ by k = 2π/λ. ψ(ρ1, r1)
describes the effects of the atmospheric turbulence on the propagation of a spherical
wave due to the atmospheric turbulence from the point (r, 0) to (ρ, z). Considering the
Kolmogorov spectrum and a quadratic approximation of the 5/3 power law for Rytov’s
phase structure function, the ensemble average term in Equation (2) can be rewritten as

〈exp[ψ(ρ1, r1) + ψ∗(ρ2, r2)]〉at = exp{−[(ρ1 − ρ2)
2]

5/6
/r5/3

0 } (3)

where r0 is the spatial coherence radius of a spherical wave propagation in turbulent
atmosphere channel, which can be calculated by

r0 =

(
0.545k2z

∫ 1

0
C2

n(z cos α)dz
)−3/5

(4)

where α is the zenith angle of the channel and the altitude-dependent generalized refractive-
index structure parameter C2

n(zcosα) can be characterized by the ITU-R model [25]. It is
also indicated that the phase distortion caused by atmospheric turbulence eventually leads
to a beam decoherence [26].

2.1.1. Rotation of Polarization Angle

Based on the unified theory of coherence and polarization, we assume that one of
the properties of the quantum states, the polarization angle θ,−π/2 ≤ θ ≤ π/2, can be
represented as the major axis of the polarization ellipse made in the x direction. Thus, the
polarization angle θ can be expressed as [27]

θ(ρ; z) =
1
2

arctan
{

2Re[Wxy(ρ, ρ; z)]
Wxx(ρ, ρ; z)−Wyy(ρ, ρ; z)

}
(5)

Thus, without any loss of generality, we consider the characteristic of the received
optical signal at the center point ρ0 = (0, 0, z), that is, the polarization angle of quantum
state at the received detection can be represented as θ(ρ0; z). Thereby, the rotation of the
polarization angle ∆θ can be expressed as

∆θ = θ(r0; 0)− θ(ρ0; z) (6)

2.1.2. Beam Depolarization

The value of cross-spectral density function has the same variation when a beam has
the same coherence length in x/y directions. Therefore, we can also conclude that the
rotations of the polarization state will not be seriously impacted in a turbulent channel since
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the values of the wave front phase distortion characterized by the cross-spectral density
function caused by atmosphere turbulence, ψ(ρ1, r1), are the same. Nonetheless, the
linearly polarized quantum light after transmission will be depolarized in the atmosphere
turbulent channel [28]. However, in previous works [29,30], the geometric model has been
proposed to calculate the free-space channel loss, η, which is regarded as the channel
transmittance, without considering the depolarization effects. Since the distribution of
polarized-photon number is still Poissonian [19], we modify the transmittance as η′ = ηpη.
Here, the ratio ηp of the effective polarized intensity component to the total intensity of
the light beam is assumed as the degree of polarization (DoP), which can be succinctly
described by [31]

P(ρ, ρ; z) =

√
s1(ρ, ρ; z)2+s2(ρ, ρ; z)2+s3(ρ, ρ; z)2

s0(ρ, ρ; z)
, 0 ≤ P(ρ, ρ; z) ≤ 1 (7)

where s0, s1, s2 and s3 are the Stokes parameters. Specifically, s0 represents the total light
intensity, s1, s2 represents the linearly polarized light component in the x direction and
in the 45-degree direction, respectively. s3 represents circularly polarized light in the right
hand. Furthermore, based on the formula between DoP and CSDM, the DoP can be
rewritten as

P(ρ, ρ; z) =

√
[Wxx(ρ, ρ; z)−Wyy(ρ, ρ; z)]2 + 4Wxx(ρ, ρ; z)Wyy(ρ, ρ; z)

Wxx(ρ, ρ; z)−Wyy(ρ, ρ; z)
(8)

As in the previous assumption, the DoP of the quantum light beam at the received
detection can also be represented as P(ρ0; z).

2.2. Key Rate Estimation

In this paper, we consider the decoy-state QKD in the asymptotic case and finite data
size, the secure key rate of decoy-state BB84 QKD in the asymptotic case is given by

RGLLP = q
{
− fe

(
Eµ

)
Qµh2

(
Eµ

)
+ Q1[1− h2(e1)]

}
(9)

where q depends on the implementation (1/2 for the BB84 protocol due to the fact that half
of the time Alice and Bob disagree with the bases; if one uses the efficient BB84 protocol
q ≈ 1 and fe is the error correction inefficiency function, µ is the intensity of the signal state
and h2 is the binary entropy function. Qµ and Eµ are the measured gain and the quantum
bit error rate (QBER), while Q1 and e1 are, respectively, the gain and error rate of single
photon states estimated using the decoy-state method.

Here, we follow the standard channel model using a known channel transmittance
η for key rate estimation. Specifically, when the photon number i of each pulse follows a
Poisson distribution with a WCP source at intensity µ set by Alice, the transmittance, yield
Yi, gain Qi and QBER ei are

ηi = 1− (1− η)i,
Yi ≈ Y0 + ηi = Y0 + 1− (1− η)i,

Qi = Yi
µi

i! e−µ,
ei =

e0Y0+edηi
Yi

,

(10)

where Y0 and e0 are the dark count rate and the error rate of background, respectively, and
ed is the misalignment error. Then, the overall gain Qµ and QBER Eµ for the intensity µ are

Qµ =
∞
∑

i=0
Yi

µi

i! e−µ,

Eµ =
∞
∑

i=0
eiYi

µi

i! e−µ
(11)
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The misalignment error comes from the long-distance QKD experiment reported in
Reference [10], and the channel transmittance is assumed as a given value. However,

the modified misalignment error ed =
3
∑

k=1
sin2∆θk (k = 1, 2, 3) can be acquired when the

misalignment error occurs in three channels for the measurement-device-independent
(MDI)-QKD protocol in References [32,33]. Thus, we can calculate ed through ed = sin2∆θ
in only one channel for our decoy-state BB84 QKD protocol once the rotation of polarization
angle ∆θ is obtained. Moreover, it can be seen from Equation (7) that, for the linearly polar-
ized quantum light after transmission in a turbulent atmosphere channel, the polarized
light component in the total light intensity will be reduced (i.e., P(ρ0; z) < 1). Thus, the
practical transmittance can be expressed as P(ρ0; z)η.

3. Results

In this section, we put the above models into a simulation program for decoy-state
BB84 QKD in a turbulent channel where the refraction structure constant C2

n is fixed at
10−13. Here, we first estimate the spatially-dependent polarization effects caused by the
use of curved optics in an off-axis configuration. The 45-degree polarized state under
a coherent beam with the different coherence length (i.e., the difference ∆δ between the
coherence length δxx in the x direction and δyy in the y direction) is taken as an example,
and the results of the misalignment errors of the beam in the vacuum channel are shown in
Figure 2b. It can be observed that one factor that causes the rotation of the polarization
angle is the coherence characteristic of the laser beam itself. Once the difference ∆δ is close
to zero (i.e., the ideal coherent beam), the rotation of the polarization angle is negligible.
This is because, if the beam has the same coherence length in x/y directions, the variation in
cross-spectral density function is equal according to Equation (2), thus, there are almost no
rotations. In this case, the expected misalignment error is consistent with the reported value
of 1.5%, which means the polarization misalignment is due to the measurement setting.
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Figure 2. The evolution of the polarization angle (a) and misalignment error (b) of the 45-degree polarization state versus
transmission distance in a free-space channel. Since the misalignment error only depends on the rotation of polarization
angle ∆θ, the result is same with respect to the −45-degree, and the vertical polarized and horizontal polarized states in the
theoretical simulations.

To perform the influence of polarization analysis on the secret key generation rate
under different beam qualities, we plot the comparison results both in the asymptotic
case and finite data size. Here, we only fix the signal and decoy intensities to µ = 0.3
and ν = 0.05. The probabilities of sending them are equal and the probability of sending
X basis is 0.5. Other experimental parameters are listed in Table 1. As shown in Figure 3a,
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the key rate under a coherent beam with ∆δ = 0.0001 m is very close to the ideal case. As
the coherent length difference ∆δ of the laser beam increases from 0.0001 m to 0.005 m, the
maximum tolerable transmission distance is reduced from over 120 km to approximately
60 km. Moreover, the valid secret key rate is hard to realize over 20 km when a coherent
beam with ∆δ = 0.0075 m or ∆δ = 0.01 m is applied.

Table 1. Lists of Necessary Parameters.

Symbol Name Value

λ wavelength of the laser beam 1550 nm
ω0 waist of the laser beam 3.5 cm
N total number of signals 1014

ηd detection efficiency 50%
e0 error probability of dark counts 0.5
ed error probability of optical misalignment 0.015
fe Error correction efficiency 1.16

Y0 background rate 3 × 10−6

∈ security bound 10−7
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Figure 3. (a) Key rate comparison against coherent length difference ∆δ in the asymptotic case and (b) key rate comparison
against finite/infinite data size or fixed/dynamic probability of misalignment error ed in our model.

The practical key rates in finite data size are also shown in Figure 3b. We compared the
key rate of QKD in the dynamic misalignment errors calculated by our model (blue line) and
the fixed misalignment errors (1.5%) reported in the previous works (pink line), respectively,
and we took a moderate value ∆δ = 0.005 m in the range of ∆δ = 0.0001 ∼ 0.01 m, as
shown in Figure 3a. It can be seen that the maximum tolerable transmission distances
are both around ~125 km under infinite data size (N = 1099) or finite data size (N = 1012).
Compared to the finite length effect, the maximum tolerable transmission distance is
reduced to 60 km with a dynamic probability of misalignment error ed in our model, which
shows that the probability of misalignment error ed has a severe impact on the key rate.
These results highlight the importance of improving the beam quality in the practical
implementation of free-space QKD.

4. Conclusions

We propose a method where the characteristics of beams in a free-space channel
can be calculated by the extended Huygens–Fresnel principle and the coherent Gaussian
Schell-model (GSM). Based on the unified theory of coherence and polarization, a general
model is proposed for determining the rotation and depolarization effects, which gives
more practical results than those in the previous free-space QKD work. We also compare
the key rates in both the asymptotic case and the case with finite-size effect, which show a
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more critical impact on the key rate from the misalignment error than that of the finite-size
effect. Furthermore, our numerical simulations show that the polarization effect caused
by turbulence can be effectively mitigated when maintaining good beam coherence prop-
erties. Hence, it is suggested that the use of a laser beam in free-space QKD experiments
should be considered more cautiously. We remark that our method can also be applied to
different QKD protocols, including decoy-state BB84 QKD and MDI-QKD. Of course, more
parameters of laser sources will be taken into consideration when our method is applied in
MDI-QKD, as discussed in References [34–36].
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