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The coupling of high frequency oscillations (HFOs; >100 Hz) and theta oscillations
(3–12 Hz) in the CA1 region of rats increases during REM sleep, indicating that it may
play a role in memory processing. However, it is unclear whether the CA1 region
itself is capable of providing major contributions to the generation of HFOs, or if they
are strictly driven through input projections. Parvalbumin-positive (PV+) interneurons
may play an essential role in these oscillations due to their extensive connections
with neighboring pyramidal cells, and their characteristic fast-spiking. Thus, we created
mathematical network models to investigate the conditions under which networks of
CA1 fast-spiking PV+ interneurons are capable of producing high frequency population
rhythms. We used whole-cell patch clamp recordings of fast-spiking, PV+ cells in the
CA1 region of an intact hippocampal preparation in vitro to derive cellular properties, from
which we constrained an Izhikevich-type model. Novel, biologically constrained network
models were constructed with these individual cell models, and we investigated networks
across a range of experimentally determined excitatory inputs and inhibitory synaptic
strengths. For each network, we determined network frequency and coherence. Network
simulations produce coherent firing at high frequencies (>90 Hz) for parameter ranges in
which PV-PV inhibitory synaptic conductances are necessarily small and external excitatory
inputs are relatively large. Interestingly, our networks produce sharp transitions between
random and coherent firing, and this sharpness is lost when connectivity is increased
beyond biological estimates. Our work suggests that CA1 networks may be designed with
mechanisms for quickly gating in and out of high frequency coherent population rhythms,
which may be essential in the generation of nested theta/high frequency rhythms.

Keywords: mathematical model, inhibitory networks, basket cells, hippocampus, fast gamma

INTRODUCTION
High frequency oscillations (HFOs; >100 Hz) are recorded
from the CA1 region of the hippocampus, and are distinct
from gamma oscillations (30–100 Hz), sharp-wave ripple oscil-
lations (100–250 Hz), and the spectral leakage of spiking activity
(Scheffer-Teixeira et al., 2012). These high frequency rhythms are
nested within the slower theta oscillations (3–12 Hz) in the CA1
region during decision making and REM sleep of rats (Tort et al.,
2008; Scheffer-Teixeira et al., 2012), and therefore may play an
important role in memory processing. However, whether these
oscillations are generated by an intrinsic CA1 mechanism or are
driven by CA3 and entorhinal cortical projections, and whether
the oscillations are generated by a particular cell type or a network
of various cell populations, remains unclear.

Insight to these questions have been gained by Jackson et al.
(2011), who recorded rhythms in the subiculum with frequen-
cies similar to HFOs. These oscillations were dependent on fast

γ-Aminobutyric acid (GABA) inhibition, and not α-Amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainite,
or N-Methyl-D-aspartic acid (NMDA) glutamate receptors.
Thus, a network of inhibitory interneurons may be responsible
for the generation of these HFOs. The fast-firing proper-
ties of hippocampal parvalbumin-positive (PV+) interneu-
rons, and their extensive, often perisomatic and axo-axonic
targeting, connections with neighboring excitatory neurons,
provide them with enormous potential to influence hippocam-
pal network rhythms. Indeed, perisomatic targeting interneurons
are thought to critically influence the timing of pyramidal
cell spiking (Cobb et al., 1995; Miles et al., 1996) and the
synchronization of large groups of pyramidal cells (Freund
and Buzsáki, 1996), providing them with the means to influ-
ence the frequency and power of network oscillations. Thus,
fast spiking interneurons likely play an important role in
these HFOs.
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Mathematical models may provide insight to the underlying
mechanisms of these oscillations, as they allow one to parse out
specific cell populations and investigate their network properties
in a simplified setting. However, direct links between fast-spiking
interneuron models and empirically determined cellular intrinsic
and network characteristics do not exist, and this contributes to
the challenge of interpreting model insights in a biological set-
ting. In particular, CA1 PV+ fast-spiking models have not been
developed, and it is well-known that intrinsic cellular properties
can critically control network output (e.g., see Wang, 2010 review,
p.1214).

In this paper, we develop and use mathematical models of fast-
spiking PV+ interneuron networks to gain insight into whether
they are capable of directly contributing to HFOs in the hip-
pocampus. We hypothesize that the generation of population
high frequencies in the CA1 sensitively depends on external and
internal synaptic input levels to these fast-spiking cells. In order
to investigate how this balance of inputs affect a network of fast-
spiking PV+ interneurons, we develop and use network models
that are tied to experimental work on multiple levels. We con-
struct our individual PV+ cell model based on a modification
of the simple Izhikevich model (Izhikevich, 2003), with model
parameters directly constrained from in vitro recordings of PV+
fast-spiking interneurons in the CA1 region of an intact hip-
pocampal preparation in mice. This same experimental setup
produces emergent theta rhythms (Goutagny et al., 2009), and
PV+ interneuron recordings during the ongoing rhythm allow us
to estimate synaptic currents with which to constrain our model
on the network level. Using such constraints together with real-
istic network size and connectivity estimates, we explore with
simulations whether our model networks can give rise to coher-
ent population activity at high frequencies. We find that coherent
high frequency population rhythms can be produced, but only for
particular balances of inhibitory synaptic conductance strengths
and external synaptic drives that include physiologically esti-
mated values in specific ways. In addition, our experimentally
constrained networks exhibited sharp transitions from random to
coherent firing. This provided the network with the capability of
gating in and out of a coherent state, which may be an impor-
tant aspect for the generation of nested theta/high frequency
rhythms. Our work thus predicts that while CA1 fast-firing PV+
interneuron networks have the potential to produce high fre-
quency population rhythms on their own, they may easily be
perturbed out of this state.

MATERIALS AND METHODS
EXPERIMENT
Animals
Animals of both sexes (P20-28) were used. In order to visualize
PV+ interneurons, transgenic mice were used where a fluorescent
protein tdTomato was expressed under the control of the PV pro-
moter (PV-tdTomato mice). In order to generate PV-tdTomato
mice, PV-Cre homozygote mice [B6;129P2-Pvalbtm1(cre)Arbr/J,
stock number: 008069, the Jackson Laboratory] were mated
with Ai9 homozygote mice allowing tdTomato expression
in Cre-positive neurons [B6;129S6-Gt(ROSA)26Sortm9(CAG-
tdTomato)Hze/J, stock number: 007905, the Jackson Laboratory].

Using immunohistochemistry we confirmed that in PV-tdTomato
mice, the majority of tdTomato+ neurons in CA1 stratum oriens
express PV (87.6 ± 5.3%; mean ± S.E.M. in 4 animals), indi-
cating a high degree of specificity in these mice. All animals
were treated according to protocols and guidelines approved
by McGill University and the Canadian Council of Animal
Care.

Intact hippocampal preparation
The acute preparation containing the intact hippocampus was
dissected as described previously (Goutagny et al., 2009). Briefly,
after decapitation, the brain was quickly removed from the
skull and placed in ice-cold high-sucrose solution, containing
(in mM) 252 sucrose, 24 NaHCO3, 10 glucose, 3 KCl, 2 MgCl2,
1.25 NaH2PO4, and 1 CaCl2 (pH 7.3, oxygenated with 95% O2–
5% CO2). From a hemisected brain, the septum and hippocam-
pus along with the interconnecting fibers were carefully and
rapidly dissected out using microspatulas. The preparation was
trimmed with fine scissors to remove any remaining cortical tissue
and the septum was cut off. The intact hippocampal preparation
was left to rest with the CA1 side facing up in oxygenated room-
temperature high-sucrose solution (1 mM CaCl2) for 30 min–1 h
before recording. The intact preparation from only one hemi-
sphere was used for each animal, and the preparation from either
the left or the right hemisphere was chosen randomly for each
experiment.

Electrophysiological recordings and tdTomato labeling
visualization
All electrophysiological recordings were performed at 30 ± 2◦C,
using artificial cerebrospinal fluid (aCSF) containing (in mM) 126
NaCl, 24 NaHCO3, 10 glucose, 4.5 KCl, 2 MgSO4, 1.25 NaH2PO4,
0.4 ascorbic acid, and 2 CaCl2 (pH 7.3, oxygenated with 95%
O2–5% CO2). The intact hippocampal preparation was placed
and stabilized in the recording chamber using lead weights. PV+
interneurons located in CA1 stratum oriens/alveus within the
middle hippocampus were recorded using the visually guided
whole-cell patch-clamp technique. Prior to recording, neurons
were identified by tdTomato labeling in the soma by illumi-
nating with a 554-nm wavelength light using a fluorescence
system (PTI, Monmouth Junction, NJ). The electrophysiology
setup was equipped with an upright BX51W1 Olympus micro-
scope, a 20x water-immersion objective, Nomarsky optics, an
infrared camera (Cohu, San Diego, CA), a monochrome dig-
ital camera for fluorescence imaging (DAGE-MTI, Michigan
City, IN) and a temperature controller (model TC-324B, Warner
Instruments, Hamden, CT). Patch pipettes (2.5–4 M�) were
pulled from borosilicate glass capillaries (Warner Instrument,
Hamden, CT) and filled with intrapipette solution containing
(mM) 144 K-gluconate, 10 HEPES, 3 MgCl2, 2 Na2ATP, 0.3 GTP,
0.2 EGTA, adjusted to pH 7.2 with KOH. An Axopatch-1C ampli-
fier (Axon Instruments, Foster City, CA), a microelectrode AC
amplifier (A-M Systems, Sequim, WA), a Humbug 60 Hz noise
eliminator (Quest Scientific, Vancouver, Canada), an audio mon-
itor (A-M Systems) and pClamp9 software (Molecular Devices,
Sunnyvale, CA) were used for recording. All drugs were obtained
from Sigma-Aldrich (St. Louis, MO) unless otherwise noted.
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For examining intrinsic properties, the oxygenated aCSF was
perfused at a relatively fast rate of 20–25 ml/min to ensure
the health of the preparation and synaptic blockers were used
to inhibit synaptic events [5 μM 6,7-Dinitroquinoxaline-2,3-
dione disodium salt (DNQX), 5 μM bicuculline and 25 μM DL-
2-Amino-5-phosphonopentanoic acid sodium salt (DL-AP5);
Abcam, Toronto, Canada]. Recordings were kept for analysis
only if spikes overshot 0 mV (before junction potential correc-
tion) and access resistance was <30 M�. Intrinsic properties
of each cell were measured in current-clamp mode follow-
ing published protocols (Huh et al., 2010). The cell’s rest-
ing membrane potential was measured once the whole-cell
configuration was achieved. While the membrane potential
of the cell was held at −60 mV in current clamp, a series
of small-amplitude 1-s hyperpolarizing steps (10-pA incre-
ments) were used to determine the membrane resistance and
membrane time constant. A series of 1-s depolarizing cur-
rent steps (10- and 50-pA increments) from the holding
potential of −60 mV were applied, for frequency-current (f-I)
analysis.

For simultaneous local field potential (LFP) and whole-cell
recording, the oxygenated aCSF was perfused without synap-
tic blockers at a rate of 20–25 ml/min, which has been tested
to be ideal for generation of network theta oscillations in the
intact hippocampal preparation (Goutagny et al., 2009). For
LFP recordings, a borosilicate-glass field electrode (1–5 M�) was
placed in CA1 stratum radiatum of middle hippocampus. Once a
stable network theta rhythm was detected, whole-cell recordings
were performed on PV+ interneurons located in CA1 stratum
oriens. For whole-cell recordings, pipette resistance of 2.5–4 M�

was used. The junction potential was estimated at −15.2 mV,
and membrane potentials were corrected for this. Once a stable
whole-cell mode was achieved, access resistance and the neu-
ron’s resting membrane potential were noted. Then, the cell was
recorded at this resting potential together with the LFP sig-
nal (containing network theta oscillations) for 60 s, to observe
the neuron’s spontaneous firing behavior. Next, the neuron’s
basic properties were quickly checked for, including firing rate,
action potential properties, and sag amplitude. Access resistance
and resting membrane potential were checked every 5–10 min
throughout the recording of the cell. Recordings were kept for
analysis only if the LFP signal contained oscillations with fre-
quencies exceeding 2.5 Hz and, as for the intrinsic properties,
if the neuron’s spikes overshot 0 mV and the access resistance
was <30 M�.

The reversal potential for inhibitory postsynaptic currents
(IPSCs) was determined for CA1 PV+ interneurons using
electrical stimulation. For these experiments, aCSF perfusion
rate of 7–8 ml/min was used. A monopolar tungsten micro-
electrode (WPI, Sarasota, FL) was placed on the surface
of CA1 (stratum oriens/alveus) in the middle hippocampus.
The stimulation parameters were controlled using an isolated
pulse stimulator (model A360, WPI). One pulse (25–300 μA
intensity, 0.1 ms duration) was administered every 10 s. CA1
PV+ interneurons located in the middle hippocampus and
close to the stimulating electrode were recorded in whole-
cell mode. Neurons were held at various potentials in voltage

clamp (−100 to+30 mV) during electrical stimulation to record
evoked synaptic currents. To isolate GABAA-receptor medi-
ated IPSCs, 10 μM DNQX, 25 μM DL-AP5, and 2 μM CGP
52432 were used to block glutamatergic and GABAB-receptor
mediated responses. Consistent with our other recordings, cells
were excluded from analysis if the spikes failed to overshoot
0 mV (before junction potential correction) or access resistance
exceeded 30 M� at any point during the experiment. We deter-
mined that the IPSCs reversed around −85 mV (junction poten-
tial corrected).

MODEL DEVELOPMENT
In this section, we first describe how we derive our intrinsic
and synaptic properties from our experimental recordings. Then,
we describe the mathematical structure of our single PV+ cell
model, as well as our network model. The model structure alone is
described here, whereas specific parameter choices are described
in the Results section. Finally, we define how we measure popula-
tion frequency and coherent firing activity.

Intrinsic properties
The intrinsic properties of the PV+ interneurons were deter-
mined from whole-cell patch-clamp recordings of seven PV+
cells during the application of synaptic blockers. While the mem-
brane potential of the cell was held at−60 mV in current clamp, a
series of small-amplitude 1-s hyperpolarizing steps (10-pA incre-
ments) were used to determine the input resistance, Rin (M�),
and membrane time constant, τm (ms). The input resistance was
calculated by computing the slope of the voltage change over the
amplitude of the current injected. The membrane time constant
was derived by fitting the voltage change during a small hyper-
polarizing current step with a single exponential function and
calculating the mean fit over a few small current steps. The mem-
brane time constant effectively represented the amount of time
required for the membrane potential to reach ∼63% of the total
change. The capacitance was determined by τm/Rin. The action
potential threshold was set to be the first voltage point such
that the slope of the membrane potential exceeded 20 mV/ms
(Bekkers and Delaney, 2001). The spike width was determined
at the threshold value. In addition, the spike height and the
minimum membrane potential reached following the spike
were found. Fast-firing PV+ cells were identified as those that
generated high-frequency trains (maximal frequencies greater
than 100 Hz) of action potentials during depolarizing current
pulses.

The f-I profiles of the PV+ cells are important to character-
ize, as we aim for our single cell model to respond to a variety of
synaptic input strengths with frequencies similar to that observed
experimentally. These f-I curves were determined by applying
depolarizing current steps of 1 s duration to cells held in cur-
rent clamp. Amplitudes were increased incrementally with step
sizes of 50 pA for four of seven cells, and 10 pA for three of
seven cells. The frequency (Hz) was determined as the inverse
of the average inter-spike interval (ms) over the course of the
1 s step. For each cell where data was available, the approxi-
mate linear slope of the f-I curve above 60, 70, or 80 Hz was
determined using a least squares method. These values were
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chosen since above 60–80 Hz the slope was well-approximated
by linearization. In addition, the minimum amount of current
required to initiate a spike, the rheobase current (Irheo, in pA),
was determined.

To find the amount of spike frequency adaptation (SFA), we
plotted the inter-spike interval (ISI) with respect to the latency of
each interval from the start of the current step. The slope of the
line fit to these points was used to quantify the amount of SFA
(Hemond et al., 2008).

Synaptic constraints during population activities
In order to estimate the amount of synaptic input a single PV+
cell receives during a period of high frequency firing, we consider
the context of emergent oscillations in the intact hippocampal
preparation. We noted that our LFP recordings have distinct peri-
ods of activity and of quiescence, and this allowed us to estimate
the amount of synaptic input during the fast intra-cycle firing.
To define the region in which the firing occurred, we used four
extracellular recordings, and defined the peaks of the LFP as 0◦
(Figure 1A). We obtained the waveform-based phase by inter-
polating phase values between these peaks. The phase of each
intracellular spike during the rhythm was then based on this inter-
polation. This allowed us to generate a spike-phase histogram
from which we could identify the phase ranges in which the
majority of spiking occurred. For the PV+ fast-spiking cells, the
majority of spiking occurred in a relatively narrow region sur-
rounding the 0◦ LFP peak (Figure 1B). Therefore, we defined an
intra-cycle spike to be one that fell between −80◦ and 80◦ of
the 0◦ LFP peak, as this comprised the vast majority of spikes
(>90%), and excluded those that were spontaneously gener-
ated during the quiescent period of the oscillation. We defined
the average frequency of intra-cycle firing as the mean of the
inverse of the intra-cycle ISIs. We tried different phase ranges
(e.g., −100◦ to 100◦, −60◦ to 40◦) and found that this did not
have much of an effect on the intra-cycle firing frequencies,

because the spiking activity is tightly phase-locked to the peaks
of the LFP. We used these extracted fast firing frequencies in
combination with our developed cellular model to estimate the
synaptic drive (Iapplied) that PV+ fast-firing cells would receive
during ongoing population activities. The precise estimate val-
ues of this Iapplied parameter are determined in the Results
section.

Single cell model structure
We built a simple model of a fast-firing PV+ interneuron using
Izhikevich’s (2003) two dimensional system of ordinary differ-
ential equations. It captures the subthreshold behavior of the
interneuron and the upstroke of the action potential, using a reset
mechanism to represent the spike’s fast downstroke. An impor-
tant advantage of this model is that it is relatively simple, but
still allows us to choose parameters that are related to biophysical
quantities (Izhikevich, 2003).

The Izhikevich (2003) model structure has a fast variable rep-
resenting the membrane potential, V (mV), and a variable for
the slow “recovery” current, u (pA). We used a slight modifi-
cation of the Izhikevich model in order to reproduce the nar-
row spike width which is characteristic of these fast-firing PV+
interneurons. The model is given by:

CmV̇ = k(V − vr) (V − vt)− u− Isyn + Iapplied

u̇ = a[b(V − vr)− u] (1)

If V ≥ vpeak, then V ← c, u← u+ d

Where k = klow if V ≤ vtk = khigh if V > vt

The parameters are as follows:
Cm (pF) is the membrane capacitance.
vr (mV) is the resting membrane potential.
vt (mV) is the instantaneous threshold potential.

FIGURE 1 | (A) An example intracellular recording of a PV+ interneuron’s
firing (top) during the emergent network rhythm (bottom). The peak times of
the LFP are denoted with black asterisks (∗), and the spike times are denoted
with red asterisks (∗). Each LFP peak is given a phase value of 0◦, and the
waveform based phase was determined by interpolating between the peaks.

(B) The spike phases determined from the four PV+ interneurons with
respect to the LFP peak (0◦). Note the narrow window of phase in which the
cells spike (mean and standard deviation given by μ and σ respectively). The
red line denotes the cut-off value used to determine intra-cycle firing (−80◦ to
80◦), which encompasses more than 90% of the spikes.
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vpeak ( mV) is the spike cut-off value.
Isyn (pA) represents the recurrent inhibition between PV+

cells.
Iapplied (pA) is the applied current, and represents all other

synaptic input to the PV+ cell.
a (ms−1) is the recovery time constant of the adaptation

current.
b (nS) describes the sensitivity of the adaptation current to

subthreshold fluctuations. Greater values couple V and u more
strongly resulting in possible subthreshold oscillations and low-
threshold spiking dynamics. Further, the sign of b determines
whether the effect of u is amplifying (b < 0) or resonant (b > 0).

c (mV) is the voltage reset value.
d (pA) is the total amount of outward minus inward currents

activated during the spike and affecting the after-spike behavior.
k (nS/mV) represents a scaling factor. khigh is used to adjust

the spike width after the threshold, to allow the for the narrow
spike width of fast-firing PV+ interneurons to be appropriately
represented.

The parameters vr , vt , vpeak, and c were directly based on
the intrinsic spike characteristics derived from recordings of
PV+ interneurons. Specifically, using the average results over
the seven recorded cells, vr , vt , vpeak, and c were set to rep-
resent the mean resting membrane potential, threshold poten-
tial, peak height, and voltage reset value, respectively. khigh

was determined such that the width of the action potential
from threshold in the model matched the average spike width
at threshold in the biological cells. The adaptation param-
eters a and d were set such that the cell model does not
exhibit SFA, in accordance with the minimal adaptation recorded
from our cells (see Results). Finally, the parameters b and
klow were chosen such that the slope of the model f-I pro-
file (f-I curve) was within the range of slopes determined
from the experimental f-I curves, and the rheobase current
of the model was equal to the average experimental rheobase
current.

We varied b and klow, to produce multiple models and deter-
mined the rheobase current of each model, as well as the slope of
each model’s f-I curve over 60 Hz (using a least squares approach).
We explored the parameter ranges such that klow was varied from
0 to 20 and b was varied from −10 to −0.1 (each with a step size
of 0.1). To confirm that this cut-off of 60 Hz was appropriate, we
also determined the slope above 70 and 80 Hz (as was done for the
experimental data), but found little difference. These values of b
and klow were chosen while maintaining a model rheobase at the
physiologically determined average rheobase. The frequency val-
ues above which we fit were chosen due to the shape of the model’s
f-I curve: it becomes steeper as the input current decreases, and
more gradual as it increases. Therefore, a linear fit of the whole f-I
curve would not be appropriate, but is reasonable for the grad-
ual curve greater than 60 Hz. In this way, when the parameters
of this simple model are fit, the model has direct ties with the
experimental data.

Network model structure
We built network models using our developed models of indi-
vidual PV+ fast-firing interneurons. Here, we describe how

we constrained our synaptic parameters using experimentally
determined values for: the inhibitory reversal potential, the
synaptic kinetics, the synaptic conductance strengths, and the
overall synaptic drive. We then describe size and connectivity
constraints used for our networks.

First, we used inhibitory reversal potentials as determined
from our experiments (see above) in our model of the PV-PV
synaptic connections [Equation (2)]. Therefore, each model cell
received PV-PV inhibitory input through a chemical synapse
represented by:

Isyn = gsyns(V − Esyn) (2)

where gsyn (nS) is the maximal synaptic conductance, and
Esyn = −85 mV is the inhibitory reversal potential.

The gating variable, s, represents the fraction of open
inhibitory synaptic channels, and is given by first order kinetics
(Destexhe et al., 1998; Ermentrout and Terman, 2010):

ṡ = α [T] (1− s)− βs (3)

The time course of unitary IPSCs has been measured in paired
recordings of basket cells in CA1 hippocampal slices (Bartos et al.,
2002). Specifically, rise and decay time constants were found to be
0.27 and 1.8 ms, respectively. The parameters α and β in Equation
(3) represent the inverse of the rise and decay time constants,
respectively (ms−1). [T] represents the concentration of transmit-
ter released by a presynaptic spike. Supposing that the time of a
spike is t = t0, then [T] is represented by a unitary pulse, lasting
for 1 ms (until t1). Then, we can represent

s(t − t0) = s∞ + (s(t0)− s∞)e−
t−t0
τs , t0 < t < t1 (4)

where

s∞ = α

α+ β
and τs = 1

α+ β
(5)

After the pulse of transmitter has gone, s(t) decays as

s(t) = s (t1) e−β(t−t1) (6)

Second, from their network models and experimental constraints,
Bartos et al. (2002) estimated a unitary postsynaptic peak con-
ductance density of 0.04 ms/cm2. This value was based on a
recorded peak current of 208 pA and a somatodendritic surface
area of∼12,000 μm2 (Bartos et al., 2001). Using this same surface
area, this translates to a unitary postsynaptic peak conductance of
4.8 nS. We examined a range of gsyn from 0 to 10 nS in order to
investigate the behavior of the network in the parameter regime
surrounding the experimentally determined peak value of 4.8 nS.

Third, while we explicitly modeled the synaptic input from
each PV+ cell [Equation (2)], we represented all other synaptic
input to the PV+ cells through an applied current (Iapplied). These
applied currents (in pA) were constant input to individual cells,
and both homogeneous and heterogeneous Iapplied values were
considered across the population of cells. The values of Iapplied

were based on estimates of synaptic input to PV+ interneu-
rons during the emergent network rhythm (see section Synaptic
Constraints During Population Activities).
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In the work here, we used appropriately sized and connected
inhibitory networks, and a wide range of maximal synaptic con-
ductance (gsyn) and synaptic drive (Iapplied) parameter values to
determine the conditions under which our model networks could
exhibit coherent firing.

Network size and connectivity. Importantly, we need to consider
an appropriate network size and connectivity. In other words,
what amount of physical space should our model represent, and
how many individual neuron models are required to represent
this space? Answers to these questions are non-trivial but need
to be clearly considered so that our experimentally constrained
values are applied appropriately to our models. In the experimen-
tal setting of the intact hippocampal preparation producing its
own rhythm, Goutagny et al. (2009) showed that multiple theta
rhythm generators exist in the hippocampal CA1 region, and thus
a single theta generator must lie within a fraction of this region.
The majority of PV+ interneurons are basket cells and axo-axonic
cells (∼75% collectively; Baude et al., 2007), and the spatial extent
and synaptic innervation of these axons (Sik et al., 1995) imply
that these short range interneurons have the potential to influ-
ence local rhythms. Therefore, the necessary circuitry required to
produce this intrinsic CA1 theta rhythm is most likely contained
within this locally innervated region of the CA1. Approximate
volumes of the axonal innervation of PV+ interneurons (Sik
et al., 1995) allow us to estimate that the minimum circuitry
required for CA1 theta rhythms is contained in ∼1 mm3, which
encompasses the various layers of stratum oriens and pyramidale.
For connectivity, Sik et al. (1995) investigated the CA1 interneu-
ronal network of PV+ basket cells in vivo and determined that
in the stratum pyramidale a single PV+ basket cell makes synap-
tic contacts with at least 60 other PV+ cells in a spatial region of
the volume up to 0.1–0.2 mm3. Because we only know connec-
tivity in the stratum pyramidale, we design our model network
to encompass that region as a representative of the experimental
setting. Since the density of PV+ cells in the pyramidal layer is
3.83–5.73× 103 cells/mm3 (Aika et al., 1994; Jinno and Kosaka,
2006), this volume of tissue comprises ∼380–1150 PV+ cells.
Therefore, we create network models that are composed of 500
individual fast-firing PV+ cells models. The network is randomly
connected with a probability of 0.12, so that each cell is connected
to ∼60 other PV+ cells. A schematic of this network is given in
Figure 2.

Measuring population frequency and coherent firing activity
Population activity was taken to be the average membrane poten-
tial of all model cells in the inhibitory networks. While this does
not directly represent the LFP, it can be considered as a gross
approximation given the following: since the largest membrane
potential averages would correspond to the most inhibitory cells
spiking closely together, this imposes the most inhibitory synaptic
currents onto “output cells,” producing a representative popula-
tion output. We note that average membrane potentials have been
used in other network models to represent population activity—
e.g., see Bähner et al. (2011). We ran additional simulations where
the population activity was instead represented by an average of
the summed synaptic variables (

∑
i si/N), and the main results

were unchanged.

FIGURE 2 | A schematic of the fast-firing PV+ interneuron network.

The network is composed of 500 PV+ cells, each connected with ∼60
other PV+ cell models. The PV-PV inhibitory connections are represented
by Isyn, all other synaptic drives are represented with Iapplied.

Using the fast Fourier transform, the network frequency is
defined as the frequency at which there is a spectral peak in the
population activity in the last 500 ms of our 1.5 s simulations. We
note that obtaining the network frequency in this way does not
mean that there is also coherent firing activity in the network:
additional measures are required.

To determine the amount of coherent firing that the network
exhibits, we used a measure based on the normalized cross-
correlations of neuron pairs in the network (Gerstein and Kiang,
1960; Welsh et al., 1995; Wang and Buzsáki, 1996). Consider two
neurons, i and j, firing within a given time bin τ. Then their
respective spike trains are given by X(l) = 0,1; Y(l) = 0,1 where
l = 1, 2, . . . K, and the total amount of time is given by T = τK.
The amount of coherent firing between the two neurons is given
as the cross-correlation between these two spike trains:

ϕij =
∑K

l= 1 X(l)Y(l)√∑K
l= 1 X(l)

∑K
l= 1Y(l)

(7)

ϕ is given as the average of ϕij over all neuron pairs in the net-
work, and we refer to it as the population coherent firing measure.
ϕ is between 0 and 1, and is close to 1 for maximal synchrony, and
close to 0 for maximal asynchrony. We used τ = 0.1/(network fre-
quency), and we calculated the average population firing coher-
ence during the last 500 ms of our 1.5 s simulations (ϕavg). We
performed additional simulations with τ = 1 ms, and our main
results were unchanged.

To determine the ranges of synaptic conductance values (gsyn)
and applied input (Iapplied) (synaptic drive) for which our net-
work exhibited coherent firing, we define a “synchronized net-
work” as one in which the average population coherent firing
measure over the last 500 ms of our simulation is greater than or
equal to 0.2 (ϕavg ≥ 0.2). We chose 0.2 as a cut-off, since almost
all population coherent measures were either well below or were
above this value.

To identify boundaries on our region of coherence, we did
a simple quantification algorithm that is described in detail in
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Figure 3. First, the minimal gsyn was defined as the smallest
gsyn such that the network demonstrated coherence (ϕavg ≥ 0.2)
(green arrow, Figure 3). To identify the maximal gsyn value we
considered the last two rows of Iapplied values (dashed green rect-
angle, Figure 3). Once coherence began, we consider increasing
values of gsyn for these rows. Our maximal gsyn (black arrow,
Figure 3) is the step preceding the point where both rows of
Iapplied are non-coherent (green circle, Figure 3). The minimal
Iapplied was defined as the minimal Iapplied such that our networks
produced coherent firing (red arrow, Figure 3).

SIMULATIONS
Our experimental data analysis is done using custom codes cre-
ated in MATLAB. Network model runs, coherent firing, and
population activity determinations were done using the Brian
simulator (Goodman and Brette, 2009). The initial conditions of
our membrane potentials (V) were chosen to be uniform random
values from −55 to −65 mV. We used the forward Euler method
for integration with a time step of 0.001–0.01 ms. Our simula-
tions were run on the GPC supercomputer at the SciNet High

FIGURE 3 | A schematic demonstrating the method used to quantify

the window of robust coherent firing over gsyn and Iapplied . In this
heterogeneous network example, Iapplied has a Gaussian distribution with
its standard deviation equal to 12 pA. 500-cell network simulations
demonstrating coherence (average population coherent firing measure
ϕavg ≥ 0.2) are shown in white, and those with non-coherent firing
(ϕavg < 0.2) are shown in black for a range of gsyn and Iapplied values. The
minimum gsyn value is defined as the smallest gsyn such that the network
demonstrates coherence (minimum gsyn = 0.225 nS, green arrow for
example shown here). To determine the maximal gsyn for which our
network exhibited robust coherent firing, we considered the last two rows
of Iapplied values (green rectangle). Once coherence began
(∼ gsyn = 0.525 nS), we consider increasing values of gsyn for these last
two rows of Iapplied. The first instance where both rows of Iapplied are
non-coherent (green ellipse), we know that our gsyn has surpassed its
maximum. Thus, maximal gsyn is given by the preceding step (maximal
gsyn = 4.5 nS for example shown here, black arrow). Our minimal Iapplied

value is the minimal Iapplied such that our networks produced coherent firing
(red arrow).

Performance Computing Consortium (Loken et al., 2010) (http://
www.scinethpc.ca/).

RESULTS
Under what conditions can networks of CA1 PV+ fast-firing
interneurons directly contribute to the generation of fast, popu-
lation rhythms? We address this question using a mathematical
modeling approach that takes advantage of an intact in vitro
hippocampal preparation that spontaneously exhibits popula-
tion rhythms. As detailed below, our network models are closely
intertwined with experimental data at multiple levels from the
same experimental situation. By constraining our model param-
eter values with directly measured experimental values, our PV+
interneuron cell and network models reflect physiology with
greater specificity and accuracy in comparison with existing fast-
firing interneuron models. Using simulations, we vary inhibitory
synaptic strengths (gsyn) and overall synaptic drive (Iapplied) to
determine the conditions under which our networks exhibit
coherent firing activities. Our results indicate that while our net-
works can produce coherent firing at high frequencies, they do so
only for relatively small inhibitory conductance strengths (com-
pared with the prevailing literature), and large excitatory drives
(compared with our experimentally determined values). These
constrained networks exhibit a sharp transition from random to
coherent firing. Even with only a small change in synaptic input,
many more cells are recruited into the coherent state. This may
indicate a design property of fast-spiking interneuron networks to
allow the generation of theta/high frequency network oscillations.

THE EXPERIMENTALLY CONSTRAINED INDIVIDUAL CA1
PV+ INTERNEURON CELLULAR MODEL
To create a fast-firing PV+ interneuron model, we first recorded
the activity of this interneuron subtype in the intact hippocampal
preparation (see Methods for details). The intrinsic properties of
the seven recorded PV+ interneurons, determined in the presence
of synaptic blockers, demonstrated fast-firing (>100 Hz), narrow
spike widths (from threshold: 0.83 ± 0.12 ms; mean ± S.E.M.),
and short time constants (5.87± 1.04 ms). They were determined
to have an input resistance of 73.29± 12.74 M� which, in combi-
nation with the short time constant, gave membrane capacitances
of 81.14 ± 19.4 pF. These values are in agreement with previ-
ous fast-firing PV+ interneuron recordings (Bartos et al., 2001).
The spike shape of the PV+ interneuron action potentials were
determined on the basis of resting membrane potential (−60.6±
3.3 mV), threshold membrane potential (−43.1± 4.2 mV), max-
imal spike height (2.5± 4.3 mV), spike width at threshold (0.83±
0.12 ms), and minimal membrane potential (−67.0± 2.4 mV).
The rheobase current is defined as the minimal amount of cur-
rent required to elicit a spike. We used a series of depolarizing
10 pA steps, as done in three of the seven cells, to precisely deter-
mine the rheobase current (131± 58 pA). The values for all these
parameters are summarized in Table 1. In this way, our model is
constrained with experimentally determined intrinsic properties.

It is important to also constrain the f-I profile with experi-
mental data, so that the amount of synaptic input the cell model
receives will directly correlate to the appropriate spike frequency
of the cell. The average frequencies of each cell were plotted as a
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Table 1 | Experimental values compared with model parameters.

Parameter Experiment (n = 7) Model

vr (mV) −60.6± 3.3 −60.6
vt (mV) −43.1± 4.2 −43.1
vpeak (mV) 2.5± 4.3 2.5
c (mV) −67.0± 2.4 −67
Cm (pF) 81.14± 19.4 90
Irheo (pA) 131± 58 (n = 3) 131

From top down, parameters are: resting membrane potential, threshold

potential, action potential peak, after-hyperpolarizing potential minimum, mem-

brane capacitance, and rheobase current. Experimental values are given as

mean ± S.E.M.

function of the amount of depolarizing current, and are given in
Figure 4A. The approximate slopes of these f-I curves were used
to constrain the model f-I curve. To determine the SFA, we plotted
the ISI with respect to the latency of each interval from the start
of the current step, and fit the slope of the line to these points
(Hemond et al., 2008). This slope was determined to be 0.0151±
0.0091, which quantifies the very minimal adaptation observed.
Therefore, consistent with previous studies (Pawelzik et al., 2002),
we found that CA1 PV+ interneurons are fast-firing neurons with
narrow spike widths and little SFA.

Using the mathematical model structure given in the Methods,
the resting membrane potential, threshold potential, maximal
spike height, and membrane potential minimum were fit directly
with the experimentally determined values, as summarized in
Table 1. That is, we set vr = −60.6 mV, vt = −43.1 mV, vpeak =
2.5 mV, c = −67 mV. The parameter khigh = 14 nS/mV is a scal-
ing factor that allowed us to adjust the spike width above the
threshold, to appropriately represent the narrow spike width of
our PV+ interneurons. The values a and d were chosen such
that our model does not exhibit SFA, which is representative of
the lack of adaptation expressed by these cells. They are given by
a = 0.1 ms−1, d = 0.1 pA.

Next, we determined the parameters klow and b. Since our
interneurons showed little adaptation or sensitivity to subthresh-
old oscillations, we were restricted to b < 0 (Izhikevich, 2003).
To maintain consistency with our experimental findings, we
chose klow and b such that: (1) our model rheobase current was
equal to the average experimental rheobase current (experiment:
Irheo = 131± 58pA, model: Irheo = 131pA), and (2) the slope of
the model f-I curve over 60, 70, or 80 Hz was in the range of
those determined experimentally (as described in Methods). We
determined that our best fit to maintain these properties was
with klow = 1.7nS/mV and b = −0.1 nS. The membrane capac-
itance affects the f-I profile of the cell, and it was set within its
physiological range to Cm = 90 pF.

In Figure 4B, the model is shown in comparison to an example
experimental recording, both with an applied current of 260 pA.
It is evident that the spike shape and firing properties are con-
sistent with our experimental findings. The model f-I curve is
shown in comparison with the experimental curves for the seven
recorded cells in Figure 4A, and on its own in Figure 4C. The
comparison of model parameters with experimental values is
given in Table 1.

FIGURE 4 | (A) The frequency-current profiles of the four recorded PV+
interneurons, determined under current clamp with steps of 50 pA for four
PV+ cells (represented by blue, red, green, and black), and steps of 10 pA for
three PV+ cells (represented by cyan, yellow, and purple). Note that the
solid points denotes data points, lines in respective colors denote estimated
values. The PV+ cell model’s f-I curve is given in a thick black solid line,
where the slope of the curve and the rheobase current is within the
experimental range. (B) An example intracellular recording of a PV+ cell
during current clamp with applied current of ∼260 pA (top) is compared with
the firing of our PV+ cell model with an applied current of 260 pA (bottom).
The spike characteristics and firing rates of the model closely match those of
the experiment. (C) The frequency-current profile of the PV+ interneuron
model is shown in black. The mean frequency of intra-theta-cycle firing of
PV+ interneurons during the network rhythm is shown in red. The mean
input current is determined based on the f-I curve. The green lines indicate
one standard deviation from the mean current (n = 4).
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To our knowledge, this is the first simple, single compartment
model for CA1 PV+ fast-firing interneurons that has been tied
directly with experimental data in several ways and which faith-
fully simulates the firing behavior and spike characteristics of CA1
PV+ interneurons. As such, it provides a useful platform with
which one can investigate the role of PV+ fast-firing interneurons
in a variety of behaviors.

THE EXPERIMENTALLY CONSTRAINED CA1 PV+ INTERNEURON
NETWORK MODEL
During emergent theta oscillations in our intact hippocampal
preparation in vitro, PV+ interneurons in the CA1 region spike
heavily within each theta cycle as shown for one of the exper-
imental recordings in Figure 1A. We note that high frequency
oscillations (HFOs; >100 Hz) are recorded in the CA1 region
of the hippocampus, and are often nested in theta oscillations
(3–12 Hz) (Scheffer-Teixeira et al., 2012). In addition, Jackson
et al. (2011) demonstrated that the subiculum of the intact hip-
pocampal preparation spontaneously generates high frequency
rhythms, which they referred to as fast gamma (100–150 Hz), and
these rhythms are co-expressed with theta rhythms (3–10 Hz).
These fast network rhythms were abolished with fast-GABAergic
blockers, but not by blocking AMPA/kainate or NMDA recep-
tors, indicating an inhibitory network is responsible for these
rhythms (Jackson et al., 2011). Networks of fast-firing interneu-
rons have been shown in models (Wang and Rinzel, 1992; Traub
et al., 1996; Wang and Buzsáki, 1996; White et al., 1998, 2000;
Bartos et al., 2001) to produce gamma (30–100 Hz) oscillations.
Therefore, we consider our network model in the following way:
by constraining our synaptic drive with the total synaptic input
to PV+ interneurons during emergent theta oscillations, do we
obtain synchronized network outputs (see Methods for details) at
high frequencies?

Synaptic drive estimated based on periods of high frequency firing
during theta oscillations
In order to determine the amount of excitatory drive that each
cell receives during these periods of high frequency firing, we
note that PV+ interneurons in general receive mainly excitatory
input, and comparatively much less recurrent inhibition (Gulyás
et al., 1999). For example, in PV+ basket cells, which comprise the
largest population (∼60%) of PV+ interneurons (Baude et al.,
2007), ∼94% of the synaptic connections they receive are exci-
tatory, whereas only ∼2% come from other PV+ interneurons
(Gulyás et al., 1999). Thus, during our emergent theta network
rhythm, it is reasonable to assume that the majority of synaptic
input to the PV+ interneurons is from sources other than inhi-
bition from other PV+ interneurons. With this assumption, we
constrain the drive to each interneuron model in the network by
approximating the total amount of input received during each
theta oscillation.

Since the theta oscillations exhibit distinct periods of activ-
ity and quiescence, as correlated with PV+ cell firing, we can
estimate the amount of synaptic input received during the “activ-
ity” period. As described in the Methods, we use the peaks (at
0◦) of our extracellular LFP recordings (Figure 1A, black aster-
isks) to obtain the phase of the peak of each action potential

(Figure 1A, red asterisks). From the resulting spike-phase his-
togram (Figure 1B), and defining an intra-cycle spike to be one
that fell between−80◦ and+80◦ of the LFP peak, we obtain PV+
firing frequencies that exist during the emergent theta oscilla-
tions. These frequencies for our four recordings are 179.6 ± 3.4,
210.7± 85.3, 153.4± 79.0, and 192.4± 88.0 Hz. Using these fre-
quencies in combination with our model f-I curve (Figure 4C)
we infer the mean amount of synaptic current that was present
during the network rhythm (545 ± 150 pA). The approximate
standard deviations are shown as the green lines, and the mean
in red, in Figure 4C. We used these experimentally determined
ranges of synaptic input during the fast-firing stage of each theta
cycle to constrain our synaptic drive to each cell model (Iapplied).

We now use our experimentally constrained cellular and net-
work models to investigate the conditions under which high
frequency population rhythms could occur. Specifically, we exam-
ine a wide range of maximal synaptic conductance (gsyn) and
synaptic drive (Iapplied) parameter values that incorporate phys-
iological constraints to determine the conditions under which
our networks could exhibit coherent firing. We chose to exam-
ine a large range of excitatory Iapplied from 200 to 900 pA (using
a step sizes of 10 or 15 pA), which fully encompasses the phys-
iological range of 545 ± 150 pA determined above. In addition,
we varied the maximal synaptic inhibitory conductances, gsyn,
from 0 to 10 nS (using a step size of 0.05 or 0.075 nS), which also
fully encompasses the physiological range (see Methods). For each
combination of these two parameters, we determined the popu-
lation frequency and population coherent firing measure of the
network, and networks were deemed to be “synchronized” if they
exhibited a population coherent firing measure greater than or
equal to 0.2 (see Methods).

High frequency population rhythms occur in model networks when
inhibitory synaptic strengths are relatively small and excitatory
drive is relatively large
We investigated whether high frequency (>100 Hz) population
rhythms occur for our chosen ranges of synaptic drive (200 pA ≤
Iapplied ≤ 900 pA) and inhibitory synaptic PV-PV conductance
strengths (0 nS ≤ gsyn ≤ 10 nS), which encompass our experi-
mentally determined ranges. To do so, we examined 500-cell
networks where Iapplied was homogeneous, as well as the more
realistic situation in which the synaptic drive was heterogeneous
across all cells. In particular, heterogeneous input across the net-
work was given by normally distributing inputs with a mean
of Iapplied and standard deviation of 5, 12, 25, 50, or 75 pA. As
expected from previous modeling studies (Wang and Buzsáki,
1996), coherent firing was sensitive to heterogeneity (compare
network simulations with the standard deviation of Iapplied equal
to 12 and 50 pA in Figures 5A,B, respectively).

The networks produced coherent population firing, but did so
with population frequencies that were necessarily fast (Figure 5).
For example, in the network where Iapplied had a standard devi-
ation of 12 pA, coherent firing was produced for population
frequencies of 90–197 Hz for the parameter ranges examined
(Figure 5A). Although such high frequency population rhythms
were produced in our CA1 network models, they did so for rel-
atively small inhibitory conductance strengths

(
gsyn

)
compared
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FIGURE 5 | Network coherence measures for our 500 PV+ cell network

with heterogeneous external synaptic drive (Iapplied), over a range of

applied currents and peak conductance values (gsyn). Each network is
randomly connected with a 0.12 probability of connections (in accordance
with estimates from Sik et al. (1995), where PV+ interneurons were
estimated to contact with 60 other PV+ interneurons). The color bar on the
right represents the frequency of the network oscillation. (A) The standard
deviation of the applied current is set to 12 pA. This experimentally
constrained network exhibited coherent fast rhythms (90–197 Hz) in the high
frequency oscillation (HFO) range (∼120–160 Hz) (where coherent networks

were defined as those with an average population coherent firing measure
ϕavg ≥ 0.2). This coherent firing was found for a range of conductance
strengths 0.225 nS ≤ gsyn ≤ 4.5 nS and tonic excitatory input
Iapplied ≥ 485 pA. Raster plots of the last 50 ms of simulation are shown as
insets. One network shows no coherence (ϕavg = 0.05) for Iapplied = 595 pA,
gsyn = 1.5 nS (bottom). The neighboring network exhibits coherence
(ϕavg = 0.51) for Iapplied = 600 pA, gsyn = 1.5 nS (top). (B) A heterogeneous
network with the standard deviation of Iapplied equal to 50 pA. The network
exhibits coherent high frequency rhythms (129–163 Hz for ϕavg ≥ 0.2) for
1.125nS ≤ gsyn ≤ 2.4 nS and Iapplied ≥ 710 pA.

with estimates derived from Bartos et al. (2002) (4.8 ± 1.2 nS),
and large excitatory drives (Iapplied) as compared to our exper-
imentally determined parameter ranges (545 ± 150 pA). For
example, in the heterogeneous network where Iapplied had a stan-
dard deviation of 12 pA, high frequency population rhythms were
robust (see Methods for details) for 0.225nS ≤ gsyn ≤ 4.5nS and
Iapplied ≥ 455pA (Figure 5A). Although the inhibitory conduc-
tance strengths

(
gsyn

)
were small, they were necessarily greater

than zero, demonstrating that PV-PV network connections are
required to generate these fast rhythms.

As expected, the window in which coherent population firing
is exhibited decreased with increased heterogeneity. In compar-
ison, the heterogeneous network with a 50 pA standard devi-
ation of Iapplied produced robust coherent firing (between 129
and 163 Hz) for 1.125nS ≤ gsyn ≤ 2.4nS and Iapplied ≥ 710pA
(Figure 5B). Thus, in more heterogeneous networks, robust

rhythms require larger Iapplied values and a reduced range of pos-
sible gsyn values, where the maximal gsyn values are smaller and
the minimal are larger. Of course, describing synaptic input as
an applied current with heterogeneity is an approximation. To
ensure that describing Iapplied in this way is a reasonable choice,
we also ran several simulations in which Iapplied was represented as
noisy excitatory and inhibitory synaptic currents as done in previ-
ous work (Ho et al., 2012). The results of these simulations were
similar to the heterogeneous runs (not shown), although a full
exploration of excitatory and inhibitory balances was not done at
this time.

In conclusion, our inhibitory network needs enough excitatory
drive to produce coherent high frequency firing, and connections
between the inhibitory cells cannot be too strong. These results
were maintained with various levels of heterogeneity, although
the windows in which coherent firing was obtained reduced with
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increased heterogeneity. The prediction that a large excitatory
drive to PV+ cells is required to produce coherent high fre-
quency firing can be tested experimentally. For example, one
could optogenetically stimulate (or silence) this cell population,
and see if high frequency population oscillations are generated
(or diminished).

Sharp transitions in and out of coherence depend on appropriate
connectivity
An interesting feature produced by our network simulations is
that the networks exhibited a sharp transition from random fir-
ing to network coherence with only a small change in Iapplied

(see raster plots in Figure 5A). Although the window of coher-
ent activity was decreased as heterogeneity in the system was
increased, this feature was maintained. Thus, small parameter
perturbations, specifically to the excitatory drive, may allow the
network to be easily gated in and out of coherent high frequency
firing. PV+ interneurons are highly connected to neighboring
pyramidal cells (Sik et al., 1995), and may have the potential to
more strongly influence network oscillations during their coher-
ent state. Therefore, this may provide a mechanism by which
HFOs are nested in slower network rhythms.

To determine how network connectivity would affect its abil-
ity to generate coherent firing, we held the standard deviation
of Iapplied at 12 pA, and ran simulations with various con-
nection probabilities (p = 0.05, 0.06, 0.08, 0.12, 0.2, 0.3, 0.5,
0.85). Note that the biologically appropriate connection proba-
bility is about 0.12, since our determined network size was 500,
and each cell connects with ∼60 other cells (Sik et al., 1995).
Figures 6A–C shows the effect of decreased connectivity (p =
0.08) and increased connectivity (p = 0.5), respectively. As con-
nectivity was decreased, the sharp transitions between random
and coherent firing remained (Figure 6A). However, the window
of coherent firing decreased, and for very small connectivities
(p ≤ 0.06), coherent firing was lost within our experimentally
determined parameter ranges. As we increased connectivity in
the network beyond experimentally estimated values, this sharp
transition disappeared (Figures 6C,D). Instead, a larger window
of coherence was achieved (e.g., for p = 0.5, 0.075nS ≤ gsyn ≤
6.45nS and Iapplied ≥ 320pA), but with a smooth transition from
random to coherent firing. This difference in transition from ran-
dom to coherent firing was quantified in Figure 6D, where we
considered a particular gsyn value, and demonstrated how the
slope of the coherence measure with respect to Iapplied decreased
for increased connection probabilities. Therefore, network con-
nectivity may not only affect its ability to produce coherent firing,
but also may affect the mechanism by which this coherence is
obtained. In addition, we explored various network sizes to see
how it affects network coherence. We found that if we decreased
the network size significantly, but maintained our connection
probability (p), sharp transitions were lost. This serves as another
illustration that network connectivity may change key features of
the network output.

More cells are active during coherent firing
The smooth transitions are created due to the fact that the highly
connected networks are able to fire coherently with smaller Iapplied

values. With a smaller excitatory drive, only a few cells fire, but
do so coherently. As Iapplied increases, gradually more cells are
recruited into the rhythm, thereby increasing the coherence mea-
sure. In contrast, in our model networks with experimentally
constrained connectivity, larger Iapplied values are required to pro-
duce coherent activity. Therefore, a large number of cells, which
are randomly firing, become coherent with only a small change
in Iapplied.

To investigate how many cells are recruited into the coher-
ent networks, we examined pairs of networks that lay directly on
either side of the sharp transition. Thus, each pair of networks
had one coherently firing network, and one randomly firing net-
work, where the difference in total synaptic input between the
pair was minimal. That is, there was either a difference in synaptic
drive (Iapplied) of 5 pA, or in synaptic strength (gsyn) of 0.075 nS.
In each network, we determined the number of cells firing in
multiple bins, where the bin sizes were set to capture a full oscil-
lation cycle of the coherent network. In this way, we determined
the total number of cells firing per oscillation period, both dur-
ing the firing and non-firing stages, so that this number can be
justly compared between the coherent and random networks. We
also determined the individual firing rates of the cells. We began
our analysis at 500 ms into the simulation, as to ignore any tran-
sient effects, and analyzed bins for the remaining 1 s. Interestingly,
for each pair examined (n = 40), we found that more cells are
recruited to fire during the coherent state than during random fir-
ing, and their individual firing rates are higher, even though the
difference in synaptic drive is small. For example, in the network
where the standard deviation of Iapplied is 12 pA, gsyn = 1.5 nS,
and the mean Iapplied = 595 pA (Figure 5A, bottom raster plot),
283.4± 8.0 cells are firing in each bin (bins are∼10 ms in width),
and cells fire at an average rate of 61.4 ± 23.8 Hz. However, with
only a small increase in synaptic drive (mean Iapplied = 600pA),
but the same inhibitory synaptic conductance strength, 433.2 ±
8.3 cells are firing in each bin, and they are firing at an average
rate of 99.4 ± 23.8 Hz. This result was consistent in networks
with larger heterogeneity in Iapplied as well. Thus, with a small
increase in total synaptic input, many PV+ interneurons may be
recruited to fire with temporal precision, greatly increasing its
potential to influence network rhythms. One can test this pre-
diction using multi-electrode recordings: given these results, one
would expect to see more fast-spiking interneurons firing during
HFOs than when HFOs are not present. In addition, individual
PV+ cells would be expected to have higher firing rates during
HFOs.

Overall, our simulation results predict that networks of CA1
fast-firing PV+ interneurons can produce high frequency pop-
ulation rhythms, but only when the inhibitory PV-PV synaptic
conductance strengths (gsyn) are relatively small (compared with
approximate values derived from Bartos et al., 2002) and exci-
tatory synaptic drive (Iapplied) is relatively large (compared with
our experimentally estimated values). In addition, perturbation
in and out of coherent states can occur abruptly given the sharp
transitions obtained in our network simulations. As such, CA1
networks may be easily “gated” in and out of coherent firing
regimes. Since our simulations approximate a biological context,
it may be that this ease of gating in and out of coherence is an
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FIGURE 6 | (A,B,C) Network coherence measures for our 500 PV+ cell
network with heterogeneous external synaptic drive with the standard
deviation of 12 pA, simulated over a range of applied currents (Iapplied) and
peak conductance values (gsyn). The color bar on the right represents the
frequency of the network oscillation. (A) The connection probability was
reduced from 0.12 [shown in (B)] to 0.08. The window of coherence
(ϕavg ≥ 0.2) decreased dramatically, but the sharp transitions between
random and coherent firing remained. (B) The connection probability is
0.12 (in accordance with our 500 cell network size, and estimates from Sik
et al. (1995) where PV+ interneurons were estimated to contact with 60
other PV+ interneurons). Coherent firing (ϕavg ≥ 0.2) was found for a range
of conductance strengths (0.225nS≤ gsyn ≤ 4.5 nS) and tonic excitatory
input (Iapplied ≥ 485 pA). (C) The connection probability was increased

from 0.12 to 0.5. The window of coherence (ϕavg ≥ 0.2) increased
(0.075 nS ≤ gsyn ≤ 6.45 nS and Iapplied ≥ 320 pA), but the transitions
between random and coherent firing are gradual. (D) The network
coherence measure is plotted against the amount of applied current
(Iapplied) for networks with three different connection probabilities (solid
lines in blue, green, and purple for connection probabilities, p, of 0.12, 0.3,
and 0.85, respectively) and gsyn = 1.95 nS. The transitions were fit with
lines (dashed lines), and the slopes were determined to quantify the
steepness of these transitions. The experimentally determined connectivity
of 0.12 (for a 500 cell network) (Sik et al., 1995) has a transition slope of
0.0244, which decreases in steepness as connectivity is increased (slope
of 0.0017 for connectivity probability of 0.3, and slope of 0.0011 for
connectivity probability of 0.85).

essential design property of biological networks to bring about
the generation of theta/high frequency network oscillations.

DISCUSSION
SUMMARY OF RESULTS AND THEIR IMPLICATIONS
We have created a CA1 network model of PV+ interneurons that
is tied to experimental work at cellular and network levels, and
used it to investigate the potential of this interneuron population
to realize synchronized output at high frequencies.

First, we created a model of a single PV+ interneuron based
directly on experimental recordings of PV+ cells in the CA1
region of the intact hippocampal preparation in vitro. Due to their
fast-firing properties and extensive connections with pyramidal
cells (Sik et al., 1995), PV+ interneurons may play an essen-
tial role in HFOs. An experimentally constrained mathematical
model of a PV+ cell allows one to investigate this role, or the role
of these cells in other network states. However, to our knowledge,

no other single compartment models of CA1 fast-spiking PV+
interneurons exist. Thus, we created a computationally efficient
model that accurately reproduces a number of important fir-
ing properties. In order to retain computational efficiency, while
representing PV+ cell spike characteristics and firing properties,
we represented the PV+ interneurons with a modification of
the Izhikevich-type model (Izhikevich, 2003). We used whole-
cell patch clamp recordings in the presence of synaptic blockers
to determine the spike characteristics and passive properties of
the PV+ cells. This enabled us to constrain our model based on
resting membrane potential, spike height, spike width, threshold
potential, membrane capacitance, rheobase current, and amount
of adaptation. In addition, a f-I profile was found, and model
parameters were varied to determine the best linear fit to the
slope of this f-I curve as it leveled off for higher firing frequen-
cies. Thus, we used passive properties, spike characteristics, and
firing properties of PV+ interneurons to build a mathematical

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 144 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ferguson et al. Sharp transitions in PV+ networks

model of these fast-spiking cells. As fast-firing interneurons have
been proposed to play an essential role in various network oscil-
lations (Ylinen et al., 1995; Penttonen et al., 1998; Bartos et al.,
2001; Freund, 2003; Wulff et al., 2009; Colgin and Moser, 2010;
Jackson et al., 2011; Belluscio et al., 2012), our model may provide
a platform to investigate the influence of PV+ cells on a variety of
network rhythms.

Second, we used our single cell models to construct network
models, which we constrained with experimentally determined
synaptic parameters, connectivity, and network size. By varying
the synaptic drives and PV-PV inhibitory conductance strengths
across an experimentally determined range, these network models
were used to investigate the conditions under which they gener-
ated coherent high frequency firing. To create the networks, each
PV+ interneuron model was connected with 60 other PV+mod-
els (Sik et al., 1995), and synaptic properties were constrained
with previously reported time constants (Bartos et al., 2002) and
our own experimentally determined inhibitory reversal poten-
tial. Recordings during emergent network oscillations (Goutagny
et al., 2009) provided us with information about realistic fir-
ing rates of PV+ interneurons during the “active” phase of the
theta rhythm. These firing rates, used in combination with the
cell’s intrinsic f-I profile, provided physiological constraints on
the amount of synaptic current the PV+ cells receive during
their fast-firing phases in these spontaneous network oscillations.
Using these experimental constraints, and exploring a physiolog-
ical range of inhibitory synaptic strengths, our network model
did indeed produce high frequency population rhythms (∼90–
200 Hz). However, in order to generate these rhythms, the synap-
tic drive had to be strong enough to overpower the recurrent
inhibition in the network (and was therefore relatively strong
compared with our experimentally determined estimates), and
the PV-PV synaptic maximal conductance values were necessarily
small (compared with estimates derived from Bartos et al., 2002).
Thus, making the reasonable assumption that PV+ interneurons
can strongly influence local field rhythms (due to their high con-
nectivity with pyramidal cells), we predict that one should be able
to induce/diminish HFOs by specifically stimulating/silencing
PV+ interneurons (e.g., through optogenetic stimulation). As
PV+ interneurons are selectively damaged in schizophrenia and
certain drugs of abuse (Zhang and Reynolds, 2002; Lewis et al.,
2005; Morris et al., 2005; Behrens et al., 2007), we predict that
HFOs may be disrupted during these states. Increased excitation
to PV+ interneurons may help recover this rhythm, a prediction
that can be tested in these animal disease models. Thus, we sug-
gest that PV+ interneurons may serve as a target with which one
can influence the generation of HFOs—a rhythm that may play a
role in memory processing (Tort et al., 2008).

In addition, we found that if we decreased the network size
significantly, but maintained our connection probability, sharp
transitions were lost. This occurred because in networks with
a high degree of connectivity (e.g., p = 0.85 as in Figure 6D),
the cells could fire together with small amounts of applied input
(Iapplied). However, because Iapplied was so small, only a few cells
were recruited to fire, resulting in an overall low population
coherence. As Iapplied was increased, more and more cells were
recruited to fire, and they did so together. When the connectivity

was high enough, this resulted in an approximately linear increase
in coherence, indicating that the cells were recruited in a some-
what linear fashion. In contrast, when the connectivity was low,
the cells required relatively large levels of Iapplied to synchronize.
At the point of synchronization, the majority of the cells were
already firing, resulting in a sharp increase in coherence. This
sharp transition may play a role in the nesting of theta and HFOs,
as a network of PV+ interneurons may be easily gated in and out
of the coherent state. For example, if CA1 PV+ interneurons were
to receive periodic excitatory drives at theta frequencies, our net-
work model would suggest that they could easily synchronize and
desynchronize at particular phases of the theta oscillation.

This finding concerning how network connectivity affects its
ability to transition quickly into the coherent state may also help
us understand mechanisms underlying coherent firing of PV+
interneuron networks with different connectivity properties. For
example, in the CA3 region of the hippocampus, PV+ basket
cells have distinct arborization compared to CA1 PV+ basket
cells (Tukker et al., 2013), indicating that their network config-
uration may be distinct as well. Our model would suggest that
networks with increased connectivity, yet similar intrinsic and
synaptic properties, would not produce these sharp transitions
between random and coherent population firing.

Our network models also predict that a network of PV+
interneurons exhibit sharp transitions from random to coher-
ent firing, and that more cells fire during the coherent state.
The sharp transition implies that while CA1 PV+ fast-firing
cell networks have the ability to produce synchronized network
rhythms at high frequencies, small perturbations to this net-
work (from, for example, the influence of other cell types such as
oriens-lacunosum-moleculare or O-LM interneurons) could eas-
ily push the system out of its coherent firing regime. Our networks
showed that more cells fire, and their individual firing rates are
higher, during the coherent state than during random firing, even
though the change in synaptic input across this transition may
be minimal. This prediction can be tested using multi-electrode
recordings in the presence and absence of HFOs. Again, this
would imply that HFOs would be disrupted in disease states or
with particular drugs of abuse, where PV+ interneurons are selec-
tively damaged (Zhang and Reynolds, 2002; Lewis et al., 2005;
Morris et al., 2005; Behrens et al., 2007). In addition, our findings
imply that PV+ interneurons increase their individual firing fre-
quencies during HFOs. We note that the increase in individual cell
firing rates and the number of cells firing are related: higher indi-
vidual firing frequencies mean that each cell will be more likely to
fire in a given cycle, which will directly affect the number of cells
firing in each cycle.

Together these predictions imply that when firing coherently,
the PV+ interneurons may have much more influence over neigh-
boring pyramidal cells in two ways: their synaptic outputs are
temporally aligned, allowing for synaptic summation, and more
cells are recruited to influence postsynaptic targets. In vivo, it
may be that CA1 inhibitory networks are easily gated in and
out of coherent firing regimes with appropriate adjustments in
synaptic drives, indicating a potential mechanism for the nest-
ing of theta with HFOs. In addition, our networks suggest that
PV+ interneurons form coherent assemblies, and due to their
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frequency and number of cells firing, may strongly influence syn-
chrony in pyramidal cell assemblies. The timing of PV+ firing
occurs at a timescale that is effective for synaptic plasticity (Magee
and Johnston, 1997), and in which pyramidal cell assemblies are
synchronized (Harris et al., 2003). Thus, PV+ interneurons may
effectively influence information storage in neuronal circuits.

COMPARISON TO EXISTING MODELS
One of the most commonly used cellular models for fast-firing
interneurons is that of Wang and Buzsáki (1996) (e.g., Bartos
et al., 2001; Wulff et al., 2009; Neymotin et al., 2011), and thus
it is important to consider the differences between the two mod-
els. The Wang and Buzsáki model (1996), which we will denote
the “WB model,” is not representative of CA1 PV+ fast-spiking
interneurons specifically, as it was developed to represent fast-
firing (neocortical and hippocampal) interneurons generically,
focusing on a steep f-I profile and after-hyperpolarization charac-
teristics. As such, data from multiple preparations (e.g., rat hip-
pocampal slices and guinea pig cortical slices; McCormick et al.,
1985; Lacaille and Williams, 1990; Zhang and McBain, 1995)
were considered in creating a representative model. The Hodgkin-
Huxley conductance-based model framework with sodium and
potassium conductances was used in creating the model.

There are critical differences between our model and the
much-used WB model. Our model was constrained under a
specific biological setting (an intact hippocampal preparation
in vitro), and was based on identified CA1 PV+ fast-firing
interneurons. Our passive characterizations were done under dif-
ferent in vitro conditions than in studies using slices. We used
an intact hippocampal preparation that better preserves neurons’
axo-dendritic arborizations than conventional slice configura-
tions, and fast aCSF perfusion rates that are critical for provid-
ing oxygenation levels required to generate network rhythmic
activities (Goutagny et al., 2009). Our model uses experimental
data to constrain the membrane capacitance, spike characteris-
tics, and importantly, both the rheobase current and the slope
of the f-I profile. To directly compare our f-I profile with the
WB model, we consider three different somatodendritic sur-
face areas (including one based on a reconstructed hippocampal
basket cell of 12,000 μm2 in Bartos et al., 2001) to convert
injected current values in the WB model with ours. Figure 7
shows the f-I profiles of our model (black line), vs. the WB
model assuming three different surface areas. It is evident that
the WB current rheobase is much smaller than ours, ∼24 pA
(for the 12,000 μm2 surface area) vs. 131 pA, which means that
the WB model fires for much smaller synaptic inputs. In Ho
et al. (2012), where high resolution f-I recordings were per-
formed on fast-spiking hippocampal cells, the current rheobase
was always higher than that of WB, and in agreement with
our recordings (see Table 1). In addition, the slope of the WB
model is not as steep as ours, and thus for the same amount
of applied current, the WB model will not reach the same high
frequencies.

In summary, our model differs from the WB model in its
intrinsic properties including spike shape, slope of the f-I curve,
and the rheobase at which it fires. Thus, our cell model would
require larger excitatory inputs than the WB model in order to

FIGURE 7 | The frequency current profiles of our model (black line) and

the Wang and Buzsáki (1996) model (WB) for various surface areas

(SA) (red, blue, and green lines). Note the differences in rheobase
current, and slope.

be recruited into a network oscillation. Given the experimental
constraints under which our model was developed, it is per-
haps a more accurate reflection of what is needed for network
rhythms. In addition, since the slope of our f-I curve is steeper
than in the WB model, our model would fire over a larger range
of frequencies given a certain amount of variability in excitatory
inputs.

We also consider the differences between existing network
models of fast-firing interneurons (generally using WB models)
(Bartos et al., 2002; Wulff et al., 2009; Neymotin et al., 2011)
and our network models. Both intrinsic properties of the indi-
vidual neuron models and the network properties will play a role
in the network output. As mentioned above, the WB model has a
less steep f-I slope relative to ours (see Figure 7). Thus, this may
give rise to coherently firing output with lower gamma network
frequencies. Specifically, our network models produced high fre-
quency rhythms between ∼90 and 200 Hz, compared with many
other models producing rhythms within the low gamma range
(Bartos et al., 2002; Wulff et al., 2009; Neymotin et al., 2011).
In addition, network size and connectivity will play a role in the
range of synaptic strengths required to produce coherent oscil-
lations. Often models use smaller network sizes (Bartos et al.,
2002; Wulff et al., 2009; Neymotin et al., 2011), but similar con-
nectivity, compared to ours. As we have shown here, the sharp
transitions between random and coherent firing may also be lost
when connectivity is not biologically appropriate.

We note that the Iapplied parameter (i.e., synaptic drive) used
in previous network models producing gamma frequencies does
not have any clear experimental constraint or context. For exam-
ple, an Iapplied value of 1 μA/cm2 was mostly used in Wang and
Buzsáki’s networks, but a value of 3 μA/cm2 was needed in Bartos
et al.’s models when experimentally determined synaptic con-
straints were introduced for the inhibitory synaptic conductances
and kinetics. This highlights a fundamentally different approach
we used in our study—we constrained our network models with
synaptic, cellular, and network level experimental data. To do
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this, we took advantage of the experimental context of the intact
hippocampal preparation exhibiting spontaneous rhythms. Using
this context, we estimated the allowable range of Iapplied values
(i.e., network level, synaptic drive) for our models, and used cel-
lular models derived from the same hippocampal preparation. In
addition, we used previously published synaptic conductances,
kinetics, and connectivity specific to fast-firing cells in hippocam-
pus. With this, our network models produced high frequency
rhythms for particular parameter balances and with particular
characteristics of sharp transitions in and out of coherence.

LIMITATIONS
We note that, in contrast to Bartos et al. (2002), we did not include
gap junction connections in our model. These connections are
known to exist (Fukuda and Kosaka, 2000; Bartos et al., 2001;
Deans et al., 2001; Galarreta and Hestrin, 2001) and, according
to a network model by Bartos et al. (2002), gap junction con-
ductance affects coherence selectively with only minimal effect
on frequency. Thus, our model may underestimate the size of
parameter range in which a network of PV+ interneurons can
produce coherent rhythms. Interestingly, Hormuzdi et al. (2001)
found that mice lacking connexin 36, a major neuronal connexin,
resulted in disruptions of oscillations in the 30–80 Hz range, but
faster (∼150 Hz) oscillations remained intact. Thus, it is possible
that the lack of gap junction connections in our model is not a
limiting factor when considering coherence in the HFO range. In
addition, we did not include spatial network architecture in our
model, as was done for example in Taxidis et al. (2012). We chose
not to include these details to focus on the intrinsic cellular char-
acteristics in order to set the basis for future and more realistic
network explorations.

Clearly, another limitation stems from our use of an in vitro,
rather than an in vivo situation. Synaptic constraints would be
expected to be different in vivo. However, this in vitro preparation
does produce population rhythms spontaneously implying that
synaptic constraints from it are enough for population rhythm
generation. Also, assuming that spontaneously generated rhythms
use mechanisms similar to those employed in vivo, the use of
the in vitro preparation is advantageous. This is because the
confounding issues due to dealing with more complex network
circuitries as exist in vivo would be difficult to untangle and model
to determine underlying mechanisms in the first place.

CONCLUDING REMARKS
We have combined experimental recordings, data analysis, and
modeling to produce a model that is mathematically simple

enough to be used in large network simulations, yet captures
physiologically determined intrinsic and network properties of
PV+ interneurons. Therefore, it provides a basis for under-
standing how hippocampal population activities involving the
fast-firing PV+ cells are generated, and how they potentially
contribute to other hippocampal rhythms (e.g., theta). A clear
understanding of the contribution of PV+ interneurons to net-
work rhythms is a crucial step toward determining their role
in behavior. As these interneurons are thought to be involved
in a variety of pathologies, including epilepsy (Maglóczky and
Freund, 2005; Ogiwara et al., 2007) and dementia with lewy
bodies (Bernstein et al., 2011), and are selectively damaged in
schizophrenia and certain drugs of abuse (Zhang and Reynolds,
2002; Lewis et al., 2005; Morris et al., 2005; Behrens et al., 2007),
this understanding of how they contribute to network rhythms
becomes critically important. As such, our model provides a plat-
form to investigate a variety of alternative questions involving the
influence of PV+ interneurons.

The model may be used to address a variety of problems,
but of course the usefulness of the model will depend on
the question at hand. The simplicity of the model promotes
computational efficiency, but questions involving the structure
or detailed (e.g., ionic) properties of PV+ interneurons will
require more elaborate models. Although we considered the
connectivity of PV+ interneurons, we did not explore more
detailed network architecture. This, along with the addition of
other cell types, would be interesting extensions to our network
model.
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