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Abstract: Integrons were first identified because of their central role in assembling and disseminating
antibiotic resistance genes in commensal and pathogenic bacteria. However, these clinically relevant
integrons represent only a small proportion of integron diversity. Integrons are now known to
be ancient genetic elements that are hotspots for genomic diversity, helping to generate adaptive
phenotypes. This perspective examines the diversity, functions, and activities of integrons within
both natural and clinical environments. We show how the fundamental properties of integrons
exquisitely pre-adapted them to respond to the selection pressures imposed by the human use of
antimicrobial compounds. We then follow the extraordinary increase in abundance of one class of
integrons (class 1) that has resulted from its acquisition by multiple mobile genetic elements, and
subsequent colonisation of diverse bacterial species, and a wide range of animal hosts. Consequently,
this class of integrons has become a significant pollutant in its own right, to the extent that it can now
be detected in most ecosystems. As human activities continue to drive environmental instability,
integrons will likely continue to play key roles in bacterial adaptation in both natural and clinical
settings. Understanding the ecological and evolutionary dynamics of integrons can help us predict
and shape these outcomes that have direct relevance to human and ecosystem health.

Keywords: evolution; metagenome; antibiotic resistance; lateral gene transfer; Anthropocene;
resistome

1. Introduction

Integrons were discovered during research into the genetic basis of antibiotic resistance
in Gram-negative pathogens [1]. They were shown to be an unusual kind of genetic
element that could capture exogenous genes by site-specific recombination and then express
these genes from an internal promoter [2—4]. The fundamental properties of integrons
were established by examination of these early exemplars, now known as clinical class 1
integrons [5].

The study of clinical class 1 integrons established the general properties of all integrons.
Functional integrons carry a gene for an integron-integrase (intl), which is a tyrosine
recombinase (Figure 1). This enzyme catalyses site-specific recombination between the
recombination site (attC) of a gene cassette and the integron attachment site (attI). Insertion
of multiple gene cassettes results in a tandem array of cassettes. Gene cassettes are mobile,
non-replicating elements, which generally consist of an open reading frame and an attC
site, and are circular when not integrated into a cassette array [6,7].
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Figure 1. Structure and function of integrons. The typical structure of a chromosomal integron includes an integron
integrase gene (intl), which encodes a tyrosine recombinase (Intl); an integron recombination site (attl); and a cassette array
made up of 1-200+ sequential gene cassettes. All gene cassettes carry a cassette recombination site (atfC) and generally
consist of a single open reading frame (ORF), though cassettes that have two ORFs or no ORFs have also been observed.
Some gene cassettes with two ORFs encode toxin—antitoxin systems. Cassettes closest to attI are strongly expressed from the
cassette promoter (P.); however, some cassettes have their own promoters (bent arrows). Expression of intI (red, dotted
arrow) is driven from the promoter (Pjn) and is induced by the bacterial SOS response. Intl catalyses the insertion and
excision of gene cassettes by mediating attC x att] and attC x attC recombination, respectively.

Although most of the general information regarding integron structure and function
is based on studies involving clinical class 1 integrons, this class is atypical in a number of
ways. Clinical class 1 integrons are associated with plasmids and transposons, while the
majority of integrons are found on bacterial chromosomes [8]. The clinical variants mainly
carry gene cassettes that contain antimicrobial resistance genes, and because these cassettes
have been acquired from diverse sources, they have highly variable attC sites [9,10]. In
contrast, sedentary chromosomal integrons carry gene cassettes that encode genes that are
mostly of unknown function and tend to have attC sites that are conserved in sequence
and a secondary structure [10-14]. Lastly, clinical class 1 integrons have relatively short
gene cassette arrays, usually comprising one to six cassettes, which are expressed from a
single promoter embedded in the intI sequence (P.). Sedentary chromosomal integrons can
have hundreds of cassettes in an array, and these arrays can have internal, cassette-borne
promoters [15,16].

Consequently, while the class 1 integrons (and to a lesser extent, other mobile and clin-
ically important integrons, classes 2 and 3) have allowed critical insight into the structure
and function of these elements, they are not entirely representative of integrons as a whole.
When considering the biology, ecology, and evolution of integrons, it is therefore important
to consider the broader diversity of integrons, looking beyond what is observed in clinical
samples and settings.

2. Integrons: Beyond the Clinical Environment
2.1. Diversity and Distribution of Integrons

Integrons are ancient elements involved in generating genomic diversity and driving
bacterial adaptation [6,7]. Activity of the integron integrase is induced by the bacterial
SOS and stringent responses and is therefore triggered in response to both DNA damage
and nutrient starvation [17-19]. Consequently, integrons are able to generate genetic
novelty at precisely the moment when it is needed the most, that is, during periods of
stress or environmental change. Importantly, genetic variation can be rapidly generated
while maintaining genomic integrity due to the modular and independent nature of newly
inserted gene cassettes.

Integrons have been found in every environment surveyed [20-23] and are carried
by diverse bacterial taxa [8]. To date, integrons have been detected within several phyla:
Acidobacteriota, Actinobacteriota, Bacteroidota, Campylobacterota, Chloroflexota, Chrysio-
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genetota, Cyanobacteria, Desulfobacterota, Firmicutes, Gemmatimonadota, Proteobacteria,
Planctomycetota, Spirochaetota, and Verrucomicrobiota [8,24]. They are particularly preva-
lent in Proteobacteria, where complete integrons can be detected in 20% and 10% of
Gamma- and Beta-proteobacterial genomes, respectively [8] (Betaproteobacteria has since
been reclassified as Burkholderiales, an order within the class Gammaproteobacteria [24]).

Recent metagenome studies indicate that integrons may indeed be even more diverse
than indicated by surveys of sequenced genomes. Analysis of environmental samples has
revealed that there are thousands of different integron ‘classes’ (discerned based on IntI
amino acid homology) [25]. Similarly, the gene cassette repertoire of these environmental
samples indicates that these elements are abundant and carry a diverse set of genes.
Richness estimates suggest that between 4000 and 18,000 unique gene cassettes occur in as
little as 0.3 g of soil [20]. The distribution of gene cassettes in bacterial taxa is even broader
than the distribution of intl, as they are often present in so-called CALIN elements (clusters
of attCs lacking an integron-integrase). Cury et al. [8] have proposed that CALINs could be
formed by several mechanisms, including (i) off-target insertion of gene cassettes mediated
by an IntI located elsewhere in a genome; (ii) loss of a recognisable intl, either through
mutation, insertion or deletion; or (iii) genomic rearrangements that separate a cluster of
attCs from its cognate intl.

2.2. Environmental Clustering of Integrons

Interestingly, integrons that share homologous Intls and attCs are often found in diver-
gent bacterial lineages that inhabit similar environments [10]. This can be inferred from the
phylogeny of Intl protein sequences, which cluster according to the environment of origin
rather than bacterial phylogeny. Intls encoded by marine and soil/ freshwater bacteria form
the two distinct clades [7,10,16,25]. The same is true for attCs. Based on their sequence and
structure, attCs also cluster according to their environment [10]. They form three major
clades (Figure 2): One is a distinctly marine clade, the second is a soil/freshwater clade,
and a third clade that has been named “Xanthomonadales-like’, as it is almost exclusively
(>99%) comprised of attCs from the Xanthomonadales order. Xanthomonadales are com-
monly found associated with plant roots and leaves [10], suggesting that this clade might
represent plant-associated environments.

This apparent incongruence between the phylogeny of integrons (Intls and attCs) and
their bacterial hosts has a number of potential explanations. It could result from horizontal
transfer of integron platforms between lineages, likely to occur more readily where donor
and recipient are co-located in the same environment. The environmental clustering of
integrons could also be the result of convergent evolution, driven by selection for the ability
of local Intls to recognise attCs from the same environment [10].

Regardless of the evolutionary mechanism, the environmental partitioning of inte-
gron components has important implications for understanding integron ecology and the
exchange of gene cassettes. Horizontal transfer of mobile gene cassettes is likely to be more
prevalent among bacteria that co-exist in the same environment. Successful integration of
a foreign gene cassette relies on the ability of the endogenous Intl to recognise and bind
to the folded bottom strand of the gene cassette’s attC site [27,28]. However, different
Intls have been shown to recognise and recombine a different range of folded attC hairpin
structures. For example, the class 1 integron integrase (Intl1) can recognise a much broader
range of attCs than the Vibrio cholerae IntlIA [29]. Thus, it is likely that similar Intls can
efficiently recombine similar ranges of attC substrates. This suggests that the exchange of
cassettes might occur across broad phylogenetic boundaries due to shared Intl and attC
homology within common environments. Indeed, at least among Vibrio isolates, the same
gene cassettes can be detected even in the most distantly related species of the genus [30]. A
selective advantage would be gained by integron platforms that can successfully recognise
and integrate diverse cassettes from their local environment. It is not known whether
this process generates the observed environmental clustering of integron components, or
simply maintains it.
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Figure 2. Environmental clustering of attC sequence and folding structures. The tips of the tree each represents an attC

site. Tips outlined by shaded triangles represent attCs from chromosomal integrons. Unshaded tips represent attCs of

antimicrobial resistance gene cassettes carried by class 1 integrons. Based on their sequence and structure, attCs cluster

according to their environment, rather than host phylogeny, forming three major clades. Note that the sequence and

structural diversity of attCs from class 1 integron gene cassettes spans that of all chromosomal attCs. The folded bottom

strand of the best-fitting representative attCs from each clade are shown. These were determined by generating covariance
models (CMs) built on the attCs from each clade, using previously described methods [10]. The attCs that best fit each model
(based on CM bit scores) were selected as representatives and their structure predicted using RNAfold v2.4.16 from the
ViennaRNA Package 2.0 [26].

2.3. Functional Diversity of Gene Cassettes

While gene cassettes that carry open reading frames exhibit incredible sequence
diversity, the full functional diversity of these putative genes remains unknown, as approxi-
mately 70-80% of gene cassettes encode hypothetical or uncharacterised proteins [19,24,30].
However, the analysis of cassette-encoded genes for which functional predictions are
available indicates they contribute to a wide range of cellular activities, with examples
found to be affiliated with all broad-level functional categories. The most commonly re-
ported functions conferred by cassette-encoded proteins include toxin—antitoxin systems,
glutathione S-transferases, acetyltransferases, receptor-associated transporters, and phage-
related functions, such as restriction, methylation, and CRISPR systems [9,12,14,20,31-34].
Toxin—antitoxin gene cassettes can counteract homologous systems found on plasmids and
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bacteriophages, potentially protecting their host from invading mobile elements [35,36].
Together, these functions, which are largely associated with detoxification and phage-
resistance, suggest that many cassette-encoded proteins are involved in the defence against
biotic and abiotic stressors. Since many such stressors activate IntI activity, integrons
increase the chances of conferring these prevalent cassette functions, which act to alle-
viate the stress. In addition, 10% to 30% contain signal peptide domains for membrane
association or cellular export [12,19,35], and the most common cellular location has been
identified as part of the membrane [32]. These findings support the idea that gene cassettes
might play an important role in facilitating bacterial interactions with their hosts and
broader environments.

Interestingly, among closely related strains, the gene cassette content of integrons can
vary considerably, and most gene cassettes are only ever detected in a single integron [11,12,29].
Moreover, cassette arrays are highly dynamic, and the degree to which they change likely
reflects the level of variability in the prevailing environmental conditions. Integrons are thus
hotspots of genomic diversity and might facilitate niche specialisation.

We speculate that integrons and their cassette arrays represent variable and dynamic
loci that are useful not only in responding to stressors, but also in facilitating bacterial
adaptation to a range of different lifestyles and environmental niches. In providing a
reservoir of genes that can be rapidly changed and rearranged, integrons represent a
valuable commodity to facilitate bacterial survival and success in any number of situations.
For example, among Xanthomonas species, gene cassette arrays are highly similar within
the same pathovar, yet exhibit no similarity between different pathovars [11]. Although
it is unknown what functions these cassettes encode, the strong correspondence between
cassette array content and pathovar status suggests that they might play a role in facilitating
species-specific interactions between Xanthomonas and their plant hosts. Further, many
integrases among Xanthomonas have become inactivated, preventing further Intl-mediated
changes to their cassette arrays [11,36,37]. Consequently, their arrays have stabilised after
their selection as pathovars of specific plant hosts [11,38,39].

3. Integrons in the Anthropocene

The functionality of integron activity predisposes these elements to flourish in the An-
thropocene. Human impacts on the microbial world have likely been more extensive than
we know, resulting from changes in the global climate, altered nutrient cycles, loss of plant
and animal biodiversity, and widespread pollution [37,38]. Specifically, the widespread
use and subsequent environmental pollution with antimicrobial compounds place strong
selective pressures on bacteria to acquire antimicrobial resistance genes. Integrons provide
a mechanism for rapid movement and sharing of different resistance genes in response to
changing antimicrobial selection pressures [39]. This obviates the need to stably maintain a
diverse set of energetically costly resistance genes. However, prior to the Anthropocene,
most integrons probably lacked an important feature that has now become the hallmark of
the global resistance crisis: Mobilisation.

3.1. Mobilisation and the Rise of Class 1 Integrons

Sedentary chromosomal integrons are the ancestral state of integrons [14]. There are
currently five known classes of integrons that have become mobilised by their insertion into
conjugative elements. Of these, class 1 integrons are by far the most clinically important.
They vector almost all known resistance gene cassettes that collectively confer resistance to
most classes of antibiotics [40]. All mobile class 1 integrons are believed to have originated
from a single ancestor in a Burkholderiales (formerly Betaproteobacteria) chromosome in
the early 20th century [5].

Evolutionary reconstructions suggest that this ancestral chromosomal class 1 integron,
carrying the biocide resistance gene gacE, was captured by a res-hunting transposon of the
Tn402 family [5,41]. The integron-carrying Tn402 transposon was subsequently inserted
into a mercury-resistance Tn21-like transposon. The res hunting function of Tn402 allowed
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this mosaic element to insert into the res site of diverse mobile elements, subsequently
facilitating its spread into a diverse range of bacteria. The now mobilised element encod-
ing biocide and mercury resistance, which were used heavily prior to the antibiotic era,
provided a significant selective advantage to its bacterial host. Subsequent insertion of the
sulphonamide resistance gene sull deleted the terminus of gacE to form gacEAI-sull, which
is now part of the 3’ conserved segment of clinical class 1 integron variants. Possession
of sull would again provide a selective advantage as sulphonamides became the first
commercially available antibiotics in the 1930s [42]. Since then, the derivatives of this
ancestral element have dramatically increased in abundance and distribution, spreading
into diverse bacterial taxa [43]. Screening historic collections of pathogenic Escherichia coli
show that class 1 integrons were not detectable in E. coli isolated before the 1940s, after
which their prevalence rose dramatically to 26% of E. coli isolated in the 2010s [44].

3.2. Success of Class 1 Integrons

In addition to its mobilisation, the remarkable success of class 1 integrons is at-
tributable to several key traits. The first is IntI1’s ability to recognise diverse attC substrates,
providing it access to a larger pool of gene cassettes from diverse phylogenetic sources.
Gene cassettes associated with class 1 integrons exhibit considerable sequence and struc-
tural variation between their attC sites, suggesting that they have originated from diverse
genomic backgrounds [9,10]. Indeed, the degree of variation among attCs of class 1 integron
gene cassettes is as broad as the total variation displayed by cassettes from all sequenced
bacterial genomes (Figure 2) [10]. This suggests that IntI1 could potentially incorporate
any gene cassette originating from any sedentary chromosomal integron.

The second is the lack of species-specific factors needed for Intl1 to catalyse cassette
insertion, as is needed for other integron integrases [45]. For example, the endogenous
IntI of V. cholerae is not active in other bacterial species as it relies on multiple V. cholerae-
specific host factors [45]. It is unknown whether the chromosomal ancestor of class 1
integrons required such host factors and subsequently overcame these constraints during
its evolution, or if they were never required for Intll activity. Regardless, it has allowed
class 1 integrons to spread into, and be active within, a wide range of bacterial hosts, which
is aided by their association with diverse transposons and broad-host range plasmids [6].
We now know that class 1 integrons have spread into at least 104 bacterial species from
44 genera (Table S1). We inferred this from a BLASTP alignment of IntI1 (WP_000845048)
against the RefSeq protein database (using 98% amino acid identity and 70% query cover
thresholds) and cross-referenced the hits with the list compiled by Domingues et al. [43].
Even this is likely to be an underestimate of their true prevalence and distribution, based
only on sequenced organisms contained within the RefSeq database.

Finally, the success of class 1 integrons can be attributed to the significant advantages
they provide to their bacterial hosts under antimicrobial selection. Collectively, they have
acquired more than 130 different resistance genes [40], with more being continuously
discovered [46—49]. Despite class 1 integrons being able to recognise and integrate a broad
range of gene cassettes, there seems to be a preponderance of antimicrobial resistance
genes out of the broader diversity of cassette functions that are associated with class 1
integrons [25]. This overrepresentation of resistance genes among class 1 integrons can
best be explained by two factors: (1) Strong positive selection imposed by the human use
of antimicrobials, and (2) their ability to confer resistance phenotypes in a wide range of
hosts without needing to integrate into metabolic networks [50]. The ability of clinical class
1 integrons to acquire diverse arrangements of these resistance cassettes has aided their
spectacular rise in abundance and distribution.

Class 1 integrons can now be detected on every continent, including Antarctica [25,43].
Such is their abundance that millions to billions of copies of class 1 integrons are now
present in a single gram of faeces from humans and agricultural animals [51]. This suggests
that up to 102 copies of these elements are being shed into the environment every day.
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Each of these integrons is presumably still active, and therefore capable of continuing to
acquire different arrangements of resistance genes and other adaptive determinants.

3.3. Ongoing Integron-Driven Evolution in the Anthropocene

Class 1 integrons generally have short arrays of one to six cassettes that are expressed
from a single promoter. The strength of cassette expression decreases with distance from
the promoter [3]. During SOS-inducing stress, intl1 expression is upregulated, leading
to the acquisition of novel gene cassettes and rearrangement of existing cassettes, such
that incoming cassettes are inserted at the start of the array where their expression is max-
imised [52,53]. Lineages with first-position cassettes that confer significant advantages are
therefore likely to be selected. Experimental evolution shows that IntI1 activity accelerates
the evolution of antibiotic resistance phenotypes [53]. Specifically, exposure to gentamycin
resulted in the induction of IntI1 activity, which in turn increased the expression of a gen-
tamycin resistance cassette by causing its duplication and insertion into the first position of
the array. This resulted in a 64-fold increase in resistance to gentamycin [53].

Such integron-mediated evolution is likely happening across the globe. Indeed, class
1 integrons found inserted in the same plasmid backbone present in different bacterial
isolates can vary considerably in their resistance cassette profiles [39]. Such variation in
cassette array content likely represents adaptative responses to different antimicrobial
selection pressures at a local scale. However, the implications are global. The world’s
antibiotic usage continues to increase [54], resulting in significant antibiotic pollution
radiating from human populations and agricultural areas [55,56]. Antibiotic concentrations
with biological significance can now readily be detected in many natural environments [57].
Class 1 integrons, given their mobility, abundance, and global distribution, can rapidly
provide their bacterial hosts with resilience to variable antimicrobial stressors.

4. The Future of Integron Evolution

Integrons will likely continue to play a major role in bacterial evolution in both clinical
and environmental settings. Understanding the ecological and evolutionary dynamics of
integrons can help us predict and shape these outcomes.

4.1. Natural Environments

Humans are driving environmental instability at an unprecedented rate [37]. Conse-
quently, humans are inadvertently applying biotic and abiotic stress on microbes inhabiting
almost all biomes on the planet [58]. Bacteria that can rapidly respond to environmental
perturbations, occupy novel ecological niches, or degrade xenobiotic pollutants are likely
to have significant advantages. Integrons have the potential to mediate such adaptation
in their bacterial hosts. As such, we might expect strains of bacteria that carry integrons
to have a selective advantage over related strains without integrons as environmental
conditions continue to become more changeable.

Already, gene cassettes encoding xenobiotic-degrading enzymes can be readily re-
covered from polluted sediments, [59,60]. Positive selection for such genes imposed by
anthropogenic pollution will likely facilitate their spread into diverse bacteria, as has been
the case with antibiotic resistance cassettes. Adaptation to novel niches might also be aided
by integron gene cassettes. For example, in submarine gas-hydrate-bearing sediments, gene
cassettes can confer niche-specific functions that are metabolically relevant to their environ-
ment [61]. Environmental instability might provide opportunities for integron-carrying
bacteria to invade specific niches and generate ecotypes. With improved sequencing tech-
nologies and methods for recovering integron sequences [25], we can investigate their
ecological and evolutionary roles in natural environments more deeply.

4.2. Clinical Environments

The search for and use of novel antibiotics will undoubtably result in the subsequent
spread of novel genes that can confer resistance to them. Integrons, particularly those
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of class 1, are almost certain to play a role in their dissemination. Early detection of
such genes, via integron-targeted genetic surveillance, may provide an opportunity to
flag new resistance mechanisms and develop mitigation strategies before they become
widespread threats to clinical antibiotic efficacy. Additionally, integrons may pose a threat
to alternative infection-treatment strategies, particularly phage therapy. Re-emergence
of the therapeutic use of bacteriophage has provided a promising solution to combat
antibiotic-resistant infections [62]. However, the high prevalence of phage-resistance
functions encoded by integron gene cassettes raises concerns about the long-term success
of such an approach [9,19,25,30]. Considering and managing the potential of integrons to
hinder phage therapy is a necessity if we are to ultimately benefit from its therapeutic use.

Besides resistance, integrons might also drive the dissemination of other clinically
relevant functions, particularly pathogenicity and virulence genes [50]. As antibiotic
resistance becomes increasingly common in clinical settings, acquired genes that can
enhance host colonisation and immune evasion will provide pathogens with an advantage
over other resistant strains. There is evidence of this already happening. For example, class
1 integrons have acquired novel virulence cassettes and subsequently spread into multiple
Acinetobacter species [39,63]. Virulence genes that can act as single units and function within
multiple bacterial species are likely candidates to be integron-borne. Such genes could
confer a broad range of functions such as those involved in cell surface adhesion, toxin
production, biofilm formation, stress response, or nutrient acquisition and metabolism [50].

4.3. Integrons as a Biotechnological Resource

Integrons and their gene cassettes might provide a rich resource for biotechnology.
Their value stems from two promising applications. The first is manipulating integron
activity for genome engineering. The second is discovering gene cassettes with novel
biochemical functions with biotechnological relevance.

The former has already been exquisitely demonstrated [64]. Applications of recombination-
based genetic engineering tools are limited by the requirement of high sequence specificity of
recombination sites. To overcome this, Nivina et al. [64] designed synthetic attC sites in silico,
and used these as highly efficient, sequence-independent recombination sites for genomic
engineering. As attCs rely on their folding structure to act as recombination substrates, they
exhibit very minimal sequence-level constraints. As such, they can be embedded into virtually
any protein-encoding gene without disrupting its amino acid sequence. Harnessing integron
activity thus provides a unique structure-specific DNA recombination system that can be
extremely useful for synthetic biology.

Additionally, manipulating integron integrase activity can be used to optimise gene
and regulatory arrangements of biochemical pathways [65]. As a proof-of-concept,
Bikard et al. [65] used the genetic shuffling activity of IntI1 to generate novel arrangements
of a tryptophan biosynthetic operon. Several of these resulted in an order of magnitude
greater yield of tryptophan than the natural gene arrangement. Such manipulations can be
used to optimise industrially important biochemical pathways.

The second promising avenue is yet to be fully realised. The huge diversity and
overrepresentation of genetic novelty encoded by gene cassettes make them a highly
suitable resource of hitherto untapped enzymatic functions [50]. Since cassettes largely
function as single-gene/single-trait entities, many are likely to be functionally active in a
broad range of microbial hosts. This makes them highly useful commodities for synthetic
biology applications. Here, IntI1 activity can be used for the recovery of gene cassettes from
cloned genomic or metagenomic libraries, as has been demonstrated by Rowe-Magnus [66].
We might also select for novel genes that encode functions of interest by imposing artificial
selection pressures [67]. In particular, their suspected roles in biodegradation, niche
specialisation, and cross-species interactions suggest that many will encode useful functions
that humans can leverage. Such functions could have applications in bioremediation, the
development of environmentally friendly industrial processes, and enhancing rhizosphere
and phyllosphere function for sustainable agricultural practices.
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5. Conclusions

Our understanding of integrons and their remarkable roles in bacterial genome evo-
lution has come a long way since they were first discovered more than two decades ago.
Early studies on plasmid-borne clinical class 1 integrons established the fundamental
principles of integrons and their roles in disseminating antibiotic resistance genes. Over
time, the functional and evolutionary significance of integrons beyond antibiotic resistance
has become increasingly recognised. Notably, advances in next-generation sequencing
technologies allowed vast numbers of integrons from diverse bacterial species to be un-
covered through metagenomic and genomic sequencing. Most of these gene cassettes
encode hitherto unknown functions and represent a vast gene pool within the bacterial
pangenome. Integrons are now considered to be ancient and diverse hotspots of genome
innovation that are widespread in the chromosomes of many environmental bacteria.

Anthropogenic pressures on natural and human-modified ecosystems are projected
to increase in the future [68]. This means that integrons will most likely continue to play
key roles in conferring novel traits that benefit their bacterial hosts in their respective eco-
logical niches. To better predict evolutionary trajectories of integron-mediated adaptation
requires deeper insights into many outstanding questions in the field, including molecular
mechanisms that are thought to contribute to novel gene cassette formation. It is hoped
that future research will also pave the way for harnessing integrons as a biotechnological
resource that improves sustainable agriculture, environmental remediation, and clinical
treatment outcomes.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/microorganisms9112212 /s1. Table S1. Bacterial species harbouring a class 1 integron
integrase gene.
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