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Abstract: Polymer self-healing films containing fragments of pillar[5]arene were obtained for the first
time using thiol/disulfide redox cross-linking. These films were characterized by thermogravimetric
analysis and differential scanning calorimetry, FTIR spectroscopy, and electron microscopy. The films
demonstrated the ability to self-heal through the action of atmospheric oxygen. Using UV–vis, 2D
1H-1H NOESY, and DOSY NMR spectroscopy, the pillar[5]arene was shown to form complexes with
the antimicrobial drug moxifloxacin in a 2:1 composition (logK11 = 2.14 and logK12 = 6.20). Films
containing moxifloxacin effectively reduced Staphylococcus aureus and Klebsiella pneumoniae biofilms
formation on adhesive surfaces.

Keywords: pillar[5]arene; self-healing; moxifloxacin hydrochloride; electron spin resonance; polymer
films; polythiols; antibacterial activity

1. Introduction

In recent decades, methods of disrupting pathogenic biofilms have been actively
developed [1]. These methods are based on finding ways to inhibit and control the bacterial
biofilms formation [2]. It is believed that up to 80% of all human bacterial infections (cystic
fibrosis pneumonia, otitis media, pathology of teeth and periodontal tissues, osteomyelitis,
urinary tract infections, etc.) are associated with the establishment of biofilms by pathogenic
and opportunistic microorganisms [3,4]. Along with this, the formation of microbial
biofilms speeds up the corrosion of metals, makes medical equipment unusable, and leads
to a deterioration in sanitation and hygiene in medical institutions [5].

To date, three main strategies have been proposed in the struggle against pathogenic
biofilms: prevention of bacterial adhesion to the surface [6,7]; disruption of biofilm de-
velopment and/or impact on its structure with an antimicrobial drug; and impact on the
creation of the biofilm, followed by its degradation [8–10]. However, all these methods have
common limitations, namely a low efficiency on account of the rapid growth and formation
of the extracellular bacterial matrix and a short duration of action due to the presence in
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biofilms of metabolically inactive cells that are insensitive to factors, primarily antimicrobial
drugs [11]. The use of polymeric compositions capable of long-term inhibition of biofilm
formation will make it possible to eliminate these limitations [12]. Over the past few years,
special attention has been given to supramolecular polymer systems formed by macrocyclic
structures [13,14]. Such polymer systems can have a number of the required functions,
including self-regeneration, controlled adhesion of microbial cells, and the formation of
host–guest systems (macrocycle/antibiotic or antiseptic), to inhibit the activity of cells
inside the biofilm.

Derivatives of cyclodextrins [15], cucurbit[n]urils [16], and calix[n]arenes [17,18] are
frequently used to form supramolecular polymer ensembles with desired properties. Al-
though these macrocycles have a relatively low toxicity, they are quite difficult to modify
into polyfunctional polymer structures.

The use of paracyclophane derivatives—pillar[n]arenes—as a macrocyclic system
solves this problem [19]. Pillar[n]arenes can be easily functionalized thorough free hydroxyl
groups [20,21], and the presence of a hydrophobic cavity promotes the formation of host–
guest systems [22–25]. Recent studies [26–30] demonstrate the effectiveness of using
pillar[5]arenes as platforms to create self-assembling drug delivery systems, stimulus-
responsive polymeric systems, and antibacterial coatings.

In this work, we developed an original strategy for creating disulfide-containing self-
healing materials based on the copolymerization of pillar[5]arene-tetrakis(3-mercaptoprop
rionate) capable of forming host–guest complex with therapeutic drugs that inhibit the
development of Gram-positive and Gram-negative bacteria, Staphylococcus aureus, and
Klebsiellapneumoniae.

2. Materials and Methods
2.1. Characterization

1H NMR, 13C NMR, and 1H-1H NOESY spectra were obtained on a Bruker Avance-400
spectrometer (13C{1H}—100 MHz and 1H—400 MHz). Chemical shifts were determined
against the signals of residual protons of deuterated solvent (CDCl3).

Attenuated total internal reflectance IR spectra were recorded with Spectrum 400 (Perkin
Elmer) Fourier spectrometer. The IR spectra from 4000 to 400 cm−1 were considered in this
analysis. The spectra were measured with 1 cm−1 resolution and 64 scans co-addition.

Elemental analysis was performed with Perkin Elmer 2400 Series II instrument.
Mass spectra (MALDI-TOF) were recorded on an Ultraflex III mass spectrometer in a

4- nitroaniline matrix. Melting points were determined using a Boetius Block apparatus.
Additional control of the purity of compounds and monitoring of the reaction were

carried out by thin-layer chromatography using Silica G, 200 µm plates, UV 254.
Stationary electron paramagnetic resonance (EPR) spectra were obtained at a frequency

of 9.6 GHz (X-band) on a Bruker Elexsys E580 spectrometer at room temperature (modula-
tion amplitude M = 0.1 Gs, microwave power P = 2 µW). Low-temperature experiments
were carried out on a Bruker ESP-300 spectrometer using a flow-through helium cryostat.

The pulsed EPR spectra were recorded by the method of detecting the EPR spectrum
from the integrated intensity of the electron spin echo (ESE) as a function of the external
magnetic field B0. Khan’s sequence was used:

π/2-τ-π-τ-ESE (1)

where the duration of a π/2 pulse was tp = 16 ns, π pulse tp = 32 ns, and delay between
pulses τ = 200 ns.

A two-pulse Hahn sequence was used to determine the transverse relaxation time T2.
The time interval between pulses τ was increased with a step of 4 ns to the required value,
and each time, the integrated ESE intensity was recorded at B = B0. Next, we plotted the
dependence of the integrated ESE intensity as a function of time 2τ and approximated it
with the function:

I(2τ) = I0 exp(2τ/T2) (2)
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The transverse relaxation time TM (phase coherence time) was determined.
Irradiation took place for 1 h on an X-ray unit URS-55 (tungsten anti-cathode W,

voltage U = 50 kV). The estimated absorption dose is approximately equal to 10 kGy.
1H diffusion-ordered spectroscopy (DOSY) spectra were recorded on a Bruker Avance

400 spectrometer at 9.4 tesla at a resonating frequency of 400.17 MHz for 1H using a BBO
Bruker 5 mm gradient probe. The temperature was regulated at 298 K, and no spinning
was applied to the NMR tube. DOSY experiments were performed using the STE bipolar
gradient pulse pair (stebpgp1s) pulse sequence with 16 scans of the 16 data points collected.
The maximum gradient strength produced in the z direction was 5.35 Gmm−1. The duration
of the magnetic field pulse gradients (δ) was optimized for each diffusion time (∆) in order
to obtain a 2% residual signal with the maximum gradient strength. The values of δ and ∆
were 1.800 µs and 100 ms, respectively. The pulse gradients were incremented from 2 to
95% of the maximum gradient strength in a linear ramp.

2.2. Fluorescence Spectroscopy

Fluorescence spectra were recorded on a Fluorolog 3 luminescent spectrometer (Horiba
Jobin Yvon). The excitation wavelength was selected as 335 nm. The emission scan range
was 350–550 nm. Excitation and emission slits were 2 nm for solutions and 2 nm for
supramolecular films. Quartz cuvettes with optical path length of 10 mm were used.
Fluorescence spectra were automatically corrected by the Fluoressence program. The
spectra were recorded in the solvent system (THF:CH3OH = 100:1) with concentration of
Moxifloxacin Hydrocloride (moxi) 5 µM. The obtained molar ratio of polymers to moxi
3/3S or 3/4S was 1:10. The experiment was carried out at 293 K.

2.3. UV–Visible Spectroscopy

UV–vis spectra were recorded using the Shimadzu UV-3600 spectrometer; the cell
thickness was 1 cm, slit width 1 nm. Recording of the absorption spectra of the mixtures of
moxifloxacin hydrocloride (moxi) and benzalkonium chloride (BCl) with pillar[5]arenes
3 at 1 × 10−4 M were carried out after mixing the solutions at 298 K. The 1 × 10−4 M
solution of pillar[5]arene 3 (100, 120, 150, 200, 400, 600, 800 µL) in THF was added to 10 µL
of the solution of guest (moxi) (1.2 ×10−2 M) in methanol and diluted to final volume
of 3 mL with THF. The UV spectra of the solutions were then recorded. The stability
constant of complexes were calculated as described below. Three independent experiments
were carried out for each series. Student’s t-test was applied in statistical data processing.
Experiment was carried out according to the literature method [22].

2.4. Dynamic Light Scattering (DLS)

The particle size and zeta potential was determined by the Zetasizer Nano ZS instru-
ment at 20 ◦C. The instrument contains 4 mW He-Ne laser operating at a wave length of
633 nm and incorporated noninvasive backscatter optics (NIBS). The measurements were
performed at the detection angle of 173◦, and the software automatically determined the
measurement position within the quartz cuvette. The 1 × 10−4−1 × 10−6 M THF solutions
of 3, the 1 × 10−3−1 × 10−5 M solutions of 3/3S and 3/4S, the 1 × 10−4 M solutions of an-
tibiotics (moxi, BCl) (dissolved in methanol 1 × 10−2 M), and the complexes of macrocycle
3 or polymers 3/3S or 3/4S with antibiotics (moxi, BCl) were prepared. The concentration
ratio of macrocycle 3 or polymers 3/3S or 3/4S and antibiotics in complexes was 1:10. The
experiments were carried out for each solution in triplicate.

2.5. Transmission Electron Microscopy (TEM)

TEM analysis of samples was carried out using the JEOL JEM 100CX II transmission
electron microscope. For sample preparation, 10 µL of the suspension 10−5 M were placed on
the Formvar/carbon-coated 3 mm cuprum grid, which was then dried at room temperature.
After complete drying, the grid was placed into the transmission electron microscope using
special holder for microanalysis. Analysis was held at the accelerating voltage of 80 kV in
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SEM mode by Carl Zeiss Merlin microscope. Additionally, studies of the morphology of the
samples were carried out using the Atomic force microscope Dimension FastScan (Bruker).

2.6. Gel Permeation Chromatography (GPC)

GPC studies were carried out on a GTsP chromatograph (Prague, Czech Republic)
equipped with a refractometric detector and a 7.8 × 300 mm column. THF was used as the
eluent. Phenogel 5 µm, pore size 10 Å (Phenomenex, CA, USA), was utilized as a sorbent.
Polystyrene standards were used for calibration.

2.7. Simultaneous Thermogravimetry and Differential Scanning Calorimetry (TG–DSC)

TG–DSC was performed on a Netzsch Jupiter STA 449 C Jupiter analyzer in 40 µL
platinum crucibles with a cap having a 0.5 mm hole at constant heating rates (10 and
4 deg/min; heating range 311–500 K) in dynamic argon atmosphere, flow rate 20 mL/min,
atmospheric pressure; sample weight 10–20 mg. The results were processed using the
NETZSCH Proteus software.

2.8. X-ray Diffraction Analysis

The dataset for single crystal 3 was collected on a Rigaku XtaLab Synergy S instrument
with a HyPix detector and a PhotonJet microfocus X-ray tube using Cu Kα (1.54184 Å)
radiation at low temperature. Images were indexed and integrated using the CrysAlisPro
data reduction package. Data were corrected for systematic errors and absorption using the
ABSPACK module: numerical absorption correction based on Gaussian integration over a
multifaceted crystal model and empirical absorption correction based on spherical harmonics
according to the point group symmetry using equivalent reflections. The GRAL module was
used for analysis of systematic absences and space group determination. The structures were
solved by direct methods using SHELXT [31] and refined by the full-matrix least-squares on
F2 using SHELXL [32]. Non-hydrogen atoms were refined anisotropically. The hydrogen
atoms were inserted at the calculated positions and refined as riding atoms. The positions
of the hydrogen atoms of methyl groups were found using rotating group refinement with
idealized tetrahedral angles. Disordered parts of the molecule are refined using constraints
and restraints. The contribution of the disordered solvent was removed using the SQUEEZE
option from PLATON operated the Olex2 interface. The figures were generated using Mercury
4.1 [33] program. Crystals were obtained by slow evaporation method.

Crystal data for C55H70O10S10 (M = 1211.71 g/mol): monoclinic, space group P21/n
(no. 14), a = 13.1087(6) Å, b = 12.0684(3) Å, c = 41.0482(14) Å, β = 92.459(4)◦, V = 6487.9(4) Å3,
Z = 4, T = 100.00(10) K, µ(Cu Kα) = 3.559 mm−1, Dcalc = 1.241 g/cm3, 46,894 reflections
measured (4.31◦ ≤ 2θ ≤ 154.11◦), 13,152 unique (Rint = 0.0519, Rsigma = 0.0522), which were
used in all calculations. The final R1 was 0.1881 (I > 2σ(I)), and wR2 was 0.5275 (all data).
CCDC refcode: 2163077.

2.9. Computational Method

Models of moxifloxacin and the thiolated pillar[5]arene were generated using Spartan
’20 [34]. The lowest energy structures were determined by molecular mechanics and geome-
try optimized by molecular mechanics using the Merck Molecular Force Field (MMFF). The
2:1 pillar[5]arene:moxifloxacin complex was created using these structures and geometry
optimized using the MMFF followed by DFT (B3LYP/6-31G*) to give the final structure.

2.10. Biological Experiments

Films of free and moxi-loaded polymers 3/3S and 3/4S were formed in the wells of
8-well glass plates and dried for 72 h until a dry film formed on the adhesive surface of
the glass.

Cultures of Staphylococcus aureus and Klebsiella pneumoniae were grown in L-broth to a
density of 1.5 × 1011 cells/mL. Then, 400 µL were added to the wells of culture plates and
chambers for microscopy. Cultivated at 37 ◦C for 48 h until the formation of stable biofilms.
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Biofilms formed after 48 h of cultivation were washed with sodium phosphate buffer
(pH = 7.2) from planktonic cells, dried under sterile conditions, and stained with 0.1%
gentian violet solution for 20 min. Stained biofilms were washed three times with sodium
phosphate buffer (pH = 7.2) and dried. Biofilm thickness was determined by washing with
96% ethanol the gentian violet dye from the biofilm matrix.

Light absorption measurements in eluate samples were measured at λ = 570 nm on a
BIO-Rad xMark Microplate spectrophotometer.

The data were given in relative units. In the calculations, the light absorption of the
eluate was taken as a unit in the variants without surface modification by films.

Most chemicals were purchased from Aldrich and used as received without additional
purification. Organic solvents were purified in accordance with standard procedures.

2.11. Synthesis

Pillar[5]aren 1 were synthesized according to the literature procedure [35].

2.11.1. Synthesis of 4,8,14,18,23,26,28,31,32,35-deca-[Acylthioethoxy]-pillar[5]arene (2)

Potassium thioacetate (0.74 g, 6.47 mmol) with anhydrous DMF (12 mL) were placed
in a round-bottom flask equipped with a magnetic stirrer. The solution was stirred until
complete dissolution. Then pillar[5]arene 1 0.4 g (0.32 mmol) was added in one portion.
Then the reaction mixture was heated for 56 h at 90 ◦C in an argon atmosphere. After the
reaction, the mixture was poured into distilled water. The precipitated beige precipitate
was filtered off on a Schott filter and washed with distilled water. The organic phase was
separated and evaporated to dryness on a rotary evaporator.

Yield: 0.46 g (88%), mp. 100 ◦C. 1H NMR (CDCl3): 2.38 s (30H, –CH3), 3.30 t (20H,
3JHH = 5.9 Hz, –CH2S–), 3.72 s (10H, –CH2–), 3.93–4.19 m (20H, –OCH2–), 6.79 s (10H, ArH).
13C NMR (CDCl3): 29.37; 29.57; 30.78; 67.55; 115.55; 128.53; 149.45; 195.34. IR (ν/CM−1)
2932 (–CPh-H), 2868 (–CH2–, CPh–O–CH2), 1684 (C=O), 1496 (–CH2–), 1465 (CPh–CPh), 1352
(–CH3), 1204 (CPh–O–CH2), 1102 (CPh–O–CH2), 1027 (CPh–CPh), 879 (–CPh–H), 703 (C–S).
MS (MALDI–TOF): calc. [M+] m/z = 1632.1, found [M + Na] + m/z = 1654.6. Found (%): C,
54.98; H, 5.46; N, 19.95. Calc. for C75H90O20S10. (%):C, 55.19; H, 5.56; O, 19.64; S, 19.64.

2932 (–CPh–H), 2868 (–CH2–, CPh–O–CH2), 1684 (C=O), 1496 (–CH2–), 1465 (CPh-CPh),
1352 (–CH3), 1204 (CPh–O–CH2), 1102 (CPh–O–CH2), 1027 (CPh–CPh), 879 (–CPh–H), 703
(C–S).

2.11.2. Synthesis of 4,8,14,18,23,26,28,31,32,35-deca-[2-Mercaptoethoxy]-pillar[5]arene (3)

In a round-bottom flask equipped with a magnetic stirrer, pillar[5]arene 2 0.46 g
(0.28 mmol) was dissolved in anhydrous acetonitrile (23 mL). Then hydrazine hydrate
0.98 mL (31.46 mmol) was added dropwise, and a white precipitate formed. The reaction
was carried out for a week at room temperature in an argon atmosphere. Then, the
reaction mixture was filtered and washed with acetonitrile. The precipitate was dissolved
in chloroform and evaporated on a rotary evaporator in an argon atmosphere. The resulting
white powder is the target product.

Yield: 0.25 g (75%), mp. 158 ◦C. 1H NMR (CDCl3): 1.65 t (10H, 3JHH = 7.9 Hz, -SH),
2.78–2.83 m (20H, –CH2S–), 3.80 s (10H, –CH2–), 3.98 t (20H, 3JHH = 5.3 Hz, –OCH2–), 6.78 s
(10H, ArH). 13C NMR (CDCl3): 29.85; 29.90; 70.59; 115.80; 128.84; 149.85. IR (v, sm−1) 2931
(–CPh–H), 2863 (–CH2–, CPh–O–CH2), 2552 (–SH–), 1496 (–CH2–), 1463 (CPh–CPh), 1200
(CPh–O–CH2), 1100 (CPh–O–CH2); 1025 (CPh–CPh); 877 (–CPh–H); 702 (C–S). MS (MALDI–
TOF): calc. [M+] m/z = 1210.2, found [M + K + 2H]+ m/z = 1252.1, [M + Na + H]+ m/z =
1235.2. Found (%): C, 54.78; H, 5.98; S, 26.04, Calc. for C55H70O10S10. (%): C, 54.52; H, 5.82;
O, 13.20; S, 26.46.

2.11.3. General Procedure for the Synthesis of 3n, 3/3S, 3/4S

A total of 0.09 g (0.074 mmol) of pillar[5] arene 3 was dissolved in 6 mL of THF; then,
0.35 mL of polythiol (trimethylolpropane tris(3-mercaptopropionate) or pentaerythritol
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tetrakis(3-mercaptopropionate)) (or without for 3n) dissolved in 6 mL of THF and 1.2 mL of
H2O2 (30%) dissolved in 6 mL THF was added. The reaction proceeded at room temperature
for 40 h. Then the reaction mixture was poured into water and centrifuged. The resulting
precipitate was dissolved in THF. Then, the precipitate was dried in vacuum under reduced
pressure. The target product is a white, stretching mass.

4,8,14,18,23,26,28,31,32,35-deca-[2-mercaptoethoxy]-pillar[5]arene (3)-based cross-linked
supramolecular polymer (3n).

Yield: 0.08 g (89%), mp. 317 ◦C. IR (v, sm−1) 2917 (–CPh–H); 2859 (CPh–O–CH2); 1496
(–CH2–); 1463 (CPh–CPh); 1194 (CPh–O–CH2); 1058 (CPh–O–CH2); 772 (CPh–H); 698 (C–S).

Tetrablock co-monomer, based on 4,8,14,18,23,26,28,31,32,35-deca-[2-mercaptoethoxy]-pi
llar[5]arene (3) and trimethylolpropane tris(3-mercaptopropionate), (3/3S).

Yield: 0.36 g (70%). MS (MALDI-TOF): calc. [M + 5K + 4Na + 1 × 3S-11H]+ m/z =
1886.7, [M + 5K + Na + 2 × 3S-12H]+ m/z = 2212.1, [2M + 10K + 2 × 3S-18H]+ m/z = 3589.6,
[3M + Li + 3 × 3S-11H]+ m/z = 4825.8, found [M + 5K + 4Na + 1 × 3S-11H]+ m/z = 1887.4,
[M + 5K + Na + 2 × 3S-12H]+ m/z = 2212.4, [2M + 10K + 2 × 3S-18H]+ m/z = 3590.2, [3M +
Li + 3 × 3S-11H]+ m/z = 4825.8.

Tetrablock co-monomer, based on 4,8,14,18,23,26,28,31,32,35-deca-[2-mercaptoethoxy]-
pillar[5]arene (3) and trimethylolpropane tris(3-mercaptopropionate), (3/4S).

Yield: 0.41 g (76%). MS (MALDI-TOF): calc. [2M + 3K + 3Na + 2 × 4S-14H]+ m/z =
3572, [2M + Na + 2 × 4S-1H]+ m/z = 3413.5, found [2M + 3K + 3Na + 2 × 4S-14H]+ m/z =
3572.0, [2M + Na + 2 × 4S-1H]+ m/z = 3413.4.

2.11.4. General Procedure for the Synthesis of Cross-Linked Supramolecular Polymers
3/3Sn, 3/4Sn

Freshly prepared 3/3S and 3/4S tetrablock co-monomers (m = 0.3 g) were dissolved in
10 mL of THF, sprayed onto the surface of a glass substrate, and dried in the presence of at-
mospheric oxygen at ambient temperature for 30–40 min. Next, the formed supramolecular
polymeric film 3/3Sn, 3/4Sn was used for further study.

Cross-linked supramolecular polymer, based on 4,8,14,18,23,26,28,31,32,35-deca-[2-
mercaptoethoxy]-pillar[5]arene (3) and trimethylolpropane tris(3-mercaptopropionate), (3/3Sn).

Mp. 322 ◦C. IR (ν/CM−1): 3450 (–C=O); 2958 (–CH2–); 2941 (–CPh–H); 2907 (CPh–
O–CH2); 2568 (–S–H); 1729 (–C=O); 1499 (–CH2–); 1471 (CPh–CPh); 1406 (–CH2–C=O);
1233 (–CH2–O–C=O); 1192 (CPh–O–CH2); 1178 (CPh–O–CH2); 1142 (–CH2–O–C=O); 1048
(CPh–O–CH2); 671 (C–S); 583 (–S–S–).

Cross-linked supramolecular polymer, based on 4,8,14,18,23,26,28,31,32,35-deca-[2-
mercaptoethoxy]-pillar[5]arene (3) and pentaerythritol tetrakis(3-mercaptopropionate), (3/4Sn).

Mp. 324 ◦C. IR (v, sm−1) 3451 (–C=O); 2960 (–CH2–); 2925 (–CPh–H); 1726 (–C=O);
1497 (–CH2–); 1470 (CPh–CPh); 1407 (–CH2–C=O); 1230 (–CH2–O–C=O); 1209 (CPh–O–CH2);
1173 (CPh–O–CH2); 1127 (–CH2–O–C=O); 663 (–C–S–); 595 (–S–S–).

Detailed information of physical-chemical characterization is presented in Electronic
Supporting Information (ESI).

3. Results
3.1. Synthesis and Polymerization of Pillar[5]arene Containing Mercapto Groups

Self-healing is an attractive properties of materials, which is currently in demand [36].
The ability of a product to self-heal significantly increases its service life due to improved
mechanical characteristics, surface renewal, and preservation of its integrity [37]. The
design of such materials includes two main approaches to self-regeneration: the use of
physical methods of cross-linking based on the mutual diffusion of individual parts and
chemical methods of cross-linking using the formation of a reversible covalent bond [38]. In
all of these approaches, macrocyclic compounds can be used. However, unlike self-healing
through supramolecular interactions, chemical methods of self-healing provide higher
mechanical strength and material stability [39].
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Thus, to create self-healing materials based on pillar[5]arene, we chose to modify
the macrocyclic platform with substituents able to form reversible covalent bonds. These
interactions include the reversible formation of disulfide bonds, metal–ligand interactions,
ionic interactions, and the formation of hydrogen bonds [40]. A common disadvantage of
many such systems is the need for external influences, such as heating, UV irradiation, or
pH changes through the addition of acid or alkali, which is necessary to initiate surface re-
generation. The use of thiol/disulfide redox dynamic exchange reactions to form reversible
disulfide bonds is the most accessible approach to date [40]. Although thiol/disulfide redox
reactions can be accelerated in the presence of catalysts, they can also occur under ambient
conditions (air temperature from 16 ◦C to 32 ◦C and relative humidity from 20% to 80%)
with atmospheric oxygen as an external trigger [41].

To initiate thiol/disulfide cross-linking redox reactions in a polymeric material based
on pillar[5]arene, the presence of thiol fragments in the structure of the macrocyclic plat-
form is necessary. To this end, we developed an approach for introducing thiol fragments
into the pillar[5]arene structure (Figure 1). Decabromoethoxy pillar[5]arene 1 was pre-
pared according to the literature procedure [35] and reacted with potassium thioacetate
in anhydrous DMF at 90 ◦C, whereupon macrocycle 2 was isolated by precipitation from
water in 88% yield. Acetate fragments were cleaved with hydrazine hydrate in anhydrous
acetonitrile [42] to give target macrocycle 3, which was collected by filtration in 75% yield.
Pillar[5]arene 3 was used without further purification in subsequent experiments (Figure 1,
see SI, Figures S1–S13). The presence of free mercapto groups in macrocycle 3 was con-
firmed by one-dimensional 1H NMR spectroscopy, where they are observed as a triplet of
10 SH-protons at δ = 1.65 ppm (see SI, Figure S2). It should be noted that the macrocycle 3
forms as a powder, which showed no oxidation over a month of storage under argon at
room temperature. Macrocycle 3 was characterized using X-ray diffraction (Figure 1) from
crystals grown from a CHCl3–CH3CN solvent mixture. The crystal habit of 3 is monoclinic,
and the symmetry group is P 21/n.
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Figure 1. Synthesis of macrocycles 2 and 3; X-ray lateral view of macrocycle 3 and sketch showing
copolymerization of macrocycle 3 into 3n and 3 with trimethylolpropane-tris(3-mercaptopropionate)
3S and pentaerythritol-tetrakis(3-mercaptopropionate) 4S in THF in the presence of 5 wt. % H2O2

and atmospheric oxygen.

Afterwards, we developed a procedure to prepare co-monomers and polymers using
thiol/disulfide redox dynamic exchange reactions involving pillar[5]arene 3. The poly-
merization proceeded under the action of 30% H2O2 in THF for 40 h at room temperature,
and polymer 3n was isolated in 88% yield (Figure 1) as a light-yellow powder (Figure 1).
Polymer 3n is practically insoluble in both polar and nonpolar solvents, and its decomposi-
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tion onset temperature was 298 ◦C. Thus, it can be concluded that it is not suitable for the
formation of self-healing films.

For the synthesis of self-healing films based on pillar[5]arene 3, we chose to prepare
cross-linked copolymers in the presence of low-molecular cross-linking agents: trimethylol-
propane tris(3-mercaptopropionate) 3S or pentaerythritol tetrakis(3-mercaptopropionate)
4S (Figure 1). These commercially available compounds are used as gel formers [43] and
polymer resin hardeners [44]. Thus, we carried out the selection of conditions for oxidative
copolymerization to obtain copolymers in advance (see SI, Table S1).

Variation in the nature of the solvent (CH3CN, DMF, THF) and oxidants (I2, FeCl3)
does not lead to the formation of polymer products 3 with 3S or 4S. Analysis of the 1H
NMR spectra of the reaction mixtures showed the presence of the starting compounds
and polymer 3n. The use of H2O2 as an oxidizing agent and various ratios of reacting
components led to the formation of comonomers 3/3S and 3/4S. The temperature regime of
the syntheses varied in the range from 0–75 ◦C. However, the best results were achieved
when the reaction was carried out at 25 ◦C for 24 h both for 3S and 4S. Thus, by reacting
macrocycle 3 with 5-fold excesses of 3S or 4S in the presence of 30% H2O2 in THF for 24 h
at room temperature, products 3/3S and 3/4S were isolated in 70% and 76% yields (see SI,
Table S1).

The structure of the formed products 3/3S and 3/4S was studied by gel permeation
chromatography (GPC) and MALDI mass spectrometry (see SI, Figures S7, S8, S29 and
S30). We chose GPC as a convenient method to determine the relative molecular weight of
3/3S and 3/4S. Thus, GPC analysis of fractions of samples 3/3S and 3/4S freshly prepared
in THF showed average mass values up to 3000 Da, which corresponds to diblock- or
tetrablock-linked (Figure 1) fragments of macrocycle 3 with polythiols 3S or 4S (see SI,
Figures S29 and S30). The formation of cross-linked tetrablock comonomers 3/3S and
3/4S can be explained by the polyfunctionality of the macrocyclic platform, the possible
thermodynamic stability of the resulting tetrablock comonomers, and the low solubility of
longer polymer units in THF [40].

The overall pattern of sequential fragmentation in the MALDI mass spectra of 3/3S
and 3/4S tetrablock comonomers (see SI, Figures S7 and S8) also agrees with the GPC data,
as the mass spectra of 3/3S and 3/4S contain peaks of molecular ions in the range from 1713
Da to 5219 Da, which corresponds to a possible crosslinking from two to six fragments of
3S, 4S, and macrocycle 3 (see SI, Figures S7 and S8).

The method of forming a film from a solution of co-monomers is a relatively simple
process since the co-monomer is in a dissolved state. We used the method of spraying a
solution of 3/3S and 3/4S in THF (1 × 10–3 M) [45] over the surface of a glass substrate. As
a result, it was found that as the solvent evaporates, the solution passes into a gel-like state,
followed by the formation of a film upon drying.

3.2. Interaction of Macrocycle 3 with the Antibiotic Moxifloxacin Hydrochloride

The films obtained on the basis of 3/3S and 3/4S contain fragments of pillar[5]arenes,
which are capable of host–guest interactions with therapeutic drugs [26]. In this regard, we
hypothesized that using an antimicrobial drug as a therapeutic agent would promote the
formation of pillar[5]arene/drug complexes in the film structure to effectively suppress the
development of bacteria. In addition, the presence of disulfide bonds (from 3/3S and 3/4S)
in the film structure will contribute to the self-healing of the damaged surface under the
action of atmospheric oxygen.

On account of the ability of macrocycle 3 to interact with antimicrobial drugs, benza-
lkonium chloride and moxifloxacin hydrochloride (moxi) were studied using UV–vis and
NMR spectroscopy (see SI, Figures S25 and S26). The choice of substrates was determined
by their use in medical practice as effective preparations to treat bacterial infections [46].
The studies were carried out in a mixture of THF:CH3OH = 100:1. The choice of the
solvent system was due to the good solubility of 3 in THF and its low solubility in sol-
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vents (water, alcohols), which dissolve binding substrates benzalkonium chloride and
moxifloxacin hydrochloride.

It turned out that only when macrocycle 3 bound moxifloxacin hydrochloride were spec-
tral changes at the absorption wavelength of moxifloxacin (λ = 340 nm) significant enough
to establish quantitative binding characteristics (see SI, Figure S27). The association constant
was determined based on spectrophotometric titration data. Thus, the concentration of moxi
(1 × 10–5 M) was constant, while the concentration of macrocycle 3 (0–2.67 × 10–5 M) varied
(see SI, Figure S27). Binding constants of 3/moxi in THF:CH3OH = 100:1 were calculated by
UV–vis spectroscopy from the analysis of binding isotherms and were established on the bind-
ing model 3/moxi = 2:1 using Bindfit [47], a statistical model widely used in supramolecular
chemistry to determine the characteristics of intermolecular interactions [48]. To confirm the
proposed stoichiometry, the titration data were also processed using a binding model with a
host–guest ratio of 1:1 and 1:2. However, in this case, the constants were determined with a
much larger error (see SI, Figure S28). The calculated logarithms of the association constants
(logKa) for 3/moxi were logK11 = 2.14 and logK12 = 6.20.

We chose 2D 1H-1H NOESY and 2D DOSY NMR (see SI) spectroscopy to confirm the
formation of the 3/moxi complex and set its structure. An analysis of the experimental data
obtained using 1H NMR spectroscopy did not make it possible to determine the nature of the
interaction by changing the position of the host–guest chemical shifts. The chemical shifts of
protons of moxi and 3 were broadened due to ongoing association processes (ESI). However,
in the 2D 1H-1H NOESY NMR spectrum of associate 3/moxi (2:1, Cmoxi = 5 × 10−3 M) in
CHCl3/CD3OD cross peaks between protons of aromatic fragments (Ha) of macrocycle 3 and
protons H10, H12, H13 of the octahydro-1H-pyrrolo[3,4-b]pyridine fragment were observed
(see SI). Cross peaks are also observed between the protons of the cyclopropyl fragment of
moxi (H4 and H5) and the protons of the methylene bridges Hb. The 2:1 inclusion complex
was supported by calculations (DFT/BLY3P/6-31G*) as shown in Figure 2.
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The formation of the 3/moxi complex was additionally confirmed by 2D DOSY
NMR spectroscopy. Diffusion coefficients of 3, 3/moxi, and moxi at 298 K (5 × 10−3 M)
were determined. The 2D DOSY NMR spectrum of the 3/moxi system shows the pres-
ence of signals of the complex lying on one straight line with one diffusion coefficient
(D = 1.4 × 10−10 m2 s−1) (see SI). This value of the diffusion coefficient 3/moxi is much
lower than the self-diffusion coefficients of macrocycle 3 (D = 3.5× 10−10 m2 s−1) and moxi
(D = 4.7× 10−10 m2 s−1) under the same conditions. The results obtained definitely indicate
the formation of an associate 3/moxi. The formation of the 3/moxi complex is in good
agreement with the literature data on the binding of pillar[5]arenes with fluoroquinolone
derivatives [49].

It is also important to evaluate the possibility of the interaction of moxi with 3/3S
and 3/4S tetrablock co-monomers, which are soluble in THF and contain fragments of
pillar[5]arene. Experiments on the interaction of moxi with 3/3S and 3/4S were carried
out in THF:CH3OH (100:1). Highly sensitive fluorescence spectroscopy (Figure 3) was
chosen as an effective method for detecting interactions between 3/3S, 3/4S, and the
antibiotic moxi. The molecular weights of tetrablock co-monomers obtained by GPC
(see SI, Figures S29 and S30) to calculate the concentrations of 3/3S and 3/4S.
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and (b) 3/4S (0–50 µM); (c) fluorescence spectra 3/3Sn/moxi and (d) 3/4Sn/moxi of the film before and
after washing with distilled water; photographs of samples under UV irradiation at λ = 365 nm (e) 3n;
(f) 3/4Sn; and (g) 3/4Sn + moxi after washing with water (five times).

In the spectrum of moxi (5 µM), as 3/3S (Figure 3a) and 3/4S (Figure 3b) increases
from 0.1 to 50 µM, the fluorescence also rises sequentially. The study was carried out at
the emission wavelength of moxi (λ = 455 nm) in THF:CH3OH (100:1). Thus, the data of
fluorescence spectroscopy confirm the interaction of 3/3S and 3/4S with the antibiotic.

This increase in the intensity emission can be related with the antibiotic’s inclusion into
the cavity of pillar[5]arene, which is part of the tetrablock comonomer. The data obtained
by 2D NOSY and DOSY NMR spectroscopy confirm this hypothesis.

For the 3/3S and 3/4S, the processes of self-association and aggregation in the presence
of moxi were additionally studied by dynamic light scattering (DLS) in THF:CH3OH (100:1)
(see SI, Figures S15–S24, Table S2). It was shown that 3/3S and 3/4S do not form stable
self-associates (see SI, Table S2) in the studied concentration range (1 × 10−3–1 × 10−5 M).
However, adding a 10-fold excess of moxi to the tetrablock co-monomers 3/3S or 3/4S
reduces the polydispersity index to 0.28–0.34. Stabilization of the system is observed when
the average particle size of 460 nm is reached in the case of the moxi/3/4S (see SI, Table S2)
system and 620 nm for moxi/3/3S (see SI, Table S2). Separately, macrocycle 3 and moxi
did not form stable associates in THF:CH3OH (100:1) over the entire concentration range
studied (1 × 10−3–1 × 10−5 M). When the method of spraying a solution of moxi/3/3S
and moxi/3/4S in THF (1 × 10−3 M) onto a glass substrate was used, the formation of a
drug-loaded films was observed.
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3.3. Formation of Supramolecular Polymer Networks

Thus, pillar[5]arene 3 and tetrablock comonomers 3/3S and 3/4S based on it were able
to interact with the antimicrobial drug moxi and form host–guest complexes. As shown
above, 3/3S and 3/4S are able to form films loaded with moxi. In this regard, it can be
assumed that moxi can be placed in the structure of the film based on pillar[5]arene and
contribute to the suppression of the development of pathogenic microorganisms as part of
the polymer coating.

To confirm this hypothesis, the films obtained after spraying a solution of 3/3S or 3/4S
in THF (1 × 10−3 M) on a glass substrate were additionally investigated by a number of
physical methods. The resulting cross-linked copolymers based on macrocycle 3 and thiols
3S or 4S were transparent films (Figure 1) soluble in THF. However, after evaporation
of the solvent, the film becomes insoluble in THF over ~10–20 min, apparently due to
the formation of additional disulfide bonds under the action of atmospheric oxygen. To
confirm the formation of additional disulfide bonds and cross-linking 3/3S, 3/4S into 3/3Sn,
and 3/4Sn polymer network compositions (Figure 1) during film formation, the IR spectra
of 3/3Sn and 3/4Sn were studied and compared to 3 and 3n. The IR spectra of 3/3Sn and
3/4Sn (Figure 4) show characteristic bands for the structure of thiols 3S, 4S (1732 cm–1),
and macrocycle 3 (2960, 2925, 1470, 1209 cm–1). The absence of free S-H bonds vibrations at
ν = 2750 cm−1 as well as the presence of SS bonds vibrations at ν = 640 cm−1 [50] in the
fingerprint region, which did not appear in the initial macrocycle 3, confirm the formation
of additional disulfide bridges [40] under the action of atmospheric oxygen when THF
solutions of 3/3S and 3/4S comonomers are dried.
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Thermogravimetric analysis is widely used to assess the phase and thermal characteristics
of polymeric materials [51], including self-regenerating ones [52] (see SI, Figures S31–S34). The
DSC curve for macrocycle 3 includes three processes, one of which corresponds to the largest
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weight loss (34%), and three stages of decomposition on the TG curve. This exo-process (see
SI, Figure S31) is observed over the temperature range of 261–285 ◦C, which is consistent with
the oxidative S–S crosslinking that can occur in a sample with a change in temperature [53].
The TG curves of the 3/3Sn and 3/4Sn samples (see SI, Figures S33 and S34) contain four or
five weight-loss steps. The first stage (up to 65 ◦C) corresponds to the removal of residual
solvent. The second stage is different for each 3/3Sn and 3/4Sn sample and varies over the
temperature range 137–211 ◦C. This stage is accompanied by a loss of up to 7% of the mass and
is associated with the evaporation of water included in the structure of the film. In contrast to
3 alone, the DSC curve in the temperature range of 250–300 ◦C of the 3/3Sn and 3/4Sn (see SI,
Figures S33 and S34) samples does not show an exo-process. This process corresponds to the
main stage of weight loss. However, in a higher temperature range of 280–340 ◦C, in samples
3/3Sn and 3/4Sn, an endo-process is observed corresponding to the first stage of destruction
(25–34% weight loss) and of the melting of substances 3/3Sn and 3/4Sn. The fourth step
on the TG curve for the 3/3Sn and 3/4Sn samples corresponds to the weight loss of 13–17%
and on the DSC curve in the temperature range of 347–374 ◦C corresponding of oxidative
S–S cross-linking.

Thus, analysis of the TG-DSC (see SI, Figures S31–S34) data allows us to conclude
that the 3/3Sn and 3/4Sn polymer structures are more thermally stable than macrocycle
3, which is characterized by thermally sensitive S–S crosslinking processes. The melting
temperature of free macrocycle 3 is 30–50 ◦C lower than that of 3/3Sn and 3/4Sn, which
confirms the improved thermal characteristics of the obtained materials.

3.4. Interaction of 3/3S, 3/4S and Supramolecular Copolymers 3/3Sn, 3/4Sn with the Antibiotic
Moxifloxacin Hydrochloride

Since 3/3Sn and 3/4Sn polymer films were formed from 3/3S and 3/4S tetrablock co-
monomers, capable of interacting with moxi, it was necessary to investigate the ability to
bind moxi in the structure of 3/3Sn and 3/4Sn. For this purpose, moxi/3/3Sn, moxi/3/4Sn
polymer films were formed by spraying a solution of moxi/3/3S and moxi/3/4S
(THF:CH3OH = 100:1, 1 × 10−3 M) on to the glass substrate for 30 min (Figure 3f,g)
and the fluorescence spectra of the resulting films recorded (Figure 3c,d). It is known that
ionized forms of antibiotics of the fluoroquinolone series dissolve well in water, therefore,
under real conditions, when the environmental humidity changes, the antibiotic can be
removed from the polymer surface. In order to simulate this situation, the surface of
moxi/3/3Sn and moxi/3/4Sn was repeatedly washed with distilled water. The number of
washes varied from 1 to 20 times. According to fluorescence spectroscopy data, the intensity
of moxi emission in the samples decreased during the first washing for moxi/3/3Sn by
67% (Figure 3c) and by 45% for moxi/3/4Sn (Figure 3d). Further washing did not lead to
significant changes in the moxi fluorescence intensity in the 3/3Sn, 3/4Sn films.

Since the moxi/3/4Sn systems turned out to be the most monodisperse and resistant
to washing, their morphology was studied using electron and atomic force microscopies
(see SI, Figures S35–S43). According to scanning electron microscopy (SEM) data, the 3/4Sn
film is an irregular network polymer consisting of intertwining filaments with a thickness
of 63 nm (Figure 5a). A similar morphology is confirmed by 3D images of the atomic force
microscope (AFM) (Figure 5b). Also, according to transmission electron microscopy (TEM)
(Figure 5c, see SI, Figures S35–S43), the formation of dendritic structures on the surface of
interlacing threads is observed. The TEM images of moxi/3/4Sn show the formation of
dendritic structures typical of polymer morphology with included spherical moxi particles
on the surface (Figure 5d). The size of spherical particles moxi was 100 nm, and the
thickness of the dendritic fragments corresponded to the thickness of the filaments and
was 67 nm (Figure 5d, see SI, Figure S36).
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Thus, in the course of the studies, the formation of 3/3Sn, 3/4Sn films capable of
binding antibacterial drugs of the fluoroquinolone series was demonstrated. The resulting
3/3Sn, 3/4Sn structures are built on the principle of the formation of dynamic -S-S- covalent
bonds, which, due to thiol/disulfide redox dynamic exchange reactions, lead to self-healing
of damaged surface areas. The mechanism of self-healing process is proposed to be through
the formation of free sulfur radicals [54], which again form disulfide bonds under the action
of external triggers (Figure 6a).
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3.5. Study of the Process of Self-Regeneration of Films 3/3Sn, 3/4Sn

Electron paramagnetic resonance (EPR) was used to determine the presence of sul-
fur radicals in 3/3S, 3/4S, 3n, 3/3Sn, 3/4Sn structures, since free radicals have a nonzero
electronic (spin) magnetic moment, characterized by a quantum number of S = 1/2 [55].
Figure 6b shows the steady-state absorption spectrum for the 3n powder sample at room
temperature. Comparing the spectroscopic g-factor value with the literature data [54,55], it
is obvious that sulfur radicals are present in the 3n (see SI, Figures S44 and S45) powder
sample, which confirms the hypothesis put forward.

No EPR signals in liquid 3/4S samples with different THF concentrations were ob-
served, which may indicate the instability of sulfur radicals in these solutions. The heating
of 3n powder also did not lead to the formation of new sulfur radicals. The shape of EPR
spectrum has a weak (but visible) asymmetry, which indicates the anisotropy of the g-factor
arising from the interaction of the electron shell of the radical with the surrounding electric
field gradients of neighboring ions. The phase coherence time (TM) of 578 ns is a rather
short value for transverse relaxation compared to other stable radicals [56]. The asymmetry
of the spectrum (anisotropy) and the short value of TM (due to nuclear spin diffusion) are
associated with the localization of the sulfur radical in the polymer structure.

Additionally, samples of 3/4Sn and 3/3Sn in the form of film structures (see SI,
Figures S44 and S45) were studied. The EPR spectra show signals from sulfur radicals
superimposed on a broader and structureless line. The formation of this line (underlayer
signal) is possibly associated with a change in the structure or local environment of the
sulfur radical, which leads to a strong (dipole-dipole) inhomogeneous broadening.

Since radiation exposure leads to the formation of stable free radicals, a sample of the
3/4Sn film was undergone by X-ray irradiation (Figure 6c). To improve the signal-to-noise
ratio (20 times), the experiments were carried out at 15 K. After irradiation, the spectrum is
a sum of signals of different origins, which is possibly due to the presence of a hyperfine
interaction of the paramagnetic center with the nuclei of hydrogen 1H or sulfur 33S or
the formation of other types of sulfur radical. Figure 6c also shows the dynamics of the
EPR spectra that decrease in intensity with time. This indicates the lower stability of these
paramagnetic centers, in contrast to the radicals in the powder sample, the spectrum of
which does not change with time.

The 3/3Sn sample was also irradiated with an X-ray source for 1 h, but this procedure
did not lead to the formation of additional EPR signals.

Modern microscopy methods are convenient and effective tools for dynamic study of
the self-healing process [57]. Therefore, the process of self-healing of the formed films based
on the 3/4Sn system was qualitatively assessed using optical microscopy to monitor the
healing of the cut surface under the action of atmospheric oxygen. Initially, the 3D surface
of a 3/4Sn film was created by SEM at low pressure. An uneven thickness distribution in
the film upon drying in air was found (Figure 7a). Micrometer-sized surface scratches were
then made on the surface using a micrometer blade (Figure 7b). The film was stored in the
ambient atmosphere, and the damaged area was monitored using an optical microscope
(Figure 7b, see SI, Figures S42 and S43). The healing response was clearly observed within
2 h at room temperature. The cut healed from the ends where the cut surfaces were closest
to each other. In this case, the cut surface, according to SEM data, was an intergrowth
of dendritic structures directed perpendicular to the cut wall (Figure 7c). This not only
demonstrates the ability of the material to heal, but also opens up the possibility of creating
a material with the function of self-regeneration under the action of biological substrates or
in the body’s environment.
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Figure 7. (a) SEM images of 3/4Sn at low pressure and topographic map of 3/4Sn film; (b) optical
microscope image of a 3/4Sn film with surface disturbance over time (0–24 h); (c) SEM image of a
section of a 3/4Sn film.

3.6. Antibacterial Properties of Self-Regenerating Films 3/3Sn, 3/4Sn

Despite the ability of 3/4Sn to self-heal and interact with moxi, the antibacterial drug
may not be available for entry into the bacterial matrix. As a result, the moxi/3/4Sn system
will not inhibit the formation of microbial biofilms.

It is worth noting that, according to the literature data [58], pillar[5]arenenes containing
thioether fragments do not have pronounced cytotoxicity. This makes these compounds
attractive for use in biomedical materials.

To test the ability of a moxi/3/3Sn and moxi/3/4Sn films to suppress the development
of pathogenic microorganisms, we evaluated the formation of bacterial biofilms on the
adhesive surfaces of slide chambers treated with moxi/3/3Sn and moxi/3/4Sn. Pathogenic
microorganisms of the Gram-negative morphotype of the Enterobacteriaceae family [59] and
Gram-positive bacteria Staphylococcaceae have serious impacts on human health. Methicillin-
resistant strains of Staphylococcus aureus attract special attention in the clinic [60]. In this
study, a clinical isolate of Klebsiella pneumonia belonging to the Enterobacteriaceae family
and Staphylococcus aureus ATCC® 29213™ were selected as model pathogens capable of
forming biofilms.

Modification of the surface of adhesive glasses with 3/4Sn, 3/3Sn and moxi/3/4Sn,
moxi/3/3Sn led to a change in the thickness of microorganism biofilms (Figure 8b). On the
surface coated with 3/4Sn and 3/3Sn films, in the case of S. aureus biofilms and biofilm of K.
pneumonia, a slight increase in the total biomass of biofilm was observed compared to the
untreated variant (Figure 8a). A significant scatter of data in this processing option can be
associated with a different area of the modified surface. Addition of moxi into 3/4Sn and
3/3Sn films reduced the total biomass of biofilm of both S. aureus and K. pneumoniae.

Thus, moxi/3/4Sn and moxi/3/3Sn films were formed by sputtering solutions of
tetrablock co-monomers in THF (1 × 10−3 M) in a chamber with an adhesive glass bottom.
The resulting moxi/3/4Sn and moxi/3/3Sn systems were washed five times with distilled
water to remove excess unbound moxi. It was shown that moxi/3/4Sn reduced the capacity
of biofilms formed by S. aureus and K. pneumoniae, by 80% and 48%, respectively (Figure 8a).
In the variant with the moxi/3/3Sn film (1 × 10−3 M), its application reduced the capacity of
the biofilm formed by S. aureus and K. pneumoniae, by 77% and 43%, respectively (Figure 8a).
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Figure 8. (a) Effect of pretreatment of the adhesive glass surface with 3/3Sn, 3/4Sn films and free
moxi, as well as their composites with moxi on the ability to form S. aureus and K. pneumoniae biofilms.
The power of the biofilm of microorganisms in the variant without pretreatment was taken as a unit.
(b) Photographs of slide chambers with cultures of bacteria in the presence of 3/4Sn and 3/3Sn and
moxi/3/4Sn, moxi/3/3Sn. *—p ≤ 0.05 when compared with the variant without pre-treatment of
the surface.

Additionally, the inhibition of pathogenic biofilm formation by S. aureus and
K. pneumoniae in the presence of moxi was studied (Figure 8a). An analysis of experimental
data showed that individual moxi suppresses the development of pathogenic biofilms
more effectively. However, moxifloxacin hydrochloride is highly soluble in water, which
makes moxi not applicable under changing environmental conditions. When humidity
changes, moxi will be washed off the treated surface. Doping moxi into the composition
of the polymer film makes it possible to keep it on the surface and create a concentration
gradient near the biofilm. It should be noted that the efficiency of moxi in the composition
of the polymer film remains as high as without it (Figure 8).

Drug release methods are as important as the encapsulation process. As a mechanism
for releasing moxi from the moxi/3/4Sn complex, a guest exchange mechanisms can be
assumed [61]. So, a molecule with a high affinity for the macrocyclic pillar[5]arene should
be chosen as a new guest. As such molecules, some amino acids can be selected like arginine
(Arg) and lysine (Lys). These amino acids are part of the human body proteins—elastin
and collagen. Arginine (Arg) and lysine (Lys) have a large affinity for the carboxylated
pillar[5]arene cavity [62]. The process of pathogenic biofilm formation on the surface of
moxi/3/4Sn will gradually release the encapsulated moxi, thereby ensuring continuous
maintenance of the concentration of the active form of moxifloxacin hydrochloride in the
biofilm matrix and in close proximity to microbial cells.

4. Conclusions

A novel decasubstituted pillar[5]arene containing free mercapto groups, 3, was synthe-
sized and its structure determined by powder X-ray diffraction. Using UV–vis spectroscopy,
the ability of pillar[5]arene 3 to interact with the antimicrobial drug moxifloxacin was
shown. The association constant and stoichiometry of the 3/moxi complex were calculated
by UV–vis spectroscopy from the analysis of binding isotherms for model 3/moxi = 2:1
(logK11 = 2.14 and logK12 = 6.20). The structure of the resulting complex was confirmed
by 2D 1H-1H NOESY NMR spectroscopy. THF soluble tetrablock co-monomers 3/3S and
3/4S were isolated by thiol/disulfide redox reactions of 3 with trimethylolpropane tris(3-
mercaptopropionate) 3S or pentaerythritol tetrakis(3-mercaptopropionate) 4S, the structure
of which was studied by GPC and MALDI mass spectrometry. Spraying of 3/3S and 3/4S so-
lutions in THF (1 × 10−3 M) on the surface of a glass substrate led to the formation of 3/3Sn
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and 3/4Sn polymer films. The formation of films occurs due to the formation of additional
-S-S- bonds between tetrablock co-monomers 3/3S and 3/4S. They were characterized by
TG-DSC analysis, FTIR spectroscopy, and their morphology studied by electron microscopy.
Optical spectroscopy and EPR showed that the resulting 3/4Sn film had the ability to
self-heal under atmospheric oxygen. It was found that the 3/3Sn and 3/4Sn systems do
not affect the formation of biofilms formed by S. aureus and K. pneumoniae. However, the
introduction of the drug moxi into the composition of 3/3Sn and 3/4Sn films resulted in a
noticeable inhibition of the formation of biofilms of these pathogenic microorganisms. The
ability to retain an antimicrobial drug in 3/3Sn and 3/4Sn films after washing with water
was shown by fluorescence spectroscopy. These results open up wide opportunities to
develop new antibacterial polymeric materials with self-healing abilities that are resistant
to external conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12091604/s1, Table S1: Variation of the conditions for
the oxidative oligomerization of the macrocycle 3, 3S, and 4S; Figure S1: 1H NMR spectrum
of 4,8,14,18,23,26,28,31,32,35—deca-[acylthioethoxy]-pillar[5]arene (2). CDCl3, 298 K, 400 MHz;
Figure S2: 1H NMR spectrum of 4,8,14,18,23,26,28,31,32,35—deca-[2-mercaptoethoxy]-pillar[5]arene
(3). CDCl3, 298 K, 400 MHz; Figure S3: 13C NMR spectrum of 4,8,14,18,23,26,28,31,32,35—deca-
[acylthioethoxy]-pillar[5]arene (2). CDCl3, 298 K, 400 MHz; Figure S4: 13C NMR spectrum of
4,8,14,18,23,26,28,31,32,35—deca-[2-mercaptoethoxy]-pillar[5]arene (3). CDCl3, 298 K, 400 MHz;
Figure S5: Mass spectrum (MALDI-TOF, 4-nitroaniline matrix) of 4,8,14,18,23,26,28,31,32,35—deca-
[acylthioethoxy]-pillar[5]arene (2); Figure S6: Mass spectrum (MALDI-TOF, 4-nitroaniline matrix) of
4,8,14,18,23,26,28,31,32,35—deca-[2-mercaptoethoxy]-pillar[5]arene (3); Figure S7: Mass spectrum
(MALDI-TOF, 4-nitroaniline matrix) of tetrablock co-monomer, based on 4,8,14,18,23,26,28,31,32,35-
deca-[2-mercaptoethoxy]-pillar[5]arene (3) and trimethylolpropane tris(3-mercaptopropionate), (3/3S);
Figure S8: Mass spectrum (MALDI-TOF, 4-nitroaniline matrix) of tetrablock co-monomer, based on
4,8,14,18,23,26,28,31,32,35-deca-[2-mercaptoethoxy]-pillar[5]arene (3) and trimethylolpropane tris(3-
mercaptopropionate), (3/4S); Figure S9: IR spectrum of 4,8,14,18,23,26,28,31,32,35
—deca-[acylthioethoxy]-pillar[5]arene (2); Figure S10: IR spectrum of 4,8,14,18,23,26,28,31,32,35—deca-
[2-mercaptoethoxy]-pillar[5]arene (3); Figure S11: IR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[2-
mercaptoethoxy]-pillar[5]arene (3)-based supramolecular polymer (3)n; Figure S12: IR spectrum of
tetrablock co-monomer, based on 4,8,14,18,23,26,28,31,32,35-deca-[2-mercaptoethoxy]-pillar[5]arene
(3) and trimethylolpropane tris(3-mercaptopropionate), (3/3S); Figure S13: IR spectrum of tetrablock
co-monomer, based on 4,8,14,18,23,26,28,31,32,35-deca-[2-mercaptoethoxy]-pillar[5]arene (3) and
trimethylolpropane tris(3-mercaptopropionate), (3/4S); Figure S14: (a) The 2D 1H-1H NOESY NMR
spectrum of the 3/moxi complex (2:1, 5 × 10−3 M;) in CHCl3/CD3OD = 100:1 at 25 ◦C; (b) 2D
DOSY NMR 3/moxi complex in CHCl3/CD3OD = 100:1 at 25 ◦C (400 MHz, 298K); Figure S15: Size
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Size distribution of the particles by intensity for 3/4S (1 × 10−5 M) in solvent system THF:CH3OH
100:1 (d = 640 ± 193 nm, PDI = 0.35 ± 0.02); Figure S18: Size distribution of the particles by intensity
for moxi (1 × 10−4 M) in solvent system THF:CH3OH 100:1 (d = 1269 ± 479 nm, PDI = 0.50 ± 0.14);
Figure S19: Size distribution of the particles by intensity for BCl (1 × 10−4 M) in solvent system
THF:CH3OH 100:1 (d = 209 ± 21 nm, PDI = 0.24 ± 0.06); Figure S20: Size distribution of the particles
by intensity for 3/3S (1 × 10−5 M) + moxi (1 × 10−4 M) in solvent system THF:CH3OH 100:1 (d =
617 ± 203 nm, PDI = 0.34 ± 0.05); Figure S21: Size distribution of the particles by intensity for 3/4S
(1 × 10−5 M) + moxi (1 × 10−4 M) in solvent system THF:CH3OH 100:1 (d = 462 ± 13 nm, PDI =
0.28 ± 0.04); Figure S22: Size distribution of the particles by intensity for (4S)n (1 × 10−5 M) + moxi
(1 × 10−4 M) in solvent system THF:CH3OH 100:1 (d = 561 ± 7 nm, PDI = 0.24 ± 0.02); Figure S23:
Size distribution of the particles by intensity for 3/3S (1 × 10−5 M) + BCl (1 × 10−4 M) in solvent
system THF:CH3OH 100:1 (d = 556 ± 97 nm, PDI = 0.29 ± 0.05); Figure S24: Size distribution of the
particles by intensity for 3/4S (1 × 10−5 M) + BCl (1 × 10−4 M) in solvent system THF:CH3OH 100:1
(d = 553 ± 140 nm, PDI = 0.36 ± 0.10); Table S2: Aggregation of thiols, cross-linked polymers and
model polymers; Figure S25: Absorption spectra of macrocycle 3 (1 × 10−5 M) with a BCl solution (1

https://www.mdpi.com/article/10.3390/nano12091604/s1
https://www.mdpi.com/article/10.3390/nano12091604/s1


Nanomaterials 2022, 12, 1604 18 of 20

× 10−4 M) in the solvent system THF:CH3OH = 100: 1; Figure S26: Absorption spectra of macrocycle
3 (1 × 10−5 M) with a moxi solution (1 × 10−4 M) in the solvent system THF:CH3OH = 100: 1; Figure
S27: Titration curve for the system macrocycle 3 (0–2.67 × 10−5 M)/moxi (1 × 10−5 M) in solvent
system THF:CH3OH = 100:1; Figure S28: Bindfit (Fit data to 1:1, 1:2 and 2:1 Host–Guest equilibria)
screenshots taken from the summary window of the website supramolecular.org. This screenshots
shows the raw data for UV–vis titration of 3 with moxi, the data fitted to 1:1 binding model (a), 1:2
binding model (b) and 2:1 binding model (c); Figure S29: GPC curves of products 3/3S (eluent-THF,
calibrated by PS standards); Figure S30: GPC curves of products 3/4S (eluent-THF, calibrated by PS
standards); Figure S31: TGA (green) and differential scanning calorimetry (DSC) (blue) curves of 3;
Figure S32: TGA (green) and differential scanning calorimetry (DSC) (blue) curves of 3n; Figure S33:
TGA (green) and differential scanning calorimetry (DSC) (blue) curves of 3/3Sn; Figure S34: TGA
(green) and differential scanning calorimetry (DSC) (blue) curves of 3/4Sn; Figure S35: TEM image of
3/4S (1 × 10−5 M) in the solvent system THF:CH3OH (100:1) after the solvent evaporation; Figure S36:
(a,b) TEM image of 3/4S (1 × 10−5 M)/moxi (1 × 10−4 M) in the solvent system THF:CH3OH (100:1)
after the solvent evaporation; Figure S37: (a,b) SEM image of 3/4S (1 × 10−5 M) in the solvent system
THF:CH3OH (100:1) after the solvent evaporation; Figure S38: SEM image of 3/4S (1 × 10−5 M) at
low pressure in the solvent system THF:CH3OH (100:1) after the solvent evaporation; Figure S39:
Three-dimensional model of 3/4S (1 × 10−5 M) film from SEM images at low pressure; Figure S40:
Three-dimensional model of 3/4S (1 × 10−5 M)/moxi (10−4 M) film from SEM images at low pressure;
Figure S41: AFM image of 3/4S (1 × 10−5 M) film in the solvent system THF:CH3OH (100:1) after the
solvent evaporation; Figure S42: Optical microscope of 3/4Sn film in the solvent system THF:CH3OH
(100:1) after the solvent evaporation with surface disturbance; Figure S43: Optical microscope of
3/4Sn film after 120 min during the H2O2 surface treatment after 120 min; Figure S44: EPR spectra of
3n sample at room temperature in stationary (a) and in pulsed (b) modes of the X-band (9.6 GHz);
Figure S45: EPR spectra of 3/4Sn film and 3/3Sn film at room temperature before irradiation with an
X-ray source.
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