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Temporal bias in case-control design: preventing
reliable predictions of the future
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One of the primary tools that researchers use to predict risk is the case-control study. We

identify a flaw, temporal bias, that is specific to and uniquely associated with these studies

that occurs when the study period is not representative of the data that clinicians have during

the diagnostic process. Temporal bias acts to undermine the validity of predictions by over-

emphasizing features close to the outcome of interest. We examine the impact of temporal

bias across the medical literature, and highlight examples of exaggerated effect sizes, false-

negative predictions, and replication failure. Given the ubiquity and practical advantages of

case-control studies, we discuss strategies for estimating the influence of and preventing

temporal bias where it exists.
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The ability to predict disease risk is a foundational aspect of
medicine, and is instrumental for early intervention, clin-
ician decision support, and improving patient outcomes.

One of the main tools utilized by researchers for identifying
predictive associations or constructing models from observational
data is the case-control study1. By measuring differing exposure
patterns between the case and control groups, exposures can be
interpreted as predictors or risk factors for case status2,3. With the
proliferation of observational datasets and novel machine learn-
ing techniques, the potential for these studies to play a direct role
in personalized medicine has begun to be explored4. However, we
have identified a structural flaw, seen widely in basic case-control
study designs, which we call temporal bias. At its core, temporal
bias represents a mismatch between the data used in the study
and the data that a clinician would have access to when making a
diagnostic decision. A clinician must evaluate all patients in real
time, without the luxury of knowing that they have been pre-selected
according to their future status. Case-control studies, as popularly
implemented, are uniquely unable to make prospectively valid
predictions. This temporal bias not only amplifies reported effect
sizes relative to what would be observed in practice, but also
obfuscates the prospective use of findings.

A classic example of temporal bias and its impacts can be seen
through the initial discovery of lyme disease, a tick-borne bac-
terial infection. Lyme disease is characterized by (i) an initial bite,
(ii) an expanding ring rash, and (iii) arthritic symptoms, in that
order5. However, the original 1976 discovery of lyme disease
(then termed lyme arthritis) focused exclusively on patients who
manifested with arthritic symptoms6. This enabled researchers to
definitively identify the prognostic value of a ring rash towards
arthritis, but not tick bites, due to the latter symptom’s temporal
distance from the researcher’s focus. By focusing on predictive
features immediately prior to the event in question, researchers
capture a biased representation of the full trajectory from healthy-
to-diseased. A contemporaneous doctor aware of lyme arthritis
examining a patient presenting with a tick bite would miss the
possibility of disease until further symptoms developed. Similarly,
a predictive model for lyme arthritis focused on ring rashes would
report false negatives if it were deployed in practice: patients who
had yet to develop ring rashes would contract arthritis at a future
time. These errors stem from the incomplete picture of symptoms
that was captured.

However, temporal bias is not a problem of the past. The
central flaw, an overemphasis on features collected near the case
event, still occurs in the literature today. Within the medical
domain, there are numerous examples of temporal bias in both
clinical medicine and machine learning7–16. Despite increasing
interest in machine learning risk prediction, few tools for use on
individual patients have become standard practice17,18. As algo-
rithms trained using large datasets and advanced machine
learning methods become more popular, understanding limita-
tions in the way they were generated is critical. In this article, we
describe the basis for temporal bias and examine three repre-
sentative instances of temporal bias in the medical, machine
learning, and nutritional literature to identify the impact that this
phenomenon has on effect sizes and predictive power.

Of interest are the expansive set of studies that focus on pre-
dicting future events in real time and obey the following general
conditions. First, events to be predicted take the form of state
transitions (healthy-to-diseased, stable-to-failed, control-to-case,
etc.). This implies that there exists a bulk population of controls,
from which cases differentiate themselves. Soon-to-be cases
progress along a trajectory away from the control population at
varying speeds. This trajectory terminates at the occurrence of the
case event, but the position of control individuals along this
trajectory cannot be reliably determined.

Second, we consider that the risk-of-event is equivalent to
measuring progress along a control-to-case trajectory in time.
Because risk prediction utilizes features from the present to assess
the chance of a future event occurring, an event that is truly
random would not be appropriate for a risk prediction algorithm.
The trajectory represents the ground truth progression along a
pathway towards the event in question and are defined relative to
the specific populations chosen for the study. This assumes that
the researchers have taken the exchangeability19 of their case and
control populations into account: if members of the control
population are chosen poorly and cannot experience the case
event, then there can be no trajectory.

Third, at the population level, the trajectory commences when
the to-be-diseased population first begins to diverge from the
non-diseased population and reaches a maximum when the dis-
ease event actually occurs. This requires that the trajectory is
aligned to the event in question. Diseased individuals must
consequently be referred to using terms such as days to disease,
while control individuals exist in an undefined point along this
timeline, because their days to disease is unknown. This is only
required due to the retrospective nature of these studies and is a
major departure from prospective deployment.

Finally, the features actually measured by a study represent
proxies for an individual’s position along the trajectory. Regardless
of their positive or negative association with the event, features
subject to temporal bias will tend to diverge between cases and
controls with a continuous trajectory, and become better at dif-
ferentiating the controls from cases as case individuals get closer to
their event. This divergence provides the mechanism of action for
temporal bias to act. If a model does not possess time varying
features (such as a GWAS), temporal bias cannot occur, but
predicted risk will also be static with respect to time-to-case-event.

As a result, we can distill prediction studies into a common
structure (Fig. 1): the members of the diseased population begin
as controls at a point in the past, and progress along a trajectory
until the disease occurs. Most case-control studies apply a
dichotomous framework over this continuous trajectory.

Temporal bias occurs when cases are sampled unevenly in time
across this trajectory (Fig. 1B). (A theoretical basis for temporal
bias is presented in Supplementary Note 1.) This is a separate but
analogous effect compared to selection bias: the control popula-
tion may be exchangeable with the diseased population but must
tautologically exist at a prior point along the disease trajectory
compared to cases. Rather than operating over the selection of
which patients to include in the study, temporal bias acts over the
selection of when each subject is observed.

This important temporal feature yields two implications:

1. If the features of diseased subjects are evaluated based on a
point or window that is defined relative to the case event
(a future event, from the perspective of the feature
measurements), features in the end of the trajectory will
be oversampled. For example, a study that compares
individuals one year prior to disease diagnosis to healthy
controls will oversample the trajectory one year prior to
disease, and undersample the trajectory further out.

2. The resulting model cannot be prospectively applied because
the study design implicitly leaked information from the
future: a prospective evaluator has no way of knowing if a
particular subject is within the observation window defined
by the study. It cannot be known if an individual is one year
away from a disease diagnosis in real time.

Temporal bias is intuitively understood within certain epide-
miological circles- in fact:

recall bias, caused by the tendency for survey respondents to
remember recent events at a higher rate relative to past events,
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can be interpreted as a specific instance of temporal bias. Simi-
larly, it is understood that case-control studies represent a lower
level of evidence relative to other study designs20. Methodologies
have been proposed that, while not explicitly designed to address
temporal bias, happen to be immune to it (density-based sam-
pling, among others21). However, these tend to focus on point
exposures or necessitate impractically exact sampling strategies.
Despite this important shortcoming, the ease of the case-control
framework has allowed temporal bias to proliferate across many
fields. We examine three examples, in cardiology, medical
machine learning, and nutrition below.

Results
Temporal bias can inflate observed associations and effect
sizes. The INTERHEART study22 examined the association
between various risk factors and myocardial infarction (MI) using a
matched case-control design among a global cohort. Individuals
presenting at hospitals with characteristic MI were defined as cases,
and subjected to interviews and blood tests, while matched controls
were identified from relatives of MI patients or healthy cardiovas-
cular individuals presenting with unrelated disorders. One risk
factor of interest included lipoprotein (a) [Lp(a)], a blood
protein23,24. While Lp(a) levels are thought to be influenced by
inheritance, significant intra-individual biological variance with
time has been reported25,26.

One recent analysis utilized data from this study to examine
the positive association between blood levels of Lp(a) and MI
across different ethnicities and evaluate the possible efficacy of Lp
(a) as a risk prediction feature27. However, because cases were
only sampled at the time of the MI event, the resulting effect sizes
are difficult to interpret prospectively. Indexing case patients by
their case status leaks information regarding their status to which
a physician prospectively examining a patient would not have
access to. Intuitively, if Lp(a) was static until a spike immediately
prior to an MI event, it could not be used as a prospective risk
predictor, even though a significant association would be
observed given this experimental design. This limitation cannot
be overcome using only the data that was collected, as
information regarding the dynamics of Lp(a) over time is
missing. To evaluate the influence of temporal bias, we estimated
the size of the Lp(a)-MI association had the experiment been
done prospectively. This analysis was done by simulating control-
to-case trajectories using INTERHEART case/control population
Lp(a) distributions by imputing the missing data. We conducted
extensive sensitivity testing over different possible trajectories to
evaluate the range of possible effect sizes. This approach allowed

for the recalculation of the association strength as if the study had
been conducted in a prospective manner from the beginning.

Table 1 summarizes the observed effect size in the simulated
prospective trials compared to the reported baseline. In all cases,
the simulated raw odds ratio between Lp(a) and MI was
significantly lower than the observed raw odds ratio due to
temporal bias present in the latter measurement. This is intuitive,
since case individuals as a group will be more similar to controls
(healthier) when sampled at random points in time rather than
when they experience an MI event (Fig. 1B). Although it cannot be
proven that prospective effect sizes would be smaller, as this would
require longitudinal data that do not exist, this experiment suggests
that the degree of temporal bias scales with area under the imputed
trajectory. In order to observe the reported odds ratio, the
underlying trajectory would need to resemble a Heaviside step
function in which cases spontaneously experience a spike in Lp(a)
levels at the point of their divergence from the controls, an
assumption that is neither explicitly made in the study nor has a
basis in biology. We repeated the imputation process with
Heaviside step function-based trajectories, varying the position of
the impulse in the trajectory (Table 1). As the impulse location
approaches the beginning of the trajectory, the effect size relative to
the baseline approaches 1. This observation illustrates the
assumption intrinsic in the original INTERHEART experimental
design: that MI individuals had static Lp(a) measurements during
the runup to their hospitalizations.

To characterize these findings in a real-world dataset, we
examined the Lp(a) test values and MI status of 7128 patients seen
at hospitals and clinics within the Partners Healthcare System-
representing Brigham and Women’s Hospital and Massachusetts
General Hospital among others-who had indications of more than
one Lp(a) reading over observed records. This dataset included
28,313 individual Lp(a) tests and 2587 individuals with indications
of myocardial infarction. We identified significant intra-individual
variation in Lp(a) values in this population: the mean intra-
individual standard deviation between tests was 12.2mg/dl,
compared to a mean test result of 49.4 mg/dl. These results are
consistent with literature findings of significant intra-individual
variance of Lp(a) values25,28,29, challenging the assumption that
individuals could have static levels in the runup to MI.
Furthermore, in this dataset, biased Lp(a) measurement selection
among case exposure values varied the observed association
strength between Lp(a) and MI by between 51.9% (preferential
selection of lower values) to 137% (preferential selection of higher
values) of what would have been observed with random timepoint
selection. On the upper end, this is a conservative estimate: we
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Fig. 1 Prospective risk can be represented as a trajectory. Red and green zones represent positions on the trajectory corresponding to outward definitions
of diseased and non-diseased status. Vertical arrows represent sampling of population at a particular point of a trajectory. A The (single-class) case-control
paradigm often imposes a dichotomous (binary) framework onto a continuous trajectory. B Experiments utilizing observations of cases that are
concentrated at the time when the case event occurs cannot capture any information regarding the transition trajectory, resulting in temporal bias. C In
order to predict a patient’s position along the trajectory, experiments capturing the entire transition from non-diseased to diseased are necessary.
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would expect the deviation to increase upon correcting for
ascertainment bias in the dataset. Control individuals would be
less healthy than true controls, while cases would typically not be
sampled immediately prior to an MI, and consequently appear to
be healthier than INTERHEART cases. These findings suggest that
temporal bias was likely to act in this study design as executed, in a
manner that would reduce the observed utility of Lp(a) as a risk
predictor for future MI.

Prospective prediction failure due to temporal bias. As the
availability of observational data has skyrocketed, event predic-
tion has become a popular task in machine learning. Because of
this focus on prediction, many methods utilize the idea of a
prediction window: a gap between when an event is observed and
when features are collected12,13. A model that differentiates
patients six months prior to MI onset from healthy matched
controls may be said to detect MI six months in advance. How-
ever, because the window is defined relative to a case event, it
represents an uneven sampling of the disease trajectory. Conse-
quently, this prediction requires unfounded assumptions
regarding the trajectory of MI onset. For example, if the trajectory
is such that patients’ risk in the year prior to the MI is
approximately uniform and significantly elevated from the con-
trol risk, a model trained in this way would provide many false
positive 6-month MI predictions by falsely implicating patients
more than 6 months away from an MI. Because window sizes are
often chosen without respect to the underlying transition trajec-
tory, significant potential for temporal bias still exists, driven by
factors such as differential diagnosis periods or missed exposures.

To illustrate the impact of temporal bias in this case, we
constructed predictors for childbirth: a phenotype that was chosen
because of its well-defined trajectory. While the trajectory for
delivery is a rare example of a step function, we demonstrated in
the previous section that the use of case-control effectively imposes
a step-function regardless of the true shape of the underlying
trajectory. Rather than to present a toy example, this is intended to
represent the extreme case of the potential consequences of
releasing a predictive model trained in this manner.

In this system, cases and controls are significantly more difficult
to distinguish more than nine or ten months prior to delivery
compared to later in pregnancy because the case population is not

yet pregnant. Features collected while the case population is
pregnant are far more informative regarding delivery status. A case-
control study that uses a window defined three months prior to
delivery will capture these informative, pregnancy related features.
In contrast, a cohort study examining all patients in January of a
given year will capture largely uninformative features when the case
individual’s delivery takes place late in the year (Fig. 2A).

Using 2015 data from a de-identified nationwide medical
insurance claims dataset, we simulated three studies:

I. CC-CC: models trained and evaluated under the case-
control (CC) paradigm: one month of records, three
months prior to the delivery date (cases) or matched
baseline date (controls) are used.

II. CC-Cohort: models trained under the case-control para-
digm, but evaluated under the cohort paradigm, where
records from January are used to predict delivery in 2015.

III. Cohort-Cohort: models trained and evaluated under the
cohort paradigm.

For each simulated study, records within the observation
window of diagnoses, procedures, and prescriptions ordered were
fed into both deep recurrent neural nets (RNN) and logistic
regression (LR) models.

The significant difference in performance (Fig. 2B) between CC-
CC and CC-Cohort models illustrates a central trait of temporally-
biased sampling. Uneven sampling across the transition trajectory
improves validation AUC under artificial validation conditions, but
model performance collapses when deployed in a prospective
manner. In contrast, models designed with the prospective task
from the outset (Cohort-Cohort) had intermediate performance
that reflected the inherent ambiguity of the available observations.
These findings were robust across both RNN and LR-based models.
In fact, while the more complex RNN performed better than the
logistic regression model for the CC-CC task, it performed worse
than the LR on the CC-Cohort task. In this case, methodological
improvements on an unrealistic task led to more significant
declines in performance on a more realistic task.

For women with October/November/December deliveries,
claims data from January are mostly uninformative, and a
reliable prediction at that point is not possible at the population
level, especially when using features trained during pregnancy.

Table 1 The observed Lp(A)-MI association is magnified by temporal bias.

Initial case state imputation method Trajectory type Effect size relative to reported baseline (95% CI)

Weighted sampling Linear 0.172 (0.160–0.196)
Weighted sampling Logistic 0.169 (0.150–0.187)
Weighted sampling Logarithmic 0.403 (0.390–0.417)
Percentile matching Linear 0.518 (0.507–0.528)
Percentile matching Logistic 0.517 (0.506–0.527)
Percentile matching Logarithmic 0.639 (0.631–0.647)
Percent shift Linear 0.389 (0.376–0.401)
Percent shift Logistic 0.386 (0.373–0.399)
Percent shift Logarithmic 0.539 (0.530–0.549)
Weighted sampling HSF: Impulse in first 10% of trajectory 0.808 (0.801–0.814)
Weighted sampling HSF: Impulse in first 1% of trajectory 0.980 (0.977–0.984)
Weighted sampling HSF: Impulse in first 0.1% of trajectory 0.998 (0.997–0.999)
Percentile matching HSF: Impulse in first 10% of trajectory 0.898 (0.895–0.901)
Percentile matching HSF: Impulse in first 1% of trajectory 0.989 (0.989–0.989)
Percentile matching HSF: Impulse in first 0.1% of trajectory 0.999 (0.999–0.999)
Percent shift HSF: Impulse in first 10% of trajectory 0.860 (0.857–0.864)
Percent shift HSF: Impulse in first 1% of trajectory 0.987 (0.985–0.989)
Percent shift HSF: Impulse in first 0.1% of trajectory 0.999 (0.999–0.999)

Association effect sizes from 100 simulated prospective trials each relative to INTERHEART sizes. Effect sizes less than 1 represent smaller simulated effects compared to those from INTERHEART.
HSF Heaviside step function.
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The confusion matrices produced by CC-CC and CC-Cohort
models revealed that much of the performance collapse can be
traced to false negatives (Fig. 2C). We examined the confidence
that the deep convolutional networks assigned to October/
November/December deliveries when evaluated on cohort
structured data were predictive (Fig. 2D). Models trained under
using case-control incorrectly label these individuals as high
confidence controls, while models trained using cohorts more
appropriately capture the intrinsic ambiguity of the prediction
task. Clinicians do not have the luxury of examining only patients
three months/six months/one year prior to disease incidence: they

must assess risk in real time. These studies are common in the
machine learning literature- one study even described the act of
aligning patients by disease diagnosis time as a feature, and a
major reason why their framework was better able to stratify
risk14. However, aligning patients in this way requires waiting
until disease diagnosis, and so the superior risk stratification
comes too late to be useful.

It is critical to note that this is a problem that cannot be solved
methodologically. As evidenced by the comparison of the
performance of the RNN and LR models, novel or exotic
machine learning techniques cannot compensate for the fact that
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Fig. 2 Case-control predictors for delivery report false negatives when applied prospectively due to temporal bias. A The ground truth trajectory for
delivery (orange) is composed of parts: an informative period, 9–10 months prior to the delivery, and a largely uninformative period prior. Case-control
windows (blue) are indexed to delivery/baseline date, and so only sample a single (informative) slice of the trajectory. Cohort windows (green) always
occur in January, and so uniformly sample the trajectory. B Model performance (Validation AUROC) for deep recurrent neural networks and logistic
regression for each study design. Error bars represent the 95% confidence intervals. Each box represents the results of 10 independently trained models.
Box bounds represent upper quartile, lower quartile, and mean. Whiskers represent maxima and minima. C Comparison of confusion matrices for CC-CC
(left) and CC-Cohort (right) models. Color intensity corresponds to matrix value. D CC-Cohort validation model confidence distributions for late
(Oct/Nov/Dec) deliveries given January features.
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the data fed into the models represent a distorted view of the
actual population distribution that would be encountered
prospectively. Even with perfect measurement and modeling,
temporal bias and the issues that result would still be present: the
underlying trajectory would still be unobserved.

Temporal bias-induced replication failure. Studies that identify
disease risk factors through nutrition data enjoy a particularly
high profile among the public30. As an example, the Mediterra-
nean diet (characterized by consumption of olive oil, fruits,
vegetables, among other factors) has been implicated as a pro-
tective factor against coronary heart disease, but the mechanism
for this association is unclear. One paper set out to examine
whether olive oil consumption specifically was associated with MI
using patients from a Spanish hospital31. MI patients and mat-
ched controls were interviewed regarding their olive oil con-
sumption over the past year, and a protective effect against MI
was observed among the highest quintile of olive oil consumers.
In response, another group analyzed data from an Italian case-
control study and were unable to identify the same association
between the upper quintile of olive oil consumption and MI32.
Crucially, these analyses differed in the size of the observation
window used: one year and two years respectively. As a result, not
only were these studies sampling the MI trajectory unevenly, they
sampled different parts of the MI trajectory. To examine the
degree to which differing amounts of temporal bias present in
each study could have influenced the results of the study, we
utilized longitudinal data from nearly 100,000 individuals from
the Nurses’ Health Study (NHS) regarding olive oil consumption
patterns and MI to provide a baseline ground truth. We simulated
retrospective case-control studies that considered different look-
back periods to determine if the presence or magnitude of a
protective effect was sensitive to the manner in which an
experiment was conducted. Figure 3A details the simulation
setup: longitudinal records (Fig. 3A) were used to identify case
(red) and control (green) individuals. MI dates were identified for
cases, and baseline dates for controls were selected to match the
age distribution of the cases. For each patient, exposures during
the lookback time are recorded. The association between MI
and the observed exposures were then calculated and the influ-
ence of the lookback time on association strength was assessed.

The simulated studies that examined one year of past olive oil
consumption relative to the MI/baseline date detected a protective
effect, as originally observed. However, the magnitude and
statistical significance of this effect decayed as the size of the
lookback period was increased, consistent with the results of the
failed replication. When a two-year lookback period was used,
only 41% of simulated studies observed a statistically significant
result (Fig. 3C). The observed protective effect in these cases is an
artifact of methodology, rather than medicine, physiology, or
society. The act of looking back from the MI date/matched
baseline has the effect of inverting the time axis to time-from-MI
“and aligning the case individuals (Fig. 3B). However, no such
treatment is possible for control individuals, and their position
along the new temporal axis is unknown. As a result, there is no
functional basis for comparing healthy individuals to individuals
artificially indexed to a future event (MI) because these represent
groups that can only be identified retrospectively, after the MI has
already occurred. A mismatch exists between the information
utilized in the study and the information that patients or
physicians would have access to when making dietary decisions.
While there may indeed be a prospective association between
olive oil and MI, protective or otherwise, the data to observe such
an effect was not collected. Because both olive oil consumption
and MI risk are time-varying features, the strength of the

instantaneous association between the two will naturally depend
on when each feature is measured.

Discussion
Temporal bias can be thought of as a flaw present in the appli-
cation of case-control experiments to the real-world diagnostic or
prognostic task. Because these experiments do not uniformly
sample the control-to-case trajectory, features and observations in
certain parts of the trajectory are oversampled and assigned
disproportionate weight. These observations also do not match
the observations that physicians or patients have when assessing
risk in real time. Because the case observations that are model-
applicable can only be identified after the case event actually
occurs, the resulting experimental findings are impossible to use
prospectively. Temporal bias serves to amplify differences
between the healthy and diseased populations, improving
apparent predictive accuracy and exaggerating effect sizes of
predictors. In prospective cases, it may also result in researchers
failing to discover predictive signals that were outside the window
considered. Because the magnitude of its effects is a function of an
often-unobserved trajectory, temporal bias is poorly controlled
for and can lead to replication bias between studies. The relative
impact of temporal bias will scale with the dynamic range of the
trajectory: a trajectory that contains large, dramatic changes is
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Fig. 3 Temporal bias results from arbitrary alignment of cases and
future-indexed lookback times. A Over a particular time period,
longitudinal data of olive oil consumption is continuous for all cohort
members with time. Circles represent MI events, while diamonds represent
matched, but otherwise arbitrarily chosen baseline points for controls.
B Case-control studies arbitrarily align MI patients at the date of the MI. As
a result, the time dimension is inverted and anchored to the MI date, the
position of controls is consequently lost. C Strength of olive oil
consumption-MI association given years of consumption prior to baseline
considered. Effect size is normalized to the average 1-year association
strength. Points are colored based on statistical significance after FDR
correction. Each box plot represents 200 repeated trials. Box bounds
represent upper quartile, lower quartile, and mean. Whiskers represent
maxima and minima.
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susceptible to bias, while trajectories composed of static features
(genotype, demographics, etc) will largely be immune.

Temporal bias has existed alongside case-control studies from
when they were first utilized. The first documented case-control
study in the medical literature was Reverend Henry Whitehead’s
follow-up33 to John Snow’s famous report34 on the Broad Street
cholera outbreak. Whitehead aimed to evaluate Snow’s hypothesis
that consuming water from the Broad Street pump led to infec-
tion. Whitehead surveyed both families of infected and deceased
as well as individuals without cholera regarding their consump-
tion of pump water during the time deaths were observed35,36.

The outbreak began on August 31st, 185434, with deaths
occurring in the days that immediately followed. Whitehead’s
efforts in identifying pump-water exposure among outbreak vic-
tims focused on the time period between August 30th and Sep-
tember 8th, corresponding to a lookback time between 1 and
10 days, depending on when the victim died. This would normally
result in temporal bias towards the end of cholera trajectory.
Although Whitehead’s conclusions were ultimately correct, the
brief incubation period (2 h to 5 days37) of cholera contributed to
the success of the experiment and Whitehead’s later ability
to identify the index patient. The rapid transition from healthy to
diseased ensured that Whitehead’s chosen lookback time would
have uniformly sampled the disease trajectory but is also something
Whitehead could not have known at the time. Had Whitehead
instead been faced with an outbreak of another waterborne disease
such as typhoid fever, which can have an incubation period as long
as 30 days38, Whitehead’s chosen window would oversample

exposure status in the runup to death, leading to temporal bias that
would overemphasize features in the latter portion of the disease
trajectory (Fig. 4A). Because the disease etiology and trajectory
were unknown at the time, the association between Broad Street
water and death is much less clear in the case of a hypothetical
typhoid fever epidemic. (In another instance with unclear etiology,
a recent survey of COVID-19 predictive algorithms found a sig-
nificant number utilizing case-control sampling39). Figure 4B
summarizes hypothetical interview data given Whitehead’s study
design in the case of both a cholera and a typhoid fever outbreak. In
the unshaded columns, which represent information he would have
access to, the association between pump water consumption and
mortality is only clear in the case of cholera.

Many factors have contributed to unconscious adoption of bias-
susceptible experimental designs. From a data efficiency perspec-
tive, case-control studies are often motivated by large class imbal-
ances. A case-control experiment is one of the only ways to take
efficient advantage of all minority class observations in a model.
The analogous cohort experiment would require identifying a
starting alignment date common to all study subjects. Furthermore,
longitudinal observational data are often expensive or difficult to
acquire, compared to the ease of one-shot, non-temporal case-
control datasets. Without the use of retrospective observations, a
case-control study is one of the only types that can be conducted
immediately after the study is conceived, rather than waiting for
observations to be generated, as in prospective studies.

More concerningly, publication biases towards larger effect
sizes and higher accuracy may have driven researchers towards
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Fig. 4 Preventing temporal bias. AWhitehead’s cholera study benefited from the short period between infection and death. Had Whitehead been faced with
an outbreak of typhoid fever, his sampling strategy would oversample late-stage features. B Hypothetical interview data from Whitehead’s case-control study.
Lacking underlying knowledge regarding disease etiology, Whitehead’s experimental design would have experienced temporal bias given a disease with a
longer incubation period. Shaded columns represent information hidden to the investigator. C Randomizing the lookback window among case patients can
uniformly sample the trajectory, if the lookback times go far back enough. D Evaluating person-days, person-weeks, or person-months can allow for the entire
trajectory to be considered. E Conducting a cohort study by creating a well-defined date from which a look forward window is deployed does not uniformly
sample the trajectory in all individuals, but is still prospectively implementable since the starting date can be determined in real time.
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methods that accentuate the differences between cases and con-
trols. Temporal bias can be interpreted as a relatively invisible
symptom of this subconscious aversion towards ambiguity in
prognostic models. Strong predictive models (in terms of accu-
racy) are naturally easier to create when structural differences
between the two groups are used to provide additional signal. The
increasing popularity of large data sets and difficult-to-interpret
deep learning techniques facilitates this strategy.

This is not to say that case-control studies should be aban-
doned wholesale. These studies for practical reasons (data effi-
ciency, cost, ease of deployment) have contributed countless
numbers of discoveries across fields. However, a systematic
understanding of where and why temporal bias exists is critical in
the transition of research findings to applications in the clinic and
beyond. There are several strategies to minimize temporal bias
where it exists and evaluate its effects otherwise (Fig. 4C–E,
examples are provided in Supplementary Note 2).

(1) Assuming that a suitable control population can be
identified, the following two conditions can enable uniform
sampling of the control-to-case trajectory: i) the use of a
randomized lookback time, and ii) the length of the
maximum lookback time plus the length of the observation
window is longer than the transition period.

(2) Person-time classification or prediction tasks, where multiple
windows are drawn from sufficiently extended case observa-
tions for use can also uniformly sample the trajectory in
question. This approach takes the form of sampling case
trajectories more than once, and weighing them according to
prevalence. This can be facilitated through careful control
criteria definitions, as the selection of sicker controls can
shorten the trajectory considered in the experiment, likely at
the cost of model discriminative ability.

(3) The use of well-defined baseline dates in cohort studies can
eliminate temporal bias. Assessing exposure after a
particular birthday, at the start of a particular month/year,
or after a well-defined event makes the prospective
deployment population easier to identify.

Finally, sensitivity analyses combined with researchers’ back-
ground domain knowledge regarding the state transition trajectory in
question can be used to estimate effects of prospective deployment.
An increasing focus on considering the deployability of a given
model, the nature of the underlying trajectory, or even whether a
particular feature can realistically be predicted from features at hand
can also serve to prevent temporal bias from infiltrating a study.

While temporal bias is common and has far reaching impli-
cations, it is unique among experimental or epistemological flaws
in that once understood, it is fairly easy to detect. As experiments
grow broader in scope, transparency regarding the extent to
which temporal bias influences findings is key to ensuring the
consistency of associations and predictions.

Methods
Lipoprotein(a) trajectory imputation. Centiles of lipoprotein A values [Lp(a)] for
myocardial infarction (MI) of 4441 Chinese patients (cases) and healthy matched
controls (controls) published by Paré et al.27 were used to construct log-normal
distributions of Lp(a) values for each cohort. One hundred fifty thousand case and
control measurements were drawn and a linear model was fit to establish the baseline
coefficient of association between Lp(a) and MI in the presence of temporal bias. For
trajectory imputation, for each case patient, a starting Lp(a) value was generated
using one of three methods: (i) random sampling from the control distribution such
that the drawn value is smaller than the case value, (ii) percentile matching (if the
case value fell in the Nth percentile of the case distribution, the Nth percentile value
from the control was drawn), and (iii) a uniform shift of 15% (representing the
observation that the median control value was 15% lower than the median case). This
starting value is understood to represent the Lp(a) measurement of the case patient in
the distant past at the point when they were cardiovascularly healthy. The case-
ending value was directly drawn from the published distributions. For each pair of

case-starting and case-ending values, a linear/logarithmic/logistic/step function was
fit using the two values as starting and ending points. New case observations were
generated by randomly selecting a point along the generated trajectory allowing for
the computation of a prospective effect size. All individual experiments were repeated
100 times with newly drawn sample cohorts.

To examine the potential impact of inadvertent selection bias on the observed
association between Lp(a) and MI, the Lp(a) values and MI for all patients with more
than one Lp(a) observations prior to the first recorded MI event were extracted from
the Partners Research Patient Data Registry database in a deidentified manner.
This work was approved by the Partners Institutional Review Board (Protocol
#2018P000016). Case and control patients were defined based on MI status, and for
each patient in each cohort, the (i) largest available, (ii) smallest available, and (iii)
mean Lp(a) values were computed and used to identify the observed effect size under
each selection scheme by fitting a logistic regression model. All calculations were
conducted in R (version 3.44) using the glmnet package, version 2.0-16.

Delivery prediction from sequential claims data. Records of health insurance
claims in 2015 from a deidentified national database from Aetna, a commercial
managed health care company, were utilized for this study. The Harvard Medical
School Institutional Review Board waived the requirement for patient consent for
analysis of this database as it was deemed to not be human subjects research.
Delivery events were identified based on International Classification of Diseases
(ICD9/10) diagnostic code, Current Procedural Terminology (CPT) code, or the
birth year of newly born members linked by subscriber-parent annotations. Cases
were defined as individuals who experienced a delivery between February and
December, 2015, while controls were defined as individuals who did not experience
a delivery during any of 2015. Thirty thousand cases were randomly selected and
matched to 30,000 controls based on age and ZIP code. For each individual, case-
control and cohort feature windows were defined. Case-control windows were set
as the month of records that was three months prior to the delivery/matched
baseline date for cases and controls respectively. Cohort windows were set as the
month of records from January, 2015. Three studies were simulated: (1) The CC-
CC study consisted of model training using case-control windows and model
evaluation using case-control windows. (2) The CC-Cohort study consisted of
model training using case-control windows and model evaluation using cohort
windows. (3) The Cohort-Cohort study consisted of model training using cohort
windows and model evaluation using cohort windows. For each study, deep
recurrent neural networks and logistic regression models were trained over the
features present in each window. For deep recurrent neural network-based models,
the linear sequence of features inside the window was provided in the form of
International Classification of Diseases (ICD9) codes for diagnoses, Current Pro-
cedural Terminology (CPT) codes for procedures, and National Drug Codes
(NDC) for prescriptions. The sequence length was set to 20 events, individual
sequences were either padded or clipped to meet this requirement. Logistic
regression models utilized binary occurrence matrices for all events as features.
Both models contained demographic information in the form of age. Sex was
excluded as a feature because all cohort members were female. All calculations were
conducted in Python 2.7.3 using the Keras 2.2.0 and scikit-learn 0.18.1 packages.

Simulation of olive oil/myocardial infarction case-control study. Data from the
Nurses’ Health Study (NHS) was used for this analysis. All nutrition and disease
incidence surveys between 1994 and 2010 were considered. Internal NHS defini-
tions of first MI were utilized to define the case population. Case individuals were
only considered if they had at least two consecutive nutritional surveys with
answers to all olive oil related questions prior to the first MI event. Individuals with
any history of cardiovascular disease including MI and angina were excluded from
the control population. Control individuals were only considered if they had at
least two consecutive nutritional surveys with answers to all olive oil related
questions. In total, 3188 total qualifying MI individuals were identified, and 94,893
controls. A baseline date for each control individual was defined based on the
availability of consecutive nutrition surveys. For each case, a matched control was
identified based using age at baseline and sex. For all individuals, total cumulative
yearly olive oil consumption was computed by summing olive oil added to food
and olive oil salad dressing consumption, as validated by Guasch-Ferré et al.40. For
each experiment, a lookback time between 1 and 4 years was selected, and the
cumulative total olive oil consumed during the lookback time relative to the MI
date/baseline was calculated. For each lookback time, the effect size between the top
quintile (based on total consumption) and the remaining population and statistical
significance were calculated using a two-sided t-test. Each experiment, including
case-control matching, was repeated 200 times. All calculations were conducted in
R (version 3.44) using the glmnet package, version 2.0-16.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from Aetna Insurance, but
restrictions apply to the availability of these data, which were used under license for the
current study, and so are not publicly available. Please contact N. Palmer
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(nathan_palmer@hms.harvard.edu) for inquiries about the Aetna dataset. Summary data
are, however, available from the authors upon reasonable request and with permission of
Aetna Insurance. All data utilized in the study from the Nurses’ Health Study (NHS) is
available upon request with the permission of the NHS and can be accessed at https://
www.nurseshealthstudy.org/researchers. All data utilized in the study from the Partners
Research Patient Data Registry is available upon request with the permission of Partners
Healthcare and can be accessed at https://rc.partners.org/research-apps-and-services/
identify-subjects-request-data#research-patient-data-registry.

Code availability
Auxiliary code is available at https://github.com/william-yuan/temporalbias
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