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Resting-state connectivity stratifies 
premanifest Huntington’s disease 
by longitudinal cognitive decline 
rate
Pablo Polosecki   1*, Eduardo Castro1, Irina Rish1, Dorian Pustina2, John H. Warner2, 
Andrew Wood2, Cristina Sampaio2 & Guillermo A. Cecchi   1

Patient stratification is critical for the sensitivity of clinical trials at early stages of neurodegenerative 
disorders. In Huntington’s disease (HD), genetic tests make cognitive, motor and brain imaging 
measurements possible before symptom manifestation (pre-HD). We evaluated pre-HD stratification 
models based on single visit resting-state functional MRI (rs-fMRI) data that assess observed 
longitudinal motor and cognitive change rates from the multisite Track-On HD cohort (74 pre-HD, 
79 control participants). We computed longitudinal performance change on 10 tasks (including visits 
from the preceding TRACK-HD study when available), as well as functional connectivity density (FCD) 
maps in single rs-fMRI visits, which showed high test-retest reliability. We assigned pre-HD subjects 
to subgroups of fast, intermediate, and slow change along single tasks or combinations of them, 
correcting for expectations based on aging; and trained FCD-based classifiers to distinguish fast- from 
slow-progressing individuals. For robustness, models were validated across imaging sites. Stratification 
models distinguished fast- from slow-changing participants and provided continuous assessments 
of decline applicable to the whole pre-HD population, relying on previously-neglected white 
matter functional signals. These results suggest novel correlates of early deterioration and a robust 
stratification strategy where a single MRI measurement provides an estimate of multiple ongoing 
longitudinal changes.

The detection of treatment effects in clinical trials is partly limited by the individual differences in the population 
under study. In neurodegenerative disorders, enrichment strategies to decrease sample heterogeneity and identify 
subjects likely to respond to treatment are important for the efficiency and success of clinical trials, especially for 
early interventions1. Given the high dimensionality of neurological data, computational approaches including 
machine learning techniques appear particularly promising for detecting individual differences in clinical pop-
ulations by integrating distributed information, providing stratification of subjects for predictive or enrolment 
purposes2–4.

Huntington’s disease (HD) is a neurological disorder caused by an expansion in the cytosine-adenine-guanine 
(CAG) trinucleotide repeat region in the huntingtin (HTT) gene. The earliest symptoms are related to changes in 
mood and cognitive ability, followed by lack of motor coordination, unsteady gait, and chorea, ultimately leading 
to dementia and death5. If we take into consideration that clinical damage associated with the disease is poten-
tially irreversible, early intervention is imperative. For this to happen, trials with patients at early stages should be 
tailored towards individuals who will develop a steep deterioration, since testing experimental early treatments 
on stable individuals can produce misleading results6.

The availability of genetic tests has enabled large neuroimaging studies, such as PREDICT-HD7 and 
TRACK-HD8,9, which have followed patients and controls over several years, even before motor-based diagnosis. 
These cohorts provide opportunities for moving beyond descriptive statistical observations toward assessments 
that provide predictions at an individual level4. (Note that in the context of predictive modelling, “prediction” 
refers to the ability to make assessments on previously-unencountered individuals, not necessarily forecasts of 
future events). Cross-validated strategies are a step toward that goal, where different sets of subjects are used for 
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training a model and for testing its individual predictions10. In that sense, it is critical that the signals distinguish-
ing individuals are reliable across successive measurements that are repeated on time scales that are short with 
respect to the expected rate of change11, but also that learned patterns are shown to be robust, e.g. valid across 
sub-cohorts from different imaging sites12.

In neuroimaging, structural correlates of HD such as striatal atrophy have received most attention13. Resting 
state functional MRI (rs-fMRI) is a more recent development14 and, since then, most analyses have been restricted 
to specific subnetworks or considered few regions, or seeds. However, functional brain networks are scale-free15, 
i.e. their degree distributions follow power laws spanning several orders of magnitude. This phenomenology can 
only be observed on networks with a large number of nodes such as voxel-level resolution networks. In addition, 
functional signals and networks of neurobiological significance have been recognized recently in white mat-
ter16–19. Therefore, previously-overlooked correlates of disease progression may be found by analyses designed to 
reflect these major aspects of functional networks.

Track-On HD20 is an extension of the TRACK-HD study that included yearly rs-fMRI data for up to 3 years in 
more than 200 pre-manifest HD (pre-HD, i.e. before diagnosis based on motor symptoms) subjects and healthy 
controls. Images are accompanied by a wealth of cognitive and motor measures, most also acquired during 
preceding TRACK-HD visits, in combination spanning up to 7 yearly measurements. Such a rich dataset allows 
for the estimation of subtle longitudinal changes in cognition and motor control, allowing subjects to be com-
pared to their own performance baselines, and enabling analyses of population heterogeneity for a stage at which 
systematic brain differences from controls are mild21. In addition, because performance on different tasks might 
rely on the same affected neural systems, it is possible to identify combinations of measures for which longitudinal 
changes covary, potentially boosting behavioural signal-to-noise and isolating common brain structures respon-
sible for cognitive decline.

Here, we evaluate the potential of single rs-fMRI scans for stratification of pre-HD individuals with respect 
to cognitive/motor decline, which has never been tested. We built functional connectivity density (FCD) maps 
(Fig. 1a) from a Track-On HD cohort of 153 subjects (74 pre-HD, 79 healthy controls) at the voxel-level. We 
first established test-retest reliability of multivariate FCD measures. We then trained cross-validated predictive 
models (Fig. 1b) to segregate pre-HD subpopulations according to cognitive/motor longitudinal trajectories 
(Fig. 1c) along multiple dimensions. To establish robustness of predictive power, we used a leave-one-site-out 
cross-validation (LOSO-CV) approach. The resulting models suggest a stratification strategy that considers dis-
ease progression in terms of longitudinal rates of change along different cognitive dimensions, and where a single 
MRI scan provides such information, otherwise measurable over years.

Methods
Participants.  We included 153 participants from the four Track-On HD study sites in this analysis, belong-
ing to one of two groups: 74 individuals without manifest HD (before diagnosis by a physician based on motor 
symptoms) but carrying the mutant HTT gene and 79 roughly age- and sex-matched controls (see Table 1 for 
demographics).

Exclusion criteria for analysis were as follows: manifest disease at any point before MRI acquisitions, age below 
18 or above 65 (unless previously part of the TRACK-HD study), history of major psychiatric, neurological, or 
medical disorders, or severe head injury. These criteria are part of the Track-On HD study20. In addition, we 
excluded left-handed individuals, as known rs-fMRI lateralization differences in motor regions22 are outside the 
focus of this analysis, as well as those with fewer than two visits with rs-fMRI scans. Furthermore, we excluded 
subjects based on scan motion or unsatisfactory registration to standard template (see below, and Supplementary 
Table S1 for detailed numbers).

The Track-On HD study was approved by local ethics committees (Leiden site: Medical Ethical Commission 
of Leids Universtais Medisch Centrum; Vancouver site: Clinical Research Ethics Board at the University of British 
Columbia; London site: National Research Ethics Service of the National Health Service (NHS) London; Paris 
site: Comité de Protection des Personnes Ile De France VI, Pitié-Salpêtrière Hospital) and all participants gave 
written informed consent according to the Declaration of Helsinki. All methods were performed in accordance 
with the relevant guidelines and regulations.

Cognitive/motor measures.  On each visit, participants (both controls and pre-HD patients) were admin-
istered several motor and cognitive tests. For consistency with previous studies20, the following tests were con-
sidered: Symbol Digit Modalities Test (SDMT), self-paced tapping, grip-force variability, map search, Stroop 
test, spot change test, cancelation test, mental rotation, indirect circle tracing, and counting backwards. Detailed 
description of tasks and their outcome measurements is provided elsewhere20 (see Supplementary Information 
for a brief summary). Tests were administered on each yearly visit in most cases (up to 3 in Track-On HD). 
Several tests were also included in the immediately preceding visits from the previous TRACK-HD study8, in 
which case up to seven time points were available (Fig. 1c, distribution of visits for each task in Supplementary 
Fig. S1).

To quantify longitudinal cognitive change for asymptomatic HD patients, we computed the slope of longi-
tudinal performance change for each task. The underlying change is not necessarily linear; however, slopes are 
used as the simplest measure of subtle decline given the few time points per subject and measurement noise. All 
sessions in which a given subject was administered a test were included in the slope estimation, including those 
preceding fMRI acquisitions.

For consistency, we defined the sign of all task measures such that a negative longitudinal slope would indicate 
decline.
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Figure 1.  Brain measures, models, and cohort. (a) Functional connectivity density (FCD) maps. A voxel-wise 
correlation matrix is computed from BOLD time courses and functional links are defined as above-threshold 
correlations. A voxel’s degree, defined as the number of its associated links, is a simple measure of centrality. We 
refer to the logarithm of degree (plus one) as FCD. (b) Multivariate cross-validated models. Subjects were assigned a 
label defined by a measure of cognitive/motor decline after correcting for healthy age/sex expectations (fast vs slow 
decline, excluding intermediate subjects during training), or by genetics (pre-HD vs control). Subjects from three of 
the four imaging sites (all but one) were included in the model training set. Performance of the model was estimated 
on subjects from the remaining site, and the process was iterated for every site (leave-one-site-out cross-validation, 
LOSO-CV). Test-site validation was quantified by the area under the receiver operating characteristic (ROC) curve 
(AUC). Additionally, for cognitive stratification, the Spearman rank correlation of the continuous output of classifiers 
vs cognitive decline rates was estimated using all subjects from test sites. (c) Patient cohort. Participants belonged to 
the Track-On HD study. Two rs-fMRI samples were used per subject. Longitudinal change in performance on 10 
cognitive and motor tests was evaluated, including measurements from the immediately preceding TRACK-HD study.
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As we were interested in cognitive decline beyond the effects of healthy aging sex or age, we removed vari-
ance associated with these covariates. Linear effects of sex and age were estimated and removed using data from 
healthy controls.

Robust principal components for cognitive/motor measurements.  Different tasks involve overlap-
ping skills and brain circuits. Therefore, their longitudinal slopes share with each other a portion of inter-subject 
variability (i.e., they covary). To find measures of degeneration along different effective dimensions (that is, reflect-
ing decoupled aspects deterioration), we computed decorrelated combinations of slopes via Principal Component 
Analysis (PCA), based on their covariance matrix. To reduce sensitivity to the presence of outliers, we used 
Minimum Covariance Determinant23, a robust method to estimate the covariance matrix. Units of the slopes 
of different tasks are different, so we also normalized slopes of each task by its interquartile range to produce a 
dimensionless quantity that could be combined with the other tasks.

We performed the PCA procedure twice: 1) First, both pre-HD subjects and controls were included, and the 
slopes were corrected (see below) for effects of normal aging and sex estimated from healthy subjects (using the 
age at the time of acquisition of the first functional image). This allowed a visualization of pre-HD and control 
trajectories, to confirm longitudinal differences were observable. 2) A second PCA included only slopes from 
pre-HD subjects, to best capture heterogeneity within this population. These are the principal components (PCs) 
we used for stratifying the pre-HD population (see “Discretization of cognitive/motor trajectories” below, and 
Supplementary Fig. S2 for a flowchart).

MRI data Acquisition.  3T MRI data from 2 different scanner systems (Siemens Tim Trio and Philips 
Achieva) distributed across four acquisition sites were acquired, as described elsewhere8,20,24, including multiple 
design measures before and during acquisition to maximize data homogeneity across sites20.

In brief, T1-weighted image volumes were acquired using a 3D MPRAGE acquisition sequence with the fol-
lowing imaging parameters: TR = 2200 ms (Siemens)/7.7 ms (Philips), TE = 2.2 ms (S)/3.5 ms(P), FA = 10° (S)/8° 
(P), FOV = 28 cm (S)/24 cm (P), matrix size 256 × 256(S)/224 × 224(P), 208(S)/164(P) sagittal slices to cover the 
entire brain with a slice thickness of 1 mm (no gap 1 mm isotropic voxels).

For rs-fMRI, whole brain volumes were acquired with a TR of 3 s using a T2*-weighted echo planar imaging 
(EPI) sequence with the following parameters: TE 30 ms, FOV 212 mm, flip angle 80°, 48 slices in ascending order 
(thickness: 2.8 mm, gap: 0.5 mm, in plane resolution: 3.3 × 3.3 mm) and bandwidth of 1906 Hz per Px. 165 time 
points were acquired for 8:20 minutes. All data passed visual inspections centralized by IXICO.

MRI data Processing.  fMRI pre-processing used FSL25 parallelized for large-scale computation using 
Nipype26. The first 5 time points of the fMRI time series were discarded to exclude unsteady acquisitions. 
Slice-timing correction was applied followed by rigid realignment to the volume in the middle of the series 
(motion-correction). Subjects with more than 10 frames with relative displacement (as computed by FSL’s 
mcflirt command) above 0.6 mm were excluded (4 subjects, Supplementary Table S1). Physiological (respiration, 
heart rate, etc.) as well as motion-associated noise was corrected using the tCompCor method27 that identifies 
a noise-dominated mask and removes its associated temporal variance. We deliberately avoided imposing an 
anatomical white matter (WM) mask to preserve recently recognized WM signals of neural origin16,18,19,28,29. On 
inspection, noise masks isolated cerebrospinal fluid and head edges. Finally, the time series of each voxel was 
band-pass filtered (0.01–0.16 Hz) to remove drifts and high-frequency noise (see Supplementary Fig. S3 for a 
flowchart).

In-session anatomical volumes underwent brain extraction (BET) followed by non-linear normalization to 
MNI space (FNIRT). All EPI time series were then rigidly co-registered to the in-session anatomical volume and 
non-linearly normalized to MNI standard space using the same transformation, preserving original voxel size 
(3.3 mm isotropic).

Acceptability of the concatenated registrations was verified as in other large sample studies30. Session-specific 
average volumes for each participant and a group average template were computed. Participants whose 
time-averaged EPI volume had a correlation with the template that deviated more than 3 standard deviations 
from the population were excluded from the analyses upon visual re-inspection.

Controls Pre-HD

N 79 74

Sex (Female) 30 34

Age (mean ± STD) 49 ± 11 42 ± 10

CAG — 43 ± 2

CAP — 48 ± 8

Expected years to disease onset — 11 ± 4 (minimum: 5)

Table 1.  Cohort demographics. CAG: number of CAG repeats in the HTT gene. CAP: CAG-age-product66, a 
measure of disease burden given by the product of a subject’s number of excess CAG repeats and their age. Here 
we use the formula CAP = 100 × AGE × [(CAG − 35.5) ÷ 627], i.e. normalized so that score at disease onset 
(diagnosis based on motor symptoms) is approximately 100.
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Feature extraction.  We computed voxel-level functional networks (Fig. 1a) as follows: (1) pair-wise Pearson 
correlation coefficients were calculated between voxels; (2) correlations above 0.7 constituted links, as in previous 
studies31.

For each voxel, we computed the log-degree, defined as log(degree + 1), where degree is defined as the total 
number of links. Each resulting log-degree map was normalized by the median value across all voxels as baseline 
reference. We refer to the resulting maps as FCD maps (see Supplementary Fig. S4 for a flowchart).

Univariate comparisons (described below) rely on local signals, so FCD maps were locally enhanced by 
Gaussian smoothing (FWHM = 2.5 voxels). For multivariate classifications, which pool signals together, no 
smoothing was used.

The above procedure was repeated to compute separate FCD maps from each individual at each visit.

Multivariate classifications.  Using FCD maps, multivariate classification between 2 groups (pre-HD vs 
controls, or fast vs slow-decline) was performed using logistic regression with elastic net regularization, using a 
LOSO-CV scheme (Fig. 1b, see flowchart in Supplementary Fig. S5), to ensure robustness of predictions across 
imaging sites. Elastic net regularization is a penalty term that automatically performs variable selection, reducing 
overfitting. Unlike other variable selection terms such as LASSO, elastic net can select more features than the 
number of training samples (critical when the number of features is much larger than available samples), and 
is more stable when correlated features are present. Logistic regression was chosen over other linear classifiers 
due to good optimization convergence when combined with elastic net penalty using a SAGA optimizer32 on 
similar datasets33, but model performance is similar to a standard support vector machine. Optimal value of reg-
ularization parameters was determined within each training set via internal 5-fold cross-validation (i.e., nested 
cross-validation).

For classifications of pre-HD vs controls, FCD maps were linearly corrected for healthy aging and sex during 
model training, using weights learned from controls in the training set.

The metric of evaluation of binary classifiers was the area under the receiving operator characteristic (ROC) 
curve (AUC). This metric has the advantage that it is a measure of a continuous output, independent of the choice 
of a decision threshold, and robust to imbalanced classes. We computed the AUC for each test site and averaged 
them. For robustness of the estimation to outliers, we repeated the computation with bootstrap resampling (ran-
dom resampling with replacement, 105 resamples) of the test subjects, and reported the median value. In the case 
of stratification models, it should be noted that the AUC tests whether a pattern of ongoing decline is successfully 
learned, but not its application to the general pre-HD population. For that we performed a second validation (see 
“Validation of continuous classifier output for pre-HD stratification” below).

All predictive modelling was implemented using scikit-learn34 and Lightning (http://contrib.scikit-learn.org/
lightning/index.html) libraries in Python. Plots of results on the brain (and brain schematics used in figures) were 
generated using Nilearn35.

Univariate correlations of FCD features with cognitive/motor decline.  For tasks slopes and their 
PCs, we computed voxelwise Spearman correlations with FCD, which were converted to a t-statistic from which 
statistical significance was calculated, and multiple comparison correction was applied (false discovery rate, FDR, 
see below).

Discretization of cognitive/motor trajectories.  Exact values of task performance and their slopes are 
invariably noisy (see “Estimation of noise in cognitive slopes” in Supplementary Information for a quantification), 
but they can be used to isolate coarse subgroups of subjects, which has proven useful for longitudinal change in 
other disorders36. We defined three subgroups for each single task or PC projection: fast, intermediate, and slow, 
which corresponded respectively to subjects below, in-between, or above half a robust estimate of the standard 
deviation of decline away from the median. The robust estimate of the standard deviation was defined as the 
standard deviation of a normal distribution with the same interquartile range as the observed distribution of 
decline, making it insensitive to outliers. This threshold was chosen because, while being the same for all tasks, it 
divided the pre-HD population approximately into terciles. We performed cross-validated classifications between 
the extreme subgroups (fast and slow) on the basis of FCD maps (stratification models). Subjects with a slope or 
PC projection in-between these extreme ranges were not included in the classification of the two subgroups. This 
was the case for roughly one third of the subjects, the exact number depending on the PC or task (Supplementary 
Table S5). The subgroups used for training/testing the models did not differ in the number of visits used for com-
puting the slopes (Supplementary Table S4).

Validation of continuous classifier output for pre-HD stratification.  We propose that brain signa-
tures based on extreme subgroups could be used to provide information about ongoing decline in any subject of 
the population, including those in the intermediate decline group. As a validation of this proposed application, 
we computed the Spearman rank correlation between the continuous output of the stratification models (signed 
distance to the decision hyperplane) and cognitive decline rates using all subjects from each test site. Spearman 
correlations computed within each of the four test sites were Fisher z-transformed, averaged over sites, and then 
inverse-transformed back to r-space, as is common practice when pooling together correlation coefficients37.

Integration with expectations from genetics.  To quantify the variance in cognitive decline rates 
explained by CAG repeats, we computed the Spearman correlation between them. We also studied whether com-
bining CAG repeats as a feature with FCD maps could improve predictive power in stratification models.

FCD test-retest reliability.  We studied the consistency of FCD maps within individuals in two different 
ways.
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First, we studied the correlation between baseline and follow-up FCD maps, in terms of their power to identify 
individuals (“fingerprinting”), similar to others11. For the baseline FCD map of each individual, we computed its 
Pearson correlation (across voxels) to the follow-up FCD map of each individual, and ranked these correlations 
(153 correlations). We stored the rank of the correlation between the same subject’s baseline and follow-up scan, 
a measure of how similar the two were relative to similarity to other subjects. The resulting distribution of 153 
stored same-subject ranks was compared to chance levels.

Second, using LOSO-CV, we tested the within-subject consistency of predictions of a multivariate classifier 
trained to distinguish a neurologically relevant signature: that of pre-HD subjects vs. controls. We computed a 
transition matrix with the probability of a follow-up classification outcome given a baseline classification out-
come, and compared the observation to chance levels (see “Statistical Significance Analyses” below).

Removal of local atrophy effects by voxel-based morphometry (VBM).  As a control for the effects 
of local atrophy, we used an estimation of grey matter concentration from voxel-based morphometry, as pro-
posed by Oakes and colleagues38. The ‘optimized’ VBM protocol39 of the FMRIB Software Library (FSL)25 was 
used to evaluate grey matter patterns, as detailed in a previous study on the TRACK-HD cohort40. For each 
subject a T1-weighted image was used along with masks estimated from concurrent T2-weighted volumes to 
do brain extraction of the raw T1-weighted volume. The resulting images were then segmented into 3 tissue 
partial volumes (grey matter, white matter, and cerebrospinal fluid concentrations) that represent the probability 
of each voxel belonging to a given tissue. Grey matter concentration (GMC) volumes of each subject/visit were 
nonlinearly normalized to the MNI standard space using FSL’s FNIRT routine (without normalization by the 
Jacobian determinants). The resulting GMC images were down-sampled to the resolution of FCD maps using 
linear interpolation to preserve their range. For each voxel the linear effect of GMC on FCD across subjects was 
estimated (i.e., a voxelwise covariate). For each subject at each voxel, the expected FCD based on the local GMC 
was subtracted from the observed FCD. The residuals constituted local-atrophy-controlled FCD maps. We used 
this atrophy-controlled FCD maps in multivariate detection of pre-HD (vs controls), and stratification models, 
for comparison of the resulting predictive power, and their associated weight maps. In addition, we evaluated 
full-brain GMC maps in terms of their multivariate predictive power to differentiate pre-HD vs control subjects, 
and stratification of the population with a LOSO-CV scheme, identically as done with FCD maps.

Removal of site variability.  To minimize potential effects of imaging site on learned FCD patterns, we 
removed the associated variability from FCD maps using ComBat41, a technique originally proposed to remove 
batch effects in gene expression data and recently shown to outperform several others for harmonization of maps 
from different MRI modalities42,43. For each voxel, ComBat estimates a site-specific mean value and site-specific 
scaling factor. Importantly, while ComBat allows for the specification of biological variates of interest (subject 
group or subgroup, age, sex, etc.) to best preserve such variance, we chose not to include them in the model in 
order to guarantee information about classification labels would not leak into the corrected FCD maps. We used 
a Python implementation of the original method (https://github.com/brentp/combat.py).

Removal of motion associations.  Rigid motion correction and motion artefact removal with tCompCorr 
had been applied to the fMRI time series. However, no method is able to completely mitigate motion-related arte-
facts44, so we additionally controlled in stratification models for the effects of motion by removal of motion var-
iability across subjects in each feature, as proposed by others45. The mean framewise displacement was used as a 
quantifier of head motion44, as provided by FSL’s mcflirt, which calculates the average voxel displacement between 
successive time points in terms of rigid transformations over a spherical, brain-sized region of interest. To remove 
motion artefacts while preserving the neurological signals potentially correlated with motion in pre-HD subjects, 
the linear weight of motion on each feature was learned from healthy controls, who had a motion distribution 
very similar to the pre-HD population (see Results, “Robustness of FCD patterns to non-functional covariates”). 
We detrended FCD features with respect to head motion in the pre-HD population using these weights, and 
compared the resulting stratification model and FCD patterns to those without this additional motion control.

Statistical significance analyses.  All voxel-wise univariate statistical tests for between-group compar-
isons were analysed with non-parametric Mann–Whitney U tests. We controlled for multiple comparisons by 
estimating a false discovery rate (FDR) through the Benjamini–Hochberg procedure46.

Null distributions for assessing significance of cross-validated classification results were computed via per-
mutation of test subject labels (105 randomizations, implemented in Python) within each site. Similarly, null 
distributions for the Spearman correlations between decline rates and distance to the decision hyperplane were 
obtained via permutation of test subject labels (105 randomizations) within each site.

For test-retest reliability analyses (transition matrix), we computed a null distribution of within-subject con-
sistency of classifier predictions: classifier predictions of each subject’s baseline FCD were compared with a distri-
bution of follow-up visit predictions of randomized subjects that belonged to the same group (group-preserving 
permutations of the second sample, 105 permutations). This ensured the null distribution samples contained 
the same proportion of each possible prediction for each group and visit as in the observed case, while only the 
within-subject correspondence between baseline and follow-up classification varied.

Results
Using data from the Track-On HD cohort (Table 1), we first evaluated the test-retest reliability of full-brain FCD 
maps (46667 voxels) and then evaluated models that stratify the pre-HD population by longitudinal cognitive 
decline based on single-visit FCD maps.

https://doi.org/10.1038/s41598-020-58074-8
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Test-retest reliability of FCD maps.  We validated FCD maps in terms of within-subject test-retest relia-
bility. First, we evaluated the within-subject similarity of baseline and follow-up FCD maps, irrespective of a neu-
rological signature of interest. For, this we evaluated the ability to identify (“fingerprint”) individuals on follow-up 
visits based on the correlations of follow-up and baseline FCD maps (Methods, “FCD test-retest reliability”). 
More that 67% of the baseline maps had their top correlation with the follow-up map from the same subject 
(Fig. 2a), two orders of magnitude above chance expectations (1 in 153, i.e. 0.65%, red line in Fig. 2a). Of the 
remaining cases, a large fraction had their same-subject correlation on the top rankings. This result suggests FCD 
maps reliably capture full-brain individual differences.

We then evaluated the reliability of FCD maps for reflecting a neurologically meaningful difference, that 
of pre-HD vs controls. Classification based on presence or absence of mutated HTT gene is ideal to study 
within-subject reliability: genetic labels have virtually no associated noise, and are strictly stable across visits. 
Moreover, because functional differences are mild in gene-carriers far from symptom onset21, the sensitivity to 
test-retest fluctuations is expected to be higher than for strong neurological signatures. We trained binary clas-
sifiers using sex- and age-corrected FCD maps validated using LOSO-CV to ensure robustness to site differ-
ences. The resulting AUC (0.64, p = 0.00082, permutation test, Fig. 2b) was compatible with mild but detectable 

Figure 2.  Test-retest reliability of FCD measures in pre-HD. (a) Correlation of test and retest FCD within 
subjects. For each subject’s baseline scan, we computed the correlation (across brain voxels) of the FCD map 
with that of the follow-up FCD map of all 153 subjects and ranked them. The histogram shows that, for 67% of 
subjects, the top-ranked correlation with follow-up FCDs was with their own follow-up, identifying them. Red 
line: 0.65% (i.e., 1/153) chance level. X axis is truncated at 10 for visibility. (b) Multivariate detection of group 
differences. ROC curve of a full-brain classifier of pre-HD vs controls (LOSO-CV). AUC: 0.64 (p = 0.00082, 
permutation test). Group differences are detectable but mild, compatible with heterogeneity. (c) Test-retest 
reliability of group differences. Correct and incorrect classifications are highly reliable, suggesting they are 
determined by consistent heterogeneity. Left: Matrix indicating probability of classification outcome of a 
follow-up FCD sample, given that of the baseline sample. Right: Chance level matrix (permutation test, see 
Methods). Both hits and errors are reliable within subjects. *: p < 10−3, **: p < 10−5 (group-preserving two-
sided permutation test, see Methods) TN: true negative, FP: false positive, FN: false negative, TP: true positive. 
(d) Univariate FCD group differences. Single cluster on the globus pallidus and interface with the putamen 
(two-sided Mann–Whitney U test, FDR q < 0.05). Red: pre-HD > controls, Blue: pre-HD < controls. Units: 
logarithm of corrected p-value. (e) Mean maps of classifier weights reveal a bilateral globus pallidus cluster. 
Weights shown at an arbitrary threshold of 3, in standard units across voxels.
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signatures of pre-HD. Subjects classified correctly with the first FCD sample were highly likely to be classified 
correctly also with the second sample (95% consistency for pre-HD, p < 10−5; 76% consistency for controls, 
p = 0.0007 permutation test; Fig. 2c), indicating high consistency for correct classifications. Moreover, the whole 
transition matrix was dominated by the diagonal, so consistency of errors was also well above chance levels (63% 
for controls, p = 0.0007; 69% for pre-HD, p < 10−5, compare to chance matrix in Fig. 2c), suggesting misclassi-
fications were driven by reliable FCD heterogeneity and not random noise. Together, the observed consistency 
suggests high test-retest reliability of multivariate FCD patterns from visits separated up to 2 years, and motivates 
the study of individual variation within the disease, which is consistently observed but not captured by group 
differences.

To visualize the FCD signatures of early degeneration in pre-HD, we first computed a univariate voxel-wise 
group comparison. Significant differences (Mann-Whitney U test, FDR corrected, q < 0.05) were localized in the 
globus pallidus and its interface with the putamen (Fig. 2d). Similar but more extensive results were obtained 
by inspection of the multivariate classification weights. A map of mean classifier weights (Fig. 2e) revealed the 
clusters were bilaterally symmetric. This suggests functional hyper-connectivity of the globus pallidus is a novel 
signature of pre-HD.

Analysis of cognitive/motor longitudinal decline.  To quantify cognitive/motor decline, we computed 
longitudinal slopes for 10 tasks (see Methods, Supplementary Information for task description). Steeper decline 
slopes of pre-HD subjects vs controls were observed for the Symbol Digit Modalities Test (SDMT, p = 0.009, 
Mann-Whitney U test), the Stroop test (p = 0.017, Mann-Whitney U test), indirect circle trace (p = 0.032, 
Mann-Whitney U test), and paced tapping (p = 0.014, Mann-Whitney U test) tasks (see Supplementary Table S2 
for all tasks). Associations with healthy aging in controls were not significant (Supplementary Table S3). In 
pre-HD, longitudinal slopes were not significantly correlated with CAG repeats (Supplementary Table S3), but 
there were associations with CAP score for the counting backwards task (Spearman’s rho = −0.30, p = 0.01, 
t-test) and the Stroop test (Spearman’s rho = −0.25, p = 0.03, see Supplementary Table S3 for all tasks). It should 
be noted that age and CAG repeats were strongly anticorrelated in this population (Spearman’s rho = −0.63, 
p = 2*10−9, t-test). These observations indicate detectable longitudinal cognitive decline in pre-HD, but show 
weak associations with genetic burden.

To isolate decorrelated components of decline, we performed PCA on the task slopes (Fig. 3a, see Methods). 
This first PCA was performed on age-corrected slopes of both pre-HD and controls (Fig. 3b). Strong longitudinal 
group differences became apparent along PC1 (p = 2.2*10−6, Mann–Whitney U test), consisting of a weighted 
sum of the most reliable cognitive tasks. Some pre-HD trajectories overlapped with controls (in the sense that 
those subjects were “stable”), but the asymmetry became prominent in ranges away from the mean, suggesting 
task slopes and their PCs are sensitive to pre-HD decline.

To study heterogeneity of decline within pre-HD alone, computed a second PCA using only subjects from this 
group (Fig. 3c). The top 5 PCs each captured more than or around 10% of the variance (i.e., the effective equiva-
lent of 1 task out of 10), and the bottom 5 were disregarded.

Stratification of pre-HD by longitudinal cognitive/motor decline rates using single-visit FCD.  
Single-task slopes (corrected for age and sex) and PCs were used for stratification models of the pre-HD popula-
tion. For each such measure of decline rate, subgroups of fast, intermediate and slow-decline (or stable) subjects 
were defined (see Methods, flowchart in Supplementary Fig. S2, and Supplementary Table S5 for subgroup subject 
numbers). Slow and fast subgroups were used to train binary cross-validated classifier models using single-visit 
FCD maps as predictors (see Methods, flowchart in Supplementary Fig. S5). To establish robustness to site differ-
ences, we used a LOSO-CV scheme. First, we validated models in terms of their ability to effectively distinguish 
subjects from these extreme subgroups in test sites, excluding the intermediate subgroup. Then we studied the 
usefulness of the distance to the decision hyperplane as a proxy for the continuous value of cognitive decline. This 
key validation used test site subjects from all three subgroups. Below we summarize the results of this approach 
(complete results in Tables 2 and 3).

Binary classification of subjects from the extreme subgroups based on cognitive slopes from single tasks was 
possible for several tasks: SDMT, cancelation task, and paced tapping. The strongest results were observed for the 
SDMT task (Fig. 4). Visual inspection of the ROC curve (Fig. 4a, AUC: 0.73, p = 0.0023, permutation test) shows 
the predictive power resided in the correct identification of cases with highest confidence (vertical and horizon-
tal segments near the extremes). The result suggests robust information in FCD maps about ongoing cognitive 
decline.

That validation tested whether brain patterns of ongoing decline could be learned, but not its application to 
the larger pre-HD population. However, the binary classifier can provide information in a setting where a patient 
might not belong to either subgroup but to the intermediate range not considered during training. This is because 
linear classifiers provide a continuous output: the (signed) distance to the decision hyperplane (Fig. 4b). To vali-
date the usefulness of this measure in the whole pre-HD population, we computed on each test site the Spearman 
rank correlation between the distance to the decision hyperplane and the cognitive slope using all pre-HD sub-
jects, and taking an average across sites (see Methods, “Validation of continuous classifier output for pre-HD 
stratification”). The average correlation was significant for the SDMT (Spearman’s rho = 0.41, p = 0.00005, permu-
tation test) and the cancelation tasks (Spearman’s rho = 0.27, p = 0.00464, permutation test). This is illustrated for 
the SDMT task in Fig. 4c. We note that the out-of-sample correlations that can be achieved are limited by noise in 
cognitive slopes. As a reference, an optimistic estimate for the SDMT task (see Supplementary Information) indi-
cates a ceiling for correlations at around 0.6. The results suggest the continuous output of the classification models 
can be informative for stratification by longitudinal decline of subjects from the whole pre-HD population.
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What neurological signals underlie these predictions? We inspected the voxel-level correlations between FCD 
measures and SDMT slopes (Fig. 4d), which revealed patterns of association between SDMT decline and WM 
functional connectivity. These included clusters around the basal ganglia (Fig. 4d, top row), but mostly consisted 
of increased FCD on bilaterally-symmetrical WM extensions (Fig. 4d, center row), and also reduced FCD on 
cortical regions, notably left temporal cortex (Fig. 4d, bottom row). These observations reveal the spatial extent 
of signals related to early cognitive decline, and suggest WM as a source of functional signals associated with it 
in pre-HD.

The finding that stratification was possible for decline along more than one individual task could indicate 
the existence of multiple distinct decline signals, or simply one shared signal that underlies change along the 
individual tasks. We used the PCs of cognitive slopes to investigate whether stratification was possible along com-
ponents of decline that were uncorrelated from each other, keeping in mind that because PCs are orthogonal by 
design they combine tasks with different signs, limiting interpretability. Stratification was possible, using the same 
LOSO-CV scheme, for three PCs (1, 4, and 5), in which models successfully distinguished extreme subgroups of 
decline (Table 3). The first component combined most tasks with positive signs, providing a summary of global 
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Figure 3.  Longitudinal cognitive/motor decline in pre-HD. (a) Schematics of how PCA isolates effective 
directions of decorrelated change (PCs). (b) Projection of control and pre-HD slopes onto top 2 PCs of slopes 
(age/sex corrected) of performance from 10 tasks, showing differences along PC 1 (p = 2.2*10−6, two-sided 
Mann–Whitney U test). (c) Coefficients of the top 5 PCs, computed with slopes (healthy age/sex corrected) 
from pre-HD subjects only.
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decline. While the others are harder to interpret, we note PC 4 combined SDMT, cancelation, and self-paced 
tapping with the same sign, which were the tasks that showed best individual results. This suggests stratification 
along individual tasks might not be a consequence of a single dominant direction of decline, and instead stratifi-
cation along multiple measures survives in decorrelated decline components.

Robustness of FCD patterns to non-functional covariates.  The goal of our analyses was not only to 
establish the predictive power of FCD maps but also to interpret them as reflecting functional signals. Therefore, 
even if predictions have been validated across imaging sites, we also verified the robustness of the identified pat-
terns when controlling for non-functional sources of variation. In particular, we trained the main multivariate 
classification algorithms presented above (pre-HD vs. controls and stratification by SDMT decline) after correct-
ing FCD features by a local atrophy measure (grey matter concentration as estimated by voxel-based morphome-
try, see Methods), removing variance attributable to scanning sites (even if there were no group differences on any 
of them, as assessed by chi-squared tests, see also Methods for details on harmonization), and skipping FCP map 
normalization by its median. Detection of pre-HD signatures (vs. controls) with these alternative FCD maps had 
similar predictive power (AUC: 0.64, p = 0.0005, permutation test), and the classifier weights showed a similar 
cluster in the globus pallidus (Supplementary Fig. S6). Performance of stratification by SDMT change was again 
comparable to the original model (AUC: 0.69, p = 0.007 permutation test; Spearman’s rho = 0.37, p = 0.00025, 
permutation test) and the voxel weights of the classifier revealed similar clusters (Supplementary Fig. S7) on white 
matter, while grey matter (GM) clusters on the temporal lobe were no longer observed, indicating perhaps con-
current GM atrophy. We also evaluated full-brain GMC maps (including WM voxels and with the same resolution 
as FCD maps), in terms of multivariate detection of pre-HD change (AUC 0.52, p = 0.378), and stratification by 
SDMT slopes (AUC 0.53, p = 0.39; Spearman’s r: 0.09, p = 0.24), showing low predictive power. Taken together, 
these observations suggest that the predictive patterns found are unlikely to be a reflection of local atrophy, site, 
or effects of normalization choice.

We also considered effects of in-scanner motion, as quantified by the mean framewise displacement (Methods, 
“Removal of motion associations”). Both groups had very similar motion distributions (pre-HD vs controls, 
p = 0.77, Mann-Whitney U-test, Supplementary Fig. S7). We computed motion associations with cognitive 
decline rates (Supplementary Table S7), which was significant for the SDMT (Spearman’s rho = −0.32, p = 0.006) 
and “spot the change” tasks (Spearman’s rho = 0.28, p = 0.02). Head motion association was not sufficient (e.g. 
“spot the change” task) nor necessary (e.g. cancelation task) for stratification results. We performed direct con-
trols for FCD features in SDMT stratification (see Methods, “Removal of motion associations”). Both model 
performance and brain patterns were robust to this control (AUC: 0.73, p = 0.0009, permutation test; Spearman’s 
rho = 0.35, p = 0.00031, permutation test; Supplementary Fig. S9).

Task AUC p-value Spearman’s rho p-value

SDMT 0.73 0.0023 0.41 0.00005

Cancelation 0.73 0.002 0.27 0.005

Paced tap 0.70 0.008 0.05 0.2977

Grip variability 0.61 0.07 0.07 0.26453

Stroop 0.59 0.136 0.17 0.04877

Count backwards 0.54 0.314 0.08 0.19927

Spot change 0.52 0.396 0.01 0.4807

Mental rotation 0.51 0.439 −0.01 0.54327

Map search 0.47 0.665 −0.01 0.52993

Indirect circle trace 0.36 0.97 −0.14 0.93302

Table 2.  Model accuracies. Summary of AUC for classifications between fast-declining and stable subjects 
(extreme subgroups, subject numbers in Supplementary Table S5) using single tasks (permutation test). The 
Spearman rank correlation corresponds to the distance between the decision hyperplane and cognitive slopes 
using all pre-HD subjects from the test sites (within-site permutation test, see Methods).

Task AUC p-value Spearman’s rho p-value

PC 1 0.67 0.013 0.18 0.04045

PC 2 0.59 0.11 0.06 0.2563

PC 3 0.56 0.23 0.09 0.19351

PC 4 0.73 0.0008 0.29 0.00306

PC 5 0.65 0.02 0.16 0.06194

Table 3.  Model accuracies. Summary of AUC for classifications between fast-declining and stable subjects 
using principal components. The Spearman rank correlation corresponds to the distance between the decision 
hyperplane and cognitive slopes using all subjects from the test sites (within-site permutation test, see 
Methods).
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Finally, we considered whether addition of CAG repeats to the FCD features improved the stratification 
results. Results with these combined features were almost identical (Supplementary Table S8).

Discussion
We investigated the reliability and stratification power of FCD in pre-HD using a cross-validated multivariate 
approach. FCD patterns showed high within-subject reliability. We found that longitudinal slopes provided a sen-
sitive measure of early cognitive decline and FCD features could be used to stratify the population across multiple 
components of change. Together, these results highlight the potential of FCD as a tool with valuable applications.

Relative to structural markers, the literature of resting state measurements in HD is relatively recent14. 
Cross-sectional correlations of resting-state fMRI with clinical measures were reported on predefined compo-
nents47,48. With that approach, cross-sectional group differences were observed49 within the TRACK-HD study 
but longitudinal group-differences were not50. The Track-On HD extension allowed for the investigation of puta-
tive compensation mechanisms20 and relationships with the anatomical connectome24. A valuable step toward 
predictive applications has been a recent study combining structural and resting-state markers in 19 premanifest 
patients used to predict transition to the manifest state51. Our goal was to further push the field from descriptive 
brain mapping toward predictive models that directly detect the population heterogeneity unexplained by genetic 
disease load, before manifestation.
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Figure 4.  FCD stratifies pre-HD by longitudinal cognitive decline. (a) Classification of fast vs slow/stable 
subgroups of decline in SDMT task (healthy ageing/sex corrected) using full-brain FCD maps (LOSO-CV). 
Conventions as in Fig. 2b. Here ‘positive’ (vs. ‘negative’) labels denote ‘fast-declining’ (vs. ‘slow/stable’). AUC: 
0.73 (p = 0.002, permutation test). (b) For linear classifiers, the distance to the decision plane provides a useful 
continuous output. (c) Relationship between FCD map distance to decision plane and behavioral slope of 
all pre-HD subjects, including the intermediate subgroup (scatter plot and 2-D kernel density estimation.). 
Average Spearman correlation: rho = 0.41 (p = 0.00005, permutation test). The distances to the decision 
hyperplane from each validation fold were converted to ranks to produce comparable units before pooling them 
together. Dotted line: identity line. (d) Voxelwise Spearman correlation between FCD and SDMT longitudinal 
performance decline reveal signatures in white matter. Top row: Bilateral clusters around head of the caudate/
accumbens. Middle row: Large bilaterally symmetrical extensions of white matter extending from the striatum 
to motor cortex. Bottom: Left-temporal cortex FCD is anti-correlated with decline. (FDR at q < 0.05 in all 
panels). Units: logarithm of corrected p-value. Red: Higher in fast subjects. Blue: lower in fast subjects.
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Key for the usefulness of fMRI as a tool is verifying its robustness across known sources of variability such as 
sites and individuals. Site heterogeneity has been suggested to be a major challenge for robustness of models, and 
of LOSO-CV has been proposed as a methodology to ensure generalizability12. This was the motivation behind 
our choice. However, it is possible that the efforts made to minimize site discrepancies during acquisition in 
Track-ON20 make site differences unrepresentative of those found in other potential practical applications. In 
terms of within-subject consistency, concerns have been raised regarding the reliability of fMRI for biomarkers 
to be applied at the individual level52. The use of multivariate models avoid the important consistency issues 
of single links: models that rely on global patterns have been shown to be robust enough to enable individual 
fingerprinting11. This allowed us to extend assessments from other studies of test-retest reliability for rs-fMRI in 
pre-HD53 to the individual level. We found that FCD maps contained a highly reproducible signature that identi-
fied individuals. This extends robustness to a new feature type, FCD, but also in time, since the scans considered 
were separated by one or two years. More important neurologically, we found that the mild pre-HD signatures are 
highly reproducible within-subjects (0.95 consistency in pre-HD subjects), highlighting the importance of sorting 
out the reproducible heterogeneity.

The single clearest signature of pre-HD in FCD was bilateral hyper-connectivity centred on the globus pallidus 
and its interface with the putamen. This is striking because the globus pallidus is not prominent in markers of 
volume change compared to the putamen. Anomalous FCD of the globus pallidus in the past was perhaps previ-
ously unobserved because of the use of predefined components47 or networks20 that excluded this region. It was 
unperturbed when correcting by GMC. In fact, the same models using full-brain GMC maps did not significantly 
distinguish the groups. We note that GMC could distinguish groups with 70% accuracy in the larger TRACK-HD 
cohort40 in models that included only grey matter voxels, higher resolution voxels, and a different cross-validation 
scheme. Even then, the globus pallidus did not contribute to that discrimination. Interestingly also, the pallidus 
pattern seemed to be a generic signature of pre-HD, but did not appear to be relevant for the cognitive decline 
stratifications within the pre-HD population.

In contrast, the recurrent finding in our stratification by cognitive decline is the hyper-connectivity of white 
matter (WM). Although until recently disregarded as noise, there is no evidence against the detection of phys-
iological BOLD signals in WM54. On the contrary, several studies have found reproducible WM activations in 
tasks requiring interhemispheric integration55–58, and several features that speak to their physiological origin: 
they depend on diffusion anisotropy and fibre orientation59, on activity of connected cortical areas18,19,29, and 
alertness28. In resting state fMRI, highly reproducible WM networks have been reported and are associated with 
combinations of known tracts18. Of particular interest, WM activations were reported in SDMT specifically60, 
the task where we found the largest WM associations. WM signatures have started only recently to be exploited 
as potential markers of brain disease16. This is the first demonstration of functional WM signals in HD. Future 
studies should focus on the mechanisms of white matter functional signals in neural degeneration.

We found SDMT to be more strongly associated with FCD features than any other measure, either individual 
tasks or PCs. SDMT has long been recognized as one of the best measures of early deterioration in HD5,61. In 
this dataset, it is the task that showed strongest group differences in longitudinal decline. It is possible that this 
sensitivity of the task to tracking progression, in combination with reliance on white matter integrity62,63, explains 
its advantage over the other tasks considered. PCs were meant to isolate different dimensions of cognitive change 
in an unsupervised way. In addition, they are orthogonal by design, and as a result of this constraint can mix 
tasks sensitive to disease progression with those that are not. These properties of the method could explain why a 
high-sensitivity task could have a stratification advantage over PCs.

The interpretation of the current results should not be considered separately from the limitations of this study. 
First, the cohort was restricted to premanifest participants, which limited our conclusions to the premanifest 
period and likely introduced a selection bias, as suggested by the strong anticorrelation between age and CAG 
repeats. Similarly, inclusion of only right-handed subjects, common in the neuroscientific literature, can limit 
clinical applications. In addition, cross-validated analyses could have overoptimistic results, particularly if care 
is not taken to exclude the possibility of “double-dipping”, as in the choice of model hyperparameters64. While 
we made efforts to avoid such instances using nested-cross-validation65, conclusions should be validated on a 
separate, independent cohort. In terms of cognitive/motor changes, available data included visits that preceded 
rs-fMRI acquisition for the sake of maximizing power to detect changes. Because of that, one should not interpret 
our models as evidence of the ability to predict future decline but rather to detect ongoing cognitive change; and 
prediction in this context refers to the ability to make assessments for individuals not considered during model 
training. Similarly, AUC-based validations were based on binary labels that did not include the full pre-HD pop-
ulation and should not be taken as evidence of usefulness in more general clinical contexts. Correlations with 
continuous decline using the full population (our second validation) should be considered as effect sizes for 
that scenario. Finally, the signatures found by our models are partly a consequence of the type of model chosen. 
Multiple model types are possible, with different complexities. However, this is an issue for every analysis effort, 
even univariate comparisons, which assume a type of model implicitly. We used a linear model for its simplicity 
of interpretation.

Early progression of HD is usually modelled in terms of the CAP score5,66 and predictive models have used 
this, sometimes combined with cognitive61 and brain measurements51,67, for the prediction of the age of diagno-
sis or conversion68,69. Part of the value of our approach lies in its acceptance that degeneration trajectories are 
heterogeneous, placing individuals in a multidimensional space. Accordingly, we focused on the prediction of 
longitudinal change as opposed to estimating proximity to a given behavioural threshold, as schematized in Fig. 5. 
Such multidimensional estimates could not only inform patient selection in clinical trials, but potentially be used 
for individualized quantification of treatment effect sizes and expected patient evolution from ongoing decline, 
increasing sensitivity.
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In conclusion, we found robust evidence for the usefulness of FCD as a stratification tool. This is critical 
because subjects showing signs of decline are unlikely to slow their course in the absence intervention. In this 
context, FCD provides a new window into the evaluation, in a single visit, of ongoing change, an important type 
of assessment for which few alternatives exist.

Data availability
For the privacy of gene carriers and control participants who generously provided data for the Track-On HD 
study, the dataset is not posted online for direct download. The original unprocessed TRACK-IDS-2015-10-R2.1 
dataset will be made available upon request after appropriate data use agreements are signed. Please direct 
inquiries to info@chdifoundation.org with the words [IBM-CHDI Resting State fMRI Study] in the subject line.

Code availability
All scripts used for generating the results of this study are publicly available as a Github repository (https://github.
com/polosecki/ton_rfmri_repo) for reproducibility.
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