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  Abstract   Understanding changes in cerebral oxygenation, haemodynamics and 
metabolism holds the key to individualised, optimised therapy after acute brain 
injury. Near-infrared spectroscopy (NIRS) offers the potential for non-invasive, 
continuous bedside measurement of surrogates for these processes. Interest has 
grown in applying this technique to interpret cerebrovascular pressure reactivity 
(CVPR), a surrogate of the brain’s ability to autoregulate blood  fl ow. We describe a 
physiological model-based approach to NIRS interpretation which predicts auto-
regulatory ef fi ciency from a model parameter  k_aut . Data from three critically 
brain-injured patients exhibiting a change in CVPR were investigated. An optimal 
value for  k_aut  was determined to minimise the difference between measured and 
simulated outputs. Optimal values for  k_aut  appropriately tracked changes in CVPR 
under most circumstances. Further development of this technique could be used to 
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track CVPR providing targets for individualised management of patients with 
altered vascular reactivity, minimising secondary neurological insults.  

  Keywords   Modelling  •  Cerebrovascular reactivity      

    1   Introduction 

 Cerebral blood  fl ow (CBF) is tightly regulated by cerebral autoregulation (CA), 
forming a critical link between oxygen supply and demand. Myogenic, metabolic 
and neurological mechanisms lead to a complex pattern of vascular reactivity over 
different time scales combining to maintain constant perfusion across a wide range 
of perfusion pressure. Following brain injury, acute disturbances of CA may lead to 
hyper or hypo-perfusion and secondary neurological insults; maintaining cerebral 
perfusion is thus a core goal during the neurointensive care treatment of brain injury. 
However, delivering this is not straightforward as there is no convenient means of 
monitoring CBF or CA continuously at the bedside. 

 Measures of vascular reactivity, derived using surrogates of cerebral blood vol-
ume (CBV) or CBF, may be compared with arterial blood pressure (ABP) to inves-
tigate ef fi ciency of cerebrovascular pressure reactivity (CVPR) and CA  [  1  ] . Recently 
near-infrared spectroscopy (NIRS) has been investigated in this regard as different 
NIRS indices re fl ect aspects of cerebral haemodynamics  [  2,   3  ] . Speci fi cally, cere-
bral tissue oxygen saturation (TOS) and total haemoglobin have been applied as 
surrogates of CBF and CBV, respectively. When correlated with ABP these indices 
agree with well-established indices of CVPR  [  4,   5  ] . 

 While these modes of analysis are simple and easily performed at the bedside, 
they do not account for the non-stationary and non-linear complexity within the 
range of measured signals. A model-based approach might make best use of the 
available data combining a priori knowledge of complex cerebral physiology with 
multiple measured variables to establish fully informed physiological predictions. 
This might account for additional important contributions to our interpretation of 
NIRS measured signals such as changes in CO 

2
  or O 

2
  tension, cerebral metabolic 

rate (CMRO 
2
 ) and arterial to venous volume ratio. 

 We have previously described a physiological model of cerebral haemodynam-
ics, oxygenation and metabolism and used this to aid interpretation of NIRS signals 
during cerebral physiological challenges in healthy volunteers  [  6  ] . The model com-
bines haemodynamic, metabolic and oxygenation components creating simulated 
outputs of a range of measured signals. Variation in the model parameters from their 
basal values alters simulated outputs in a way which may mirror changes in under-
lying physiological processes. The model parameter  k_aut  has been designed to 
represent changes in the ef fi ciency of CA ranging from 0 with an absence of CA to 
1 where it is completely intact. This work translates our model  [  6  ]  into the pathophys-
iological context of brain injury. The aim of this work is to use a range of measured 
signals, including NIRS, to identify a model-derived parameter as a biomarker of 
CA in individual patients.  
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    2   Methods 

 Three acutely brain-injured patients showing variation in CVPR were identi fi ed 
from an ongoing multimodal monitoring study in brain-injured patients. This study 
was approved by the institutional Research Ethics Committee and assent was gained 
from patient representatives. 

 For each patient dataset, CVPR was initially characterised using the pressure 
reactivity index (PRx) and mean velocity index (Mx)  [  1  ] . Two 30-min epochs were 
analysed for each patient, one with reactivity indices <0.3 suggesting intact CA and 
one >0.3 suggesting loss of CA. NIRS monitoring was performed with the NIRO 100 
(Hammamatsu Photonics KK) ipsilateral to intraparenchymal intracranial pressure 
(ICP) monitoring and transcranial Doppler  fl ow velocity of the middle cerebral artery 
(Vmca) (DWL Doppler Box, Compumedics, Germany). NIRS measurements 
included spatially resolved tissue oxygenation index (TOI) and normalised total 
haemoglobin index (nTHI) representing measures of TOS and total haemoglobin, 
respectively. Changes in concentration of oxyhaemoglobin (∆[HbO 

2
 ]) and deoxy-

haemoglobin (∆[HHb]) were determined by the modi fi ed Beer–Lambert method. 
Invasive ABP from a radial artery catheter, end tidal CO 

2
  (ETCO 

2
 ) and pulse oximetry 

(SpO 
2
 ) were gathered through an Intellivue monitor (Philips, N.V., Amsterdam, The 

Netherlands). Signals were synchronised, downsampled to 1 Hz and  fi ltered with a 
lowpass 0.1 Hz  fi fth-order Butterworth  fi lter to remove high frequency noise and 
respiratory in fl uences. Of these measured signals ABP, ETCO 

2
  (approximating 

PaCO 
2
 ), SpO 

2
  and ICP were used as model inputs. These produced simulated outputs 

for CBF, total haemoglobin ([HbT]), [HbO 
2
 ], [HHb] and TOS which were compared 

with their measured counterparts Vmca and NIRS (nTHI, ∆[HbO 
2
 ], ∆[HHb], TOI). 

 Optimisation was performed by minimising the difference between measured sig-
nals and simulated outputs for Vmca and NIRS  fi nding optimal values for parameter 
 k_aut  (representing CA) and an additional parameter  u  re fl ecting cerebral energy 
demand. Reduction of this additional parameter below its basal level simulating a 
reduction in cerebral metabolism was required to adequately  fi t the measured NIRS 
signals. This seems physiologically plausible because all patients were deeply sedated 
at the time of study.  k_aut  values produced by these different optimisation strategies 
were compared to index-based predictions of CVPR for consistency. The difference 
between simulated outputs and measured signals is expressed as the mean absolute 
difference between the two. The improvement in the  fi t following optimisation is 
given as the percentage difference between measured signals and simulated outputs at 
basal parameter settings and optimised parameter settings divided by the basal value.  

    3   Results 

 A high  k_aut  was associated with intact CVPR and a low value disturbed CVPR in 
all simulations excluding those optimised on the basis of TOI. An example dataset 
is shown in Fig.  13.1  demonstrating disturbed CA. It can be seen that simulation 
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with a low value of  k_aut  (0.3), re fl ecting dramatically impaired autoregulation, 
simulates Vmca and nTHI most accurately.  

 Model simulations using different measured signals for optimisation of  k_aut  
varied in the relationship between  k_aut  and predicted CVPR. When  k_aut  is opti-
mised by minimising the difference between measured Vmca and simulated CBF 
alone in all epochs (Table  13.1 ), there is accurate prediction of Vmca (mean abso-
lute difference 1.98 cm/s). Post-optimisation  k_aut  values are lower in the epochs 
with reduced CVPR (0.53), suggesting that  k_aut  appropriately re fl ects the level of 
CA. When measured NIRS signals are included in this strategy (Table  13.2 ) it is 
possible to account for the changes in nTHI by optimising  k_aut  alone. This contin-
ues to predict appropriate values of  k_aut  (Table  13.2 , column 1). To adequately  fi t 
measured and simulated ∆[HbO 

2
 ] and ∆[HHb], optimisation of  u  reducing cerebral 

metabolism was required. Again, this approach predicts lower values of  k_aut  (0.47) 
in those with reduced CVPR. However, to achieve the best  fi t requires a value for  u  
that is unphysiologically low.   

 Inclusion of TOI within the optimisation strategy is problematic and it is not 
possible to  fi t TOI well in combination with other measured signals (Table  13.2 , 
column 3). Optimal values for  k_aut  do not re fl ect the level of predicted CA in this 
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  Fig. 13.1    Measured signals and simulated outputs for a patient with low CVPR. ( a ) Measured 
Vmca and simulated Vmca using the basal  k_aut  value (1.0). ( b ) The steady-state relationship 
between CPP and CBF using the basal value of  k_aut  reproduces a typical normal static autoregu-
lation curve. ( c ) Measured and simulated Vmca post-optimisation of  k_aut  demonstrate excellent 
agreement compared with the basal value. This value of  k_aut  (0.3) is low and in the dysautoregu-
lated range suggesting that a loss of CA is required to explain the measured signals. ( d ) The pre-
dicted steady state between CPP and CBF using the optimised value for  k_aut  (0.3). This closely 
resembles a static autoregulation curve with loss of CA       
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   Table 13.1    Optimisation of  k_aut  using simulated CBF against measured Vmca alone   

 Improvement (%)  Mean absolute difference  Optimal  k_aut  

 Vmca   59 (35)  1.97 (0.78) cm/s  CVPR intact  0.87 (0.12) 
 nTHI   28 (25)  0.009 (0.01) au  CVPR lost  0.53 (0.25) 
 ∆[HbO 

2
 ]  −18 (36)  1.86 (2.5)  m mol/L 

 ∆[HHb]  −52 (65)  1.58 (2.2)  m mol/L 
 TOI  −70 (75)  17 (2) % 

  Mean (SD) improvement between basal  k_aut  and optimised  k_aut  show improved prediction of 
Vmca and nTHI. Mean (SD) absolute differences between measured signals and simulated outputs 
are shown demonstrating accurate prediction of Vmca and nTHI. Post-optimisation  k_aut  values 
appropriately re fl ect the measured CVPR with a lower mean  k_aut  where CVPR is lost  

   Table 13.2    Optimisation of  k_aut  and  u  based on different combinations of measured signals   
 Measured signals used 
to optimise against  Vmca; nTHI 

 Vmca; nTHI; ∆[HbO 
2
 ]; 

∆[HHb] 
 Vmca; nTHI; ∆[HbO 

2
 ]; 

∆[HHb]; TOI 

  Optimal k_aut value  
 CVPR intact  0.93 (0.17)  0.83 (0.06)  0.03 (0.52) 
 CVPR lost  0.37 (0.15)  0.47 (0.55)  0.9 (0.69) 
 Optimal  u  value  0.50 (0.55)  0.00 (0.00)  0.67 (0.52) 
  Improvement  
 Vmca  70 (28) %  70 (26) %  50 (31) % 
 nTHI  36 (30) %  36 (31) %  5 (34) % 
 ∆[HbO 

2
 ]  14 (48) %  49 (26) %  −40 (74) % 

 ∆[HHb]  −6 (82) %  78 (16) %  −26 (106) % 
 TOI  −536 (894) %  −633 (1,113) %  14 (57) % 

  For each column different measured signals were compared to model outputs to  fi nd optimal values 
for  k_aut  and  u . Mean (SD) improvement between basal parameter values and optimised values are 
shown demonstrating improved post-optimisation prediction of measured signals (excluding TOI). 
Optimal  k_aut  values for each optimisation strategy are shown and are consistent with levels of 
measured CVPR except where TOI is included in the optimisation  

 fi nal approach. The behaviour of measured TOI differs signi fi cantly from simulated 
outputs of TOS; large simulated changes in TOS result from large changes in CBF 
which are not present in the measured TOI (Fig.  13.2 ).   

    4   Discussion 

 We have identi fi ed a model parameter  k_aut  which simulates changes in CA and 
improves prediction of NIRS signals in brain injury. The optimal value of  k_aut  
may thus represent a composite biomarker of cerebral autoregulatory function 
informed from multiple NIRS inputs. This approach aims to form cohesive physi-
ological predictions based on prior knowledge of physiology, maximising the poten-
tial of the available data. 
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  Fig. 13.2    Measured and simulated NIRS outputs from dataset in Fig.  13.1 . ( a ) Measured nTHI 
and ( b ) simulated nTHI demonstrate moderate agreement. ( c ) Measured TOI and ( d ) simulated 
TOI agree qualitatively only       

 Fitting nTHI was least problematic probably because fewer physiological pro-
cesses in fl uence this signal. In comparison ∆[HbO 

2
 ], ∆[HHb] and TOS encode met-

abolic components and differential effects of arterial and venous components 
become more in fl uential. It was impossible to achieve an adequate  fi t for TOS by 
varying only the model parameters  k_aut  and  u . Despite qualitative agreement, the 
magnitude of variation and baseline saturation showed large discrepancies. It is 
unlikely that further optimisation within physiological plausibility could explain the 
lack of variability despite the large changes in CBF observed. However, a differing 
baseline is more easily explained. Similar observations were made during studies in 
healthy volunteers  [  7  ] , but in this case TOS could be explained by adjusting the 
extracerebral:intracerebral signal weighting to 80:20 or doubling the venous vol-
ume, both of which seem unlikely. Studies such as these indicate that accurate pre-
diction and interpretation of TOS might require combined modelling of cerebral 
physiology and light transport in tissue. 

 This study was of limited power including only six epochs from three patients. 
However these datasets demonstrate an extreme of physiological dysfunction with 
large changes in ABP and CBF, representing an excellent challenge for our model. 
Further work must include large numbers of patients undergoing a range of physi-
ological challenges to increase the quality of measured signals in patients with 
lesser degrees of impaired CA. Although this approach has not necessarily been fol-
lowed for many established indices of CVPR it should be viewed as a prerequisite 
to translation into the clinic. 
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 With further investigation, model-informed interpretation of NIRS signals might 
offer enhanced prediction of CA across widely varying physiological and pathophys-
iological contexts. Prior knowledge of population characteristics and further model 
simpli fi cation should improve computational ef fi ciency and move toward bedside 
implementation. This form of interpretation progresses beyond simple correlation 
analyses by combining information from multiple NIRS and systemic measures 
with a priori knowledge of physiology to provide cohesive predictions of cerebral 
well-being. Thus, use of  k_aut  as a biomarker of CA ef fi ciency could inform 
pathophysiology and potentially provide a target for physiological optimisations to 
improve outcome.      
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