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Proteome analysis for the global 
proteins in the jejunum tissues of 
enterotoxigenic Escherichia coli 
-infected piglets
Wenkai Ren1,2, Jie Yin1, Shuai Chen1, Jielin Duan1, Gang Liu1, Tiejun Li1, Nengzhang Li3, 
Yuanyi Peng3, Bie Tan1,4 & Yulong Yin1

Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea in humans and livestock. In this 
study, isobaric tags for relative and absolute quantitation (iTRAQ) combined with multidimensional 
liquid chromatography (LC) and MS analysis was used for screening the differentially expressed 
proteins in piglet jejunum after ETEC infection. Totally 1,897 proteins were identified with quantitative 
information in piglet jejunum. We identified 92 differentially expressed proteins in ETEC-induced 
diarrhea, of which 30 were up regulated and 62 down regulated. Most of the differentially expressed 
proteins were involved in intestinal function of binding, metabolic process, catalytic activity and 
immune responses. The inhibition of intestinal immune responses in the jejunum in ETEC-induced 
diarrhea was also validated by immunobloting and RT-PCR. Our study is the first attempt to analyze 
the protein profile of ETEC-infected piglets by quantitative proteomics, and our findings could provide 
valuable information with respect to better understanding the host response to ETEC infection.

Enterotoxigenic Escherichia coli (ETEC) is a common cause of childhood diarrhea in resource-limited regions 
and diarrhea in adult travelers to these areas1,2. ETEC is also an important cause of diarrhea in piglets3. ETEC 
produces several virulence factors, including colonization factors (adhesins), and/or the heat-labile (LT) and 
heat-stable (ST) toxins4. Colonization factors promote adherence to and colonization of the host small intestine, 
whereas enterotoxins stimulate the lining of the intestine and induce watery diarrhea. Briefly, LT is encoded by the 
eltAB gene and has the configuration of AB5

5. LT is endocytosed after binding to host cell GM1 gangliosides in the 
gut and triggers constitutive cyclic adenosine monophosphate (cAMP) production6. The ST toxin, encoded by the 
estA gene, binds to the guanylate cyclase C receptor and stimulates overproduction of cyclic guanosine monophos-
phate (cGMP)4. Both cAMP and cGMP can induce the phosphorylation and activation of the cystic fibrosis 
transmembrane regulator (CFTR), leading to Cl− secretion and watery diarrhea4. Recently, there is growing 
understanding about the influence of ETEC on intestinal functions, such as immune responses7–10, tight junction 
(TJ) function11–14, and autophagy15. However, most these compelling conclusions are from in vitro studies. Also, 
the global change of proteins in the jejunum after ETEC infection remains largely unknown. The knowledge of 
ETEC induced global alteration of proteins in the jejunum could provide better understanding in the pathogenesis  
of ETEC infection.

Unlike the conventional molecular biological technologies, proteomics technologies enable investigators to 
define the global profile of protein expression in specific physical or pathological statuses. Isobaric tags for rela-
tive and absolute quantitation (iTRAQ) combined with multidimensional liquid chromatography (LC) and MS 
analysis is a widely accepted and used quantitative proteomics16,17.
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To investigate the global alteration of proteins in piglet jejunum after ETEC infection, the jejunum tissues 
from ETEC-induced diarrheal piglets, recovery piglets, and resistant piglets were profiled with iTRAQ analysis, 
using normal piglet jejunum as control. A total of 1,897 proteins were identified in all of the tested jejunum 
samples. 92 proteins were identified in ETEC-induced diarrhea, including 62 down-regulated proteins and 30 
up-regulated proteins. The commonly affected function in the intestine were signal transduction mechanisms; 
posttranslational modification, protein turnover, chaperones; transcription; translation, ribosomal structure and 
biogenesis; and general function prediction. Gene ontology (GO) analysis revealed that the most affected biolog-
ical functions might be the binding activity, catalytic activity, metabolic process and cellular process. Also, com-
bined data from proteomics, immunobloting and RT-PCR, we have demonstrated that ETEC-induced diarrhea 
inhibited intestinal immune responses in the jejunum.

Results
ETEC-induced diarrhea affects protein abundance in the jejunum. Landrace ×  Yorkshire piglets 
were infected with ETEC W25K, a strain originally isolated from a piglet with diarrhea18. We observed var-
iable responses to infection, with 49% (n =  51) of piglets developing diarrhea. The water content in the feces 
between diarrheal piglets and non-diarrheal piglets was also significantly different (n =  7, p <  0.01; 88.67 ±  1.4% 
vs. 68.40 ± 2.4%, respectively). With proteomics analysis, a total of 1,897 proteins were identified in the jejunum 
in the present study using Mascot version 2.3.01. Based on a 95% confidence level, cutoff values of 1.2-fold for 
up-regulated proteins and of 0.83-fold for down-regulated proteins were used to define a protein as being differ-
ently expressed protein in present study.

A total of 378 differentially expressed proteins (159 increased, 219 decreased) were found between diarrheal 
piglets and control piglets (Supplementary file 2). These proteins were categorized into biological processes (286), 
cellular components (210), and molecular functions (278) according to their annotation (Fig. 1). The most prev-
alent biological processes were cellular process (130), metabolic process (110), and response to the stimulus (69). 
The most prevalent cellular components were located in the cell part (202) and cell (121), while other proteins 
were assigned to the organelle (88), and macromolecular complex (62). The most predominant molecular func-
tions were binding activity (201) and catalytic activity (51).

About the comparison between diarrheal piglets and resistant piglets, 450 differentially expressed proteins 
were found, including 186 increased proteins and 264 decreased proteins (Supplementary file 3). These differently 
expressed proteins were categorized into biological processes (319), cellular components (261), and molecular 
functions (305) according to their annotation (Fig. 2). For biological processes, the most prevalent biological 
processes were cellular process (160), metabolic process (110), and response to the stimulus (87). For cellular 
components, the most prevalent cellular components were located in the cell part (238) and cell (141). The most 
predominant molecular functions were binding activity (242) and catalytic activity (53).

A total of 294 differentially expressed proteins (147 increased, 147 decreased) were also found between diar-
rheal piglets and recovery piglets (Supplementary file 4). Meanwhile, we also found 389 differentially expressed 
proteins (181 increased, 208 decreased), 409 differentially expressed proteins (169 increased, 240 decreased), 
435 differentially expressed proteins (242 increased, 193 decreased) between recovery piglets and control piglets 
(Supplementary file 5), recovery piglets and resistant piglets (Supplementary file 6), resistant piglets and control 
piglets (Supplementary file 7), respectively.

After further inclusion standard that the protein is differently expressed between diarrheal piglets and control 
piglets, meanwhile the level of proteins in resistant piglets or recovery piglets is closer to control piglets, compared 
to diarrheal piglets, we focused our candidates down to 92 proteins, in which 62 proteins were down-regulated, 
while 30 proteins were up-regulated in ETEC-induced diarrhea (Supplementary file 8). These 92 differentially 

Figure 1. Function classification of the differentially expressed proteins between ETEC-induced diarrheal 
piglets and controls. ETEC-induced diarrhea in piglets were established by orally inoculation of ETEC W25K 
for five consecutive days at dosage of 1010 CFUs per day. As a control, piglets were orally infected with the same 
volume of LB medium. The differentially expressed proteins between 6 diarrheal piglets after ETEC infection 
and 6 control piglets were characterized by iTRAQ-based proteomics, and then the functional annotations 
of 378 differentially expressed proteins were conducted using the gene ontology (GO) annotation software. 
iTRAQ: isobaric tags for relative and absolute quantitation; ETEC: Enterotoxigenic Escherichia coli.
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expressed proteins were classified into 19 groups based on their function in the intestine, i.e., general function 
prediction only (11); translation, ribosomal structure and biogenesis (8); transcription (5); posttranslational 
modification, protein turnover, chaperones (5); signal transduction mechanisms (5); nucleotide transport and 
metabolism (3); coenzyme metabolism (3); intracellular trafficking and secretion (3); amino acid transport and 
metabolism (2); function unknown (2); chromatin structure and dynamics (1); energy production and conver-
sion (1); cell cycle control, cell division and chromosome partitioning (1); carbohydrate transport and metabo-
lism (1); lipid transport and metabolism (1); inorganic ion transport and metabolism (1); secondary metabolite 
biosynthesis, transport, and catabolism (1); and cytoskeleton (1) (Fig. 3).

These 92 differentially expressed proteins were categorized into biological processes, cellular components, and 
molecular functions according to their annotation (Fig. 4). The most prevalent biological processes were cellular 
process (42), metabolic process (42), biological regulation (9), establishment of localization (9), localization (9) 
and regulation of biological process (9). The most prevalent cellular components were located in the cell (29) and 

Figure 2. Function classification of the differentially expressed proteins between ETEC-induced diarrheal 
piglets and resistant piglets. ETEC-induced diarrhea in piglets were established by orally inoculation of ETEC 
W25K for five consecutive days at dosage of 1010 CFUs per day. Resistant piglets indicate the piglets that were 
challenged with ETEC but not suffered from diarrhea. The differentially expressed proteins between 6 diarrheal 
piglets after ETEC infection and 6 resistant piglets after ETEC infection were characterized by iTRAQ-based 
proteomics, and then the functional annotations of 450 differentially expressed proteins were conducted using 
the gene ontology (GO) annotation software. iTRAQ: isobaric tags for relative and absolute quantitation; ETEC: 
Enterotoxigenic Escherichia coli.

Figure 3. COG function classification of the differentially expressed proteins in ETEC-induced diarrheal 
piglets. The differentially expressed proteins among diarrheal piglets, recovery piglets, resistant piglets and 
control piglets were characterized by iTRAQ-based proteomics, and then the functional annotations of 92 
differentially expressed proteins were conducted with COG analysis. A total of 92 differentially expressed 
proteins were selected based on the inclusion standard that the protein is differently expressed between 
diarrheal piglets and control piglets, meanwhile the level of proteins in resistant piglets or recovery piglets 
is closer to control piglets, compared to diarrheal piglets. iTRAQ: isobaric tags for relative and absolute 
quantitation; ETEC: Enterotoxigenic Escherichia coli.
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cell part (29). The most predominant molecular function was binding activity (56); other major functional cate-
gories were catalytic activity (36), metabolic process (34) and cellular process (18).

Pathway analysis categorized the 92 identified proteins into 5 levels (Fig. 5). We noted that most of proteins 
in organismal system were associated with immune system (17); and in metabolism were enzyme families (9), 
energy metabolism (8) and amino acids metabolism (8). They were involved in infectious diseases (26) and neu-
rodegenerative diseases (24) in human diseases; replication and repair (17) and folding, sorting and degradation 
(17) in genetic information processing; signal transduction (17) in environmental information processing; and 
cell growth and death (11) in cellular processes.

Figure 4. GO (gene ontology) analysis of the differentially expressed proteins in ETEC-induced diarrheal 
piglets. The differentially expressed proteins among diarrheal piglets, recovery piglets, resistant piglets and 
control piglets were characterized by iTRAQ-based proteomics, and then the functional annotations of 92 
differentially expressed proteins were conducted with GO analysis. A total of 92 differentially expressed proteins 
were selected based on the inclusion standard that the protein is differently expressed between diarrheal piglets 
and control piglets, meanwhile the level of proteins in resistant piglets or recovery piglets is closer to control 
piglets, compared to diarrheal piglets. iTRAQ: isobaric tags for relative and absolute quantitation; ETEC: 
Enterotoxigenic Escherichia coli.

Figure 5. KEGG pathway analysis of the differentially expressed proteins in ETEC-induced diarrheal 
piglets. The differentially expressed proteins among diarrheal piglets, recovery piglets, resistant piglets and 
control piglets were characterized by iTRAQ-based proteomics, and then the functional annotations of 
92 differently expressed proteins were conducted with KEGG pathway analysis. A total of 92 differentially 
expressed proteins were selected based on the inclusion standard that the protein is differentially expressed 
between diarrheal piglets and control piglets, meanwhile the level of proteins in resistant piglets or recovery 
piglets is closer to control piglets, compared to diarrheal piglets. iTRAQ: isobaric tags for relative and absolute 
quantitation; ETEC: Enterotoxigenic Escherichia coli.
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ETEC-induced diarrhea inhibits the immune responses in the jejunum. Among the 92 iden-
tified proteins, 16 proteins were associated with immune responses, and 13 of them were down-regulated in 
ETEC-induced diarrhea (Fig. 6A). These proteins include the NF-kappaB transcription factor p65 subunit and 
proteins in the mitogen-activated protein kinases (MAPK) pathway, including serine/threonine-protein kinase 
4, serine/threonine-protein phosphatase, caspase-3, protein phosphatase 1B, calcineurin B homologous protein 
1, and ribosomal protein S6 kinase (Fig. 6A). Thus, similar to previous evidence9,10, these results are indicating 
that ETEC-induced diarrhea may inhibit the NF-κ B and MAPK pathways in the jejunum. This conclusion was 
validated by immunoblotting, which showed that the abundance of p65 in the nucleus, as well as the abundance of 
p-ERK1/2 and p-p38 in the cytoplasm were decreased in diarrheal piglets, compared with the controls (Fig. 6B). 
Interestingly, the abundance of p65 was also lower in recovered piglets or resistant piglets compared to the con-
trol piglets (Fig. 6B). Gene expression analysis also found that diarrheal piglets had lower mRNA expression of 
toll-like receptor (TLR)4 and TLR5 (Fig. 6C). ETEC-induced diarrhea also reduced the mRNA expression of 
other TLRs on the cell surface (TLR 2, 6, 10) and endosomes (TLR 7, 8, 9) (Fig. 6C). Furthermore, ETEC-induced 
diarrhea significantly inhibited the mRNA expression of other indicators associated with intestinal immunity, 

Figure 6. ETEC induces immune inhibition in the jejunum. (A) 16 differentially expressed proteins 
associated with immune responses were identified by proteomics. (B) The activation of NF-kappa B and MAPK 
pathway was analyzed by immunoblotting. Representative image from 5 piglets. The numbers below the image 
are the statistical value among different groups (n =  5; a–cMeans within a row with different superscripts differ, 
P <  0.05). (C) mRNA expression of innate immune genes between diarrheal piglets and control piglets (n =  6;  
*used to indicate a statistically significant difference, P <  0.05).
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including phospholipase A2, lysozyme, polymeric immunoglobulin receptor, and mucin 2 (Fig. 6C). Collectively, 
these data indicate that ETEC-induced diarrhea inhibits intestinal immune responses in the jejunum.

Discussion
The proteomics approach has been widely applied to investigate proteome alternations in porcine infectious 
diseases such as porcine reproductive and respiratory syndrome (PRRS) infection19; porcine circovirus type 2 
(PCV2) infection20 and porcine epidemic diarrhea virus infection21. In the current study, we use multidimen-
sional LC-MS/MS coupled with iTRAQ proteomics to identify proteins that are differentially expressed in piglet 
jejunum during ETEC infection. Totally, 1,897 potential proteins have been detected in the jejunum tissues with 
95% confidence interval based on such approach.

A total of 92 proteins have been identified in ETEC-induced diarrhea in piglet jejunum, including 62 
down-regulated proteins and 30 up-regulated proteins. Of the top 10 down-regulated proteins in the jejunum, 
6 proteins relate with binding function. Interestingly, one of down-regulated protein, calcineurin B homologous 
protein 1, plays a critical role in the function of membrane-type Na (+ )/H (+ ) exchangers (NHEs), which is 
essential for regulation of Na (+ ) transport in the intestinal epithelium22–24. Of the top 10 up-regulated proteins 
in the jejunum, 4 proteins are associated with the function of metabolism process. This is indicates that ETEC 
may manipulate the host metabolism for its colonization and infection. One of interested protein is asparagine 
synthetase, which is key enzyme for asparagine synthesis from aspartic acid. Enough content of asparagine is 
critical for tumor cells (leukemic cell) based on its important function in tumor cells, like inhibition of tumor 
cells apoptosis25. Thus asparaginase is developed as one of the most important chemotherapeutic agents against 
pediatric acute lymphoblastic leukemia. Asparaginase converts asparagine to aspartic acid in the extracellular 
fluid, and thus causes the depletion of extracellular asparagine for leukemic cell, resulting in the reduction of 
asparagine-dependent protein synthesis and ultimately leukemic cell death because most of leukemic cell puta-
tively express low levels of asparagine synthetase or lack the ability to up-regulate the expression of asparagine 
synthetase when exposed to asparaginase25. Group A Streptococcus infection induces the expression of asparagine 
synthetase and increases the production of asparagine, which can be sensed by group A Streptococcus to alter the 
expression of genes and to increase the growth rate of group A Streptococcus26. Similarly, treatment with aspara-
ginase lowers the level of asparagine, resulting in the inhibition of group A Streptococcus growth in medium and 
proliferation in human blood26. Obviously, the functions of metabolic process and binding in the jejunum tissues 
are most severely affected in ETEC induced diarrhea.

Using KEGG pathway analysis, we have shown that the immune responses in the jejunum are affected in 
ETEC induced diarrhea. Further results from immunobloting and RT-PCR suggest that ETEC-induced diar-
rhea inactivates NF-κ B and MAPK pathway and inhibits the intestinal expression of TLRs and other factors 
associated with intestinal immunity. Similarly, Wang et al. has demonstrated that ETEC prevents the activation 
of NF-κ B pathway in vitro9. Mechanically, ETEC can secrete a heat-stable proteinaceous factor, which utilizes 
clathrin-dependent endocytosis to enter host cells, and prevents the polyubiquitination and degradation of the 
NF-κ B inhibitor Iκ Bα , without affecting Iκ Bα  phosphorylation9. However, the LT toxin from ETEC can promote 
the activation of NF-κ B and MAPK pathway10. Thus, the activation of NF-κ B and MAPK pathway in the host 
after ETEC infection depends on the toxins from ETEC. Indeed, in ETEC infected mouse model, the expres-
sion of factors related to intestinal innate immunity, such as the polymeric immunoglobulin receptor (pIgR), 
lysozyme, cryptdin-related sequence (CRS) peptides, and C-type lectins (Reg3g) are down regulated8. It is inter-
esting to know which toxin mediates the inhibition of intestinal innate immunity. Also, it is widely accepted that 
the gut microbiota plays a pivotal role in the establishment of host-pathogen cross-talk, ultimately shaping the 
intestinal immune responses after infection27–29. Thus, the function of intestinal microbiota in ETEC infection 
and ETEC-induced diarrhea merits further investigations.

The 294 differently expressed proteins between diarrheal piglets and recovered piglets were analyzed with 
GO analysis. The most changed molecular functions are structural molecule activity, magnesium ion binding, 
cytoskeletal protein binding, identical protein binding, and actin binding. Among biological processes, protein 
localization, protein transport, establishment of protein localization and translation are the most of influenced 
biological processes. The data are indicate that these molecular functions and biological processes might be impli-
cated in the recovery progression from ETEC induced diarrhea. Magnesium ion has been shown to effect intesti-
nal sodium and chloride absorption, leading to affect the progression of diarrhea30,31.

Summarily, 92 differentially expressed proteins are identified in ETEC-induced diarrhea in piglet model. 
These proteins may be associated with intestinal function of binding, metabolic process and catalytic activity. 
Combined data from proteomics, immunobloting and RT-PCR, we show that ETEC-induced diarrhea inhibits 
intestinal immune responses in the jejunum. The identified proteins in this study with proteomics may provide 
useful clue in the further search in the interaction between host and ETEC.

Materials and Methods
Bacterial strains and antibodies. This study used the Escherichia coli F4-producing strain W25K (hereaf-
ter referred as ETEC; O149:K91, K88ac; LT, STb, EAST), which was originally isolated from a diarrheal piglet18. 
Antibodies against p65 (CST 6956), ERK1/2 (CST 4695), p-ERK1/2 (CST 4370), p38 (CST 8690), and p-p38 
(CST 4511) were purchased from Cell Signaling Technology (Danvers, MA, USA). Antibodies against Actin (Sc-
47778), and PCNA (Sc-56) were purchased from Santa Cruz Biotechnology, Inc. (Dallas, Texas, USA).

ETEC infection of piglets. This study was conducted according to the guidelines of the Institute of 
Subtropical Agriculture, Chinese Academy of Sciences. All experimental protocols were approved by ani-
mal ethical committee of the Institute of Subtropical Agriculture, Chinese Academy of Sciences. Piglets 
([Landrace ×  Yorkshire]; 18-days old;) were purchased from ZhengDa Co., Chongqing, China and orally 



www.nature.com/scientificreports/

7Scientific RepoRts | 6:25640 | DOI: 10.1038/srep25640

inoculated for five consecutive days (day 1 to 5) with ETEC W25K at dosage of 1010 CFUs per day. As a control, 
piglets were orally infected with the same volume of LB medium. Fecal consistency was scored daily as: 0 =   
normal; 1 =  soft; 2 =  runny or watery. Piglets with the development of watery diarrhea were defined as diarrheal 
piglets and scarified at day 2, 3 and 4 when they were alive (n =  6). Piglets in control groups were scarified at day 
2, 3 and 4 (n =  6). Piglets that were recovered from diarrhea were scarified at day 6 and regarded as recovery 
piglets (n =  6). Piglets that were challenged with ETEC but not suffered from diarrhea were scarified at day 6 and 
defined as resistant piglets (n =  6). The intact jejunum samples were collected after the phosphate buffered saline 
(PBS; pH =  7.2–7.4) washing and stored at − 80 °C until processing. Piglets were excluded from resistant group 
for further study if they were negative in vitro villous adhesion assay32,33.

Protein extraction and normalization. Around 400 mg of jejunum tissue was homogenized by crushing 
in liquid nitrogen with the aid of a mortar and pestle. Then 4 ml 10% m/v trichloroacetic acid (TCA) in acetone 
was added to each homogenized sample, and the mixed samples were incubated at − 20 °C for 2 h. The mixtures 
were then centrifuged at 20,000 g for 30 min at 4 °C to remove the supernatant without disturbing the pellets. The 
pellets were suspended in the Lysis buffer (8 M Urea, 30 mM HEPES, 1 mM PMSF, 2 mM EDTA, 10 mM DTT) 
and sonicated in ice for 5 min. 10 mM DTT (final concentration) was used to reduce the proteins at 56 °C for 1 h 
and then 55 mM IAM (final concentration) was used to alkylate in the darkroom for 1 h. The reduced and alky-
lated protein mixtures were precipitated by adding 4 ×  volume of chilled acetone at − 20 °C for overnight. After 
centrifugation at 4 °C, 20,000 g for 30 min, the pellet was dissolved in 0.5 M TEAB (Applied Biosystems, Milan, 
Italy) and sonicated in ice. After centrifuging at 30,000 g at 4 °C, the proteins in the supernatant were collected and 
an aliquot of the supernatant was taken for determination of protein concentration by Bradford method using 
BSA as a standard. Equivalent amounts of protein from each of six different piglets were pooled to generate one 
common sample for each type of tissue. Thus, we obtained 4 pooled protein samples (Diarrheal piglets; Resistant 
piglets, Recovery piglets and Control piglets).

Protein digestion and peptide iTRAQ labeling. 100 μ g of the pooled protein samples were digested 
with Trypsin Gold (Promega, Madison, WI, USA) (protein:trypsin =  30:1) at 37 °C for 24 h. After the digestion 
with trypsin, peptides were dried by vacuum centrifugation. The dried peptides were dissolved in 0.5 M TEAB 
and processed according to the manufacturer’s protocol for 8-plex iTRAQ (Applied Biosystems). Briefly, one unit 
of iTRAQ reagent was thawed and reconstituted in isopropanol. Peptides were then labeled individually with 
iTRAQ tags as follows: diarrheal piglets-113; recovery piglets-114; control piglets-115 and resistant piglets-116. 
Following incubation for 2 h at room temperature with the iTRAQ reagent, the labeled peptide mixtures were 
then pooled and dried by vacuum centrifugation.

SCX and RP nanoLC-MS/MS Analysis of Labeled Peptide. The labeled peptides were fraction-
ated using an HPLC system (Shimadzu, Kyoto, Japan) connected to an SCX column (Luna 5u column, 
4.6 mm ×  250 mm, 5 μ m, 100 Å; Phenomenex, Torrence, CA). The labeled peptides were eluted using buffer A 
(10 mM KH2PO4 in an aqueous solution of 25% acetonitrile and acidified to a pH of 3.0 with H3PO4). A total 
of 16 fractions were collected with flow rate at 1 ml/min with buffer B (buffer A with 2 M KCl) as following: 
0~30 min 100% buffer A; 31~46 min 5–30% buffer B; 46~51 min 30–50% buffer B, 51–56 min 50% buffer B; 
56–61 min increasing to 100% buffer B. The fractions were desalted with a Strata X C18 column (Phenomenex) 
and vacuum-dried.

Then, 50 μ l of 0.1% FA was added to each dried fraction tube, and 0.1 μ l of the re-dissolved solution was spot-
ted on the target well of an Anchor-chip plate for MALDI-TOF testing. After the MALDI-TOF (Bruker Daltonics, 
Germany) testing, the peptides in the tubes with few peaks were pooled, resulting in 10-pooled SCX-separated 
fractions. Each SCX fraction was loaded 1 times on a Nano HPLC system (Ultimate3000, Dionex) mounted 
with a 10 cm reversed phase C18 column (ID 75 mm, 5um particles, 300 A° aperture, 10 cm) and separated over 
a 65 min acetonitrile gradient from 5–80% in 0.1% FA combined with a Q Exactive mass spectrometer (Thermo 
Fisher Scientific, MA, USA). The data were acquired using a data-dependent data acquisition mode in which, for 
each cycle, the 20 most abundant multiply charged peptides (2+  to 4+ ) with an m/z between 350 and 2000 were 
selected for MS/MS with the 15-s dynamic exclusion setting.

Database Analysis and protein Quantification. Proteome Discoverer 1.3 (Thermo Fisher Scientific, 
Waltham, MA) was used to convert the raw files to MGF format. The exported MGF files were searched by Mascot 
2.3.0 (Matrix Science, Boston, MA) to simultaneously identify and quantify proteins. The database of uniprot_pig 
(5/2013, 241950 sequences) was downloaded and integrated into the Mascot search engine version 2.3.0 by its 
database maintenance unit. All parameters were set as follows: i) trypsin was chosen as the enzyme with one 
missed cleavage allowed; ii) the fixed modifications of carbamidomethylation were set as Cys; iii) iTRAQ 8-plex 
on the N-terminal residue, iTRAQ 8-plex on tyrosine (Y), iTRAQ 8-plex on lysine (K), Gln-Pyro-Glu (N-term Q) 
and oxidation on methionine (M) as the variable modification; iv) the precursor mass tolerance was set to 15 ppm 
for precursor ions and 20 mmu for fragment ions; v) the number of distinct peptides assigned for each protein 
given as “unique” and “peptides”; the coverage of each protein assigned given as “coverage”. The quantification 
measurement for each peptide and protein was illustrated as the ratio of diseased sample to normal control one, 
showing as “Diarrheal piglets/Recovery piglets, Diarrheal piglets/Control piglets; Diarrheal piglets/Resistant pig-
lets; Recovery piglets/ Control piglets; Recovery piglets/ Resistant piglets and Resistant piglets/ Control piglets”.

The prerequisites to acquire the significant changed proteins between two groups were set up as following 
according to previous publication16. First, a qualified protein for quantitative analysis should have at least one 
unique peptide labeled with iTRAQ. Second, false discovery rate (FDR) <1% was adopted for all the peptides. 
Third, the median of unique peptides was used as analysis method for protein ratio type, correction of isotope 
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impurities and normalization of intensity median was considered for judging the differential proteome. The pro-
teins whose p value <  0.05 were considered the believable proteins. Finally, the proteins with 1.2-fold change 
(>1.20 increased or < 0.83 decreased) between two groups were considered as the differential expressed ones and 
the fold changes in protein abundance were defined as the median ratio of all significantly matched spectra with 
tag signals.

Bioinformatics Analysis. Functional annotations of differentially expressed proteins were conducted using 
the gene ontology (GO) annotation software. For the pathway analysis, KOBAS was used to get protein that iden-
tified KO annotations and pathway identify. The Fisher Exactly test was used for the pathway enrichment. And 
the pathway with p-value <  0.05 was listed.

RT-PCR. Total RNA was isolated from liquid nitrogen frozen and ground jejunum using TRIZOL regent 
(Invitrogen, USA) and then treated with DNase I (Invitrogen, USA) according to the manufacturer’s instructions. 
Synthesis of the first strand (cDNA) was performed with oligo (dT) 20 and Superscript II reverse transcriptase 
(Invitrogen, USA). Primers (Supplementary file 1) were selected according to previous references. β-actin was 
used as an internal control to normalize target gene transcript levels. Real-time PCR was performed according to 
our previous studies34,35.

Immunoblotting. Western blot analysis was conducted according to previous studies34,35. Equal amounts of 
proteins obtained from jejunum cytoplasmic or nuclear fractions were separated by SDS-PAGE, transferred to 
PVDF membranes (Millipore, MA, USA), and blocked with 5% non-fat milk in Tris-Tween buffered saline buffer 
(20 mM Tris, pH 7.5, 150 mM NaCl, 0.1% Tween-20) for 3 h. Primary antibodies were incubated overnight at 
4 °C and HRP-conjugated secondary antibodies were incubated for 1 h at room temperature before analysis using 
Alpha Imager 2200 software (Alpha Innotech Corporation, CA, USA). Signal intensity was digitally quantified 
and normalized to actin or proliferating cell nuclear antigen (PCNA) protein abundance.

Statistical analyses. Data are expressed as means ±  the standard error of the mean (SEM). All statistical 
analyses for data were performed using SPSS 16.0 software (Chicago, IL, USA). Data between two groups were 
analyzed by the independent samples t-test, while among group analyses was by the One-Way ANOVA method. 
Differences of p <  0.05 are considered significant.
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