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Abstract
While increased obesity prevalence among persons of African ancestry (AAs) compared to persons of European ancestry (EAs) is
linked to social, environmental and behavioral factors, there are no gene variants that are common and significantly associated with
obesity in AA populations. We sought to explore the association between ancestry specific renal risk variants in the apolipoprotein L1
(APOL1) gene with obesity related traits in AAs.
We conducted a genotype–phenotype association study from 3 electronic medical record linked cohorts (BioMe Biobank, BioVU,

nuGENE); randomized controlled trials (genetic testing to understand and address renal disease disparities) and prospective cohort
study (Jackson Heart Study). We analyzed association ofAPOL1 renal risk variants with cross-sectional measures of obesity (average
body mass index (BMI), and proportion of overweight and obesity) and with measures of body composition (in Jackson Heart Study).
We had data on 11,930 self-reported AA adults. Across cohorts, mean age was from 42 to 49years and percentage female from

58% to 75.3%. Individuals who have 2 APOL1 risk alleles (14% of AAs) have 30% higher obesity odds compared to others (recessive
model adjusted odds ratio 1.30; 95% confidence interval 1.16–1.41; P=2.75� 10�6). An additive model better fit the association, in
which each allele (47% of AAs) increases obesity odds by 1.13-fold (adjusted odds ratio 1.13; 95% confidence interval 1.07–1.19;
P=3.07 � 10�6) and increases BMI by 0.36kg/m2 (∼1kg, for 1.7 m height; P=2 � 10�4). APOL1 alleles are not associated with
refined body composition traits overall but are significantly associated with fat free mass index in women [0.30kg/m2 increment per
allele; P= .03].
Thus, renal risk variants in the APOL1 gene, found in nearly half of AAs, are associated with BMI and obesity in an additive manner.

These variants could, either on their own or interacting with environmental factors, explain a proportion of ethnic disparities in obesity.
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Abbreviations: AA = African Americans, aOR = adjusted odds ratio, APOL1 = apolipoprotein L1, BMI = body mass index, CI =
confidence interval, CKD = chronic kidney disease, EA = European American, EHR = electronic health records, FFM = Fat free mass
index, GUARDD = genetic testing to understand and address renal disease disparities, RCT = randomized controlled trial.
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1. Introduction

In the US, beginning in the 1960’s an upward trend in obesity
occurred in adults of all major demographic groups.[1] The slope
of these trends over the following 5 decades has been remarkably
consistent across racial and gender groups, although blacks
started at a higher baseline level and have continued to have a
prevalence one third greater than among whites. Obesity and its
adverse health consequences are now established as world-wide
epidemics.[2–8] Obesity therefore represents a “common source”
epidemic where exposure is widespread and the outcome is
mediated by social, environmental, lifestyle and biological/
genomic factors.[9–11] Twin and family studies estimate that
40% to 70% of obesity risk is heritable.[12] Large-scale genome-
wide association studies have been performed in predominantly
European American (EA) populations.[13–20] The majority of
genetic variants associated with body mass index (BMI) and
obesity in EA populations transfer to African Americans (AA)
populations, however, some variants have been reported to be
ancestry-specific, including African-derived variants,[21,22] em-
phasizing the importance of performing genomic studies in
underrepresented ancestry groups. One rare genetic variant,
rs80068415 in SEMA4D present in <1% of AAs and few, if any
EAs, has been associated with increased obesity risk.[22] To date,
no African-specific common variants have been significantly
associated with increased BMI or obesity.
Apolipoprotein L1 (APOL1) risk variants are an example of an

ancestry-specific genetic polymorphism associated with chronic
disease burden. They confer resistance to lethal Trypanosoma
brucei infections in sub-Saharan Africa, and thus are very
common in AA individuals due to natural selection, but nearly
nonexistent in other populations (14% in AA people with 2 risk
variants, 47% in AAs with at least 1 variant and 0% to 0.01% in
EAs).[23,24] Two distinct variants in the last exon of APOL1
confer substantially increased risk and faster rates of progression
of chronic kidney disease (CKD) in AAs, and explain a large
proportion of the well-known AA–EA disparities in end stage
renal disease. They have also been associated with other complex
diseases, such as cardiovascular disease, earlier onset of
hypertension and higher systolic blood pressure.[25,26] They
confer resistance to lethal T brucei infections in sub-Saharan
Africa, and thus are very common in AA individuals due to
natural selection, but nearly nonexistent in other populations
(14% in AA people with 2 risk variants, 47% in AAs with at least
1 variant and 0%–0.01% in EAs).[23,24]

A community–clinical–academic partnership[27] is conducting
the Genetic Testing to Understand and Address Renal Disease
Disparities (GUARDD) study, a randomized controlled trial
(RCT) of the impact testing AA adults with hypertension for
APOL1 variants within the Implementing GeNomics In PracTicE
Network. The GUARDD team decided to assess the association
of APOL1 renal risk variants with obesity among recruited
patients, as bothAPOL1 variants and obesity are prevalent in the
study population.[28] After finding an initial association with
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obesity, we sought to determine the strength of this association in
other AA populations in clinical trial and longitudinal study
cohorts, in electronic health records (EHR)-linked biobanks, in
rural and urban populations seen in both academic and
community settings, and among persons residing in several US
regions, as well as to study its association with body composition.
2. Methods

2.1. Study design and cohorts

We conducted a cross-sectional genetic association study among
self-reported AA adults (>18 years). The discovery cohorts
consisted of 1227 participants in GUARDD (N=1277, age 18–
70years, with hypertension but without kidney disease) who
receive care at one of 15 clinical sites throughout New York
City,[28] and participants (N=3835) who enrolled in the EHR-
linked BioMe Biobank at the Icahn School of Medicine at Mount
Sinai before 2012. The internal replication cohort included an
additional 1544 BioMe participants who enrolled after 2012.
External replication cohorts consisted of 1809 participants in the
Vanderbilt University Medical Center BioVU Biobank, 567
participants in the Northwestern University NUgene Biobank,[29]

and 3210 participants in the Jackson Heart Study.[30] No cohort,
except for GUARDD (age < 75years) and Jackson Heart Study
(age < 84years), had restrictions on comorbidities for inclusion,
or upper age limits. We had institutional review board approval
from all participating sites. BioMe, Vanderbilt and BioVU are
part of the eMERGE network and data is available in dbGAP
under accession ID phs000888.v1.p1. Data for the GUARDD
study will be available by request from the GUARDD DSMB.
Data for JHS is available after completion of a manuscript
submission proposal from JHS.
2.2. Genotyping

We genotyped BioMe and GUARDD cohorts using a clinical
genetic test to determine APOL1 ancestral (G0), G1, and G2
variant status,[26,31] BioVU andNUgene cohorts using a standard
genotyping array (with imputation of APOL1 variant status),
and the JHS cohort by exome sequencing.[32]
2.3. Outcomes and covariates

All sites obtained age and sex through questionnaires or EHR
extractions, measured height and weight using standard
procedures, calculated BMI (weight divided by height2 [kg/m2])
and removed BMI values within 9months of a pregnancy. We
calculated the estimated glomerular filtration rates from serum
creatinine value using the CKD Epidemiology Collaboration
study equation.[33] For the EHR cohorts we extracted time-
stamped International Classification of Diseases-10-Clinical
Modification codes for comorbidities, and laboratory values
from EHR entries.
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Although BMI is a generally good indicator of adiposity and
disease risk, it does not distinguish between lean and fat body
mass. The Jackson Heart Study had additional measures of
adiposity and fat distribution and we thus performed association
analyses with these more refined measures. These included body
fat percentage, fat free mass (using bioelectrical impedance
analysis and calculating relative lean mass with the fat free mass
index – FFM/height2), and body fat distribution (with measured
waist and hip circumference, calculated waist-to-hip ratio, and
visceral adipose tissue and subcutaneous adipose using comput-
erized tomography).[34]
2.4. Statistical analyses

Informed by the widely reported associations between APOL1
risk variants and kidney disease evident only in a recessive model,
we first tested a recessive model, comparing individuals with 2
high-risk G1/G2 variants (APOL1 risk homozygotes) versus
those carrying 1 (APOL1 risk heterozygotes) or 0 high-risk
variants (see Table S1, Supplemental Digital Content, http://links.
lww.com/MD2/A644 which shows differences in characteristics
by risk allele). We tested association with BMI as a continuous
outcome using linear regression, andwith overweight and obesity
as categorical outcomes using logistic regression (overweight,
BMI ≥ 25kg/m2; obese, BMI ≥ 30kg/m2). We then further
classified obesity as severe (BMI>35kg/m2) or extreme (BMI>
40kg/m2). The control groupwas considered to be normal weight
(18kg/m2 ≥ BMI<25kg/m2).
We adjusted all association analyses for age, sex, and percent

African ancestry (assessed using ADMIXTURE with 2 founding
populations [k=2]) and fivefold cross-validations (available for
all but the discovery cohort). We tested for interactions with age
and sex by including their product term in the model. If
interactions were significant, we repeated linear regression
analyses in age/sex strata. After performing all analyses in each
cohort, separately, we combined all cohorts using random effect
meta-analysis.
Sincemore refinedmeasures of adiposity were available in JHS,

we tested association of APOL1 risk variants with these traits
using linear regression after adjusting for age and sex.
When studied phenotypes were correlated, we established a

heuristic study-wide significance at P� .01 because we consid-
ered Bonferroni correction too punitive. We performed all
analyses with R version 3.0.3, STATA 10.1 (College Station, TX)
and SAS 9.4 (SAS Institute, Cary NC).
3. Results

3.1. Baseline characteristics of cohorts

We had data on 11,930 AA individuals across cohorts with mean
age from 42 to 49years and percentage female from 58% to
75.3%. All cohorts had well-preserved renal function at baseline
with glomerular filtration rates from 78.4 to 85.8mL/min (see
Figure S1, Supplemental Digital Content, http://links.lww.com/
MD2/A645 which illustrates the APOL1 risk allele).
3.2. Association of APOL1 risk variants with body mass
index, overweight and obesity status

Our meta-analysis showed that persons with 2 APOL1 risk
variants were 1.3 times more likely to be obese than others
3

(recessive model adjusted odds ratio [aOR] 1.30; 95% confidence
interval [CI] 1.16–1.41; P=2.75�10�6). Assuming additive
inheritance, we found that each risk variant increased the odds of
obesity by 1.13-fold (aOR 1.13; 95% CI 1.07–1.19; P=3.07�
10�6) (Fig. 1), suggesting that the additive model better captured
the association.
Severity of obesity did not strengthen the association; that is,

association with severe obesity that is, BMI>35kg/m2 (aOR:
1.14/variant; 95% CI 1.07–1.22; P< .01) and extreme obesity
that is, BMI>40kg/m2 (aOR 1.12/variant; 95% CI 1.03–1.22;
P< .01) was similar to aOR for all obesity (BMI≥30kg/m2),
whereas the association with overweight was less pronounced
(aOR 1.07/variant; 95% CI 1.00–1.15; P= .03) (Fig. 2).
Analysis of BMI revealed that homozygous carriers had a 0.58

kg/m2 (equivalent to ∼1.7kg for a person 1.7 m tall) higher BMI
than others (P=10�3). Assuming an additive mode, each risk
variant increased BMI by 0.36kg/m2 (equivalent to ∼1kg, for
person of 1.7 m tall; P=2�10�4) (Fig. 3).

3.3. Associations with obesity traits stratified by sex

The association ofAPOL1 risk variants with obesity risk was the
same in women and men (women: aOR 1.13; men: aOR 1.15).
However, the association with overweight (aOR 1.12) and with
BMI (0.43kg/m2/variant) was only significant in women
(Pinteraction< .05) (Table 1).
3.4. Associations with refined body composition traits

APOL1 variants were not associated with any of the refined body
composition traits under an additive model in men and women
combined (Table 2). On stratification by sex, each copy of the
APOL1 variants was significantly associated with FFM in
women (increment of 0.30 perAPOL1 risk variant; P=0.03), but
not in men (change of 0.22) (Pinteraction< .05). There was no
association of APOL1 variants with any other body composition
traits, either crude, or BMI adjusted, overall or when stratified by
sex.
4. Discussion

Our meta-analysis of 5 cohorts including 11,930 adults of
African ancestry demonstrates that APOL1 risk variants are
strongly and robustly associated with BMI and obesity. This
association best fit an additive model; that is, each additional risk
variant increases BMI and risk of obesity, which is unlike their
association with CKD progression for which a recessive model
fits better,[35] although the association persists under a recessive
model as well. We also found that the association with
overweight status is only seen in women but not men, while
the association with obesity does not show sexual dimorphism.
Finally, we show that APOL1 risk variants are associated with
FFM in women, but not in men, while there is no association with
any other adiposity traits.
The observed association between obesity and APOL1G1/G2

risk genotype is as large and prevalent as the association of
obesity and FTO variation.[36] As we initially hypothesized, when
examining the recessive model known to be associated with CKD
progression, we discovered that presence of 2 high risk APOL1
risk variants is strongly and robustly associated with BMI
(adjusted increment of 0.69kg/m2) and obesity (adjusted OR of
1.32; P= .02). However, in contrast to CKD progression where

http://links.lww.com/MD2/A644
http://links.lww.com/MD2/A644
http://links.lww.com/MD2/A645
http://links.lww.com/MD2/A645
http://www.md-journal.com


Figure 1. Association of APOL1 risk variants with obesity status under a (A) recessive and (b) additive model. APOL1 = apolipoprotein L1, GUARDD = genetic
testing to understand and address renal disease disparities.

Figure 2. Association of APOL1 risk variants with overweight status under a (A) recessive and (b) additive model. APOL1 = apolipoprotein L1, GUARDD = genetic
testing to understand and address renal disease disparities.
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Figure 3. Association of APOL1 risk variants with body mass index under a (A) recessive and (b) additive model. APOL1 = apolipoprotein L1, GUARDD = genetic
testing to understand and address renal disease disparities.
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the APOL1 risk is recessive, we also found that the association
with obesity seems to follow an additive mode l – having only 1
high riskAPOL1 variant, which is the case for about half of AAs,
is associated with a higher odds of obesity (adjusted OR of 1.13).
Although other obesity-associated African-derived variants
have been discovered, including SEMA4D, the minor variant
frequencies have been extremely low, from 0.0058 to 0.0086 and
these variants thus are unlikely to account for a large proportion
of ethnic differences in obesity.[22]

The ancestry specific APOL1 variants analyzed here have
significant BMI effect size and high prevalence in AAs. Until now,
the principal associations of APOL1 risk variants had been with
kidney disease, where homozygosity is associated with CKD
progression and end stage renal disease.[35] Although BMI-
related traits and kidney disease are correlated,[37] the association
of heterozygous APOL1 variants with obesity-related traits may
represent true pleiotropy of APOL1 risk variants and indicate
that their impact on ancestry-related disparities may extend
beyond renal phenotypes.
Table 1

Associations of APOL1 risk variants with body mass index, overweig

All

Body mass index 0.58 (0.41)
Overweight 1.12 (1.00–1.27)
Obese 1.13 (1.07–1.19)

Adjusted for age and percentage of African ancestry.
APOL1 = apolipoprotein L1, aOR = adjusted odds ratio, CI = confidence interval.

5

As stated, APOL1’s association with BMI and obesity is one
of the strongest genetic associations discovered for these
traits.[36,21,22] With a significant minority of AAs (14%) having
2 APOL1 risk variants and nearly half (40%–47%) having at
least 1 risk variant, these variants could explain some of the
differences in BMI traits between AAs and EAs. It is important to
note that this association neither contradicts nor minimizes the
known social determinants of racial disparities in obesity,
including access to healthy food, economic disparities, poverty
and stress.[9–11] Additional research is needed to explore the
interactions of APOL1 risk variants with clinical, behavioral and
environmental factors that also contribute to obesity in AAs, as
race is a social construct, but ancestry has biological under-
pinnings.
APOL1 has not been associated previously with obesity or

related traits, perhaps because APOL1 risk variants are not
represented on standard genotyping arrays; the initial associa-
tions with kidney disease were in fact a result of admixture
mapping in a small sample, showing a peak of African ancestry
ht and obesity stratified by sex under an additive model.

Beta/aOR (SE/95% CI)

Female Male

0.43 (0.27) 0.22 (0.27)
1.12 (1.02–1.22) 1.01 (0.91–1.12)
1.13 (1.05–1.20) 1.15 (1.05–1.26)

http://www.md-journal.com


Table 2

Association of APOL1 risk variants with adiposity measures under an additive model stratified by sex.

All
∗

Female† Male†

Mean (SE) Mean (SE) Mean (SE)

Waist/hip ratio 0.001 (0.004) 0 (0.005) 0.003 (0.005)
Waist/hip ratio (BMI adjusted) 0 (0.004) �0.000005 (0.005) 0.002 (0.005)
Visceral adipose tissue 19.3 (24.5) 10.7 (15.1) 33.7 (43.8)
Visceral adipose tissue (BMI adjusted) 8.5 (22.2) �0.64 (25.8) 23.8 (40)
Subcutaneous adipose tissue 54.7 (59.6) 41.7 (79.6) 77.3 (86.6)
Subcutaneous adipose tissue (BMI adjusted) 0.36 (38.7) �16.7 (52) 29.4 (55.3)
Percentage of body fat 0.27 (0.40) 0.14 (0.48) 0.48 (0.72)
Fat free mass index 0.27 (0.15) 0.30 (0.19) 0.22 (0.24)

APOL1 = apolipoprotein L1, BMI = body mass index.
∗
Adjusted for age, sex.

† Adjusted for age.
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spanning the APOL1 locus in association with nondiabetic end
stage renal disease.[23,38] Following this initial report some
studies have considered only a recessive model, and have adjusted
for BMI/obesity when assessing association between APOL1 risk
variants and kidney disease. In light of our results, caution is
warranted when adjusting for BMI/obesity as a confounder in
association testing with APOL1 risk. This also points towards
the importance of including more diverse populations in genomic
research; ethnic minorities have been traditionally underrepre-
sented in genome wide association studies.[39]

We also show an interaction with sex in the association of
APOL1 risk variants with BMI. Such an interaction has
previously been observed at multiple GWAS loci for BMI and
adiposity traits.[40] While association between the risk variants
and BMI was limited to women, the association with obesity
extended to both sexes, perhaps reflecting a threshold effect. We
did not find an association between any regional adiposity trait
and APOL1 risk variants. Association of these variants with fat
free mass in women could in fact reflect a contribution to BMI
through increased nonadipose tissue, including muscle mass,
suggesting the need for mechanistic studies. Our limited sample
size (JHS only) with extensive body composition measures
argues, in addition, for an expansion of deep body composition
phenotyping in human cohorts.
Strengths of our study include this being largest cohort of AAs

with and without APOL1 risk variants analyzed, data from a
variety of sources including EHR based cohorts, RCTs and
observational cohort studies, and analysis of refined measures of
body composition in 1 observational cohort study. However, the
results should be interpreted in the light of some limitations. We
used self-reported AA race leading to a possibility of selection
bias, however associations remained significant even after
correcting for principal components which was available for
over 70% of our pooled cohort. There might be limited
generalizability due to the EHR based nature of some cohorts;
however, the associations remained robust in both RCT and
traditional observational cohort studies. And, since we only had
refined measures of adiposity in one of the cohorts; a larger
sample may uncover other associations.
In conclusion, we demonstrate a statistically strong and

quantitatively substantial association of BMI and obesity with
APOL1 risk variants, which are present in nearly half of persons
with African ancestry. These risk variants account for a nontrivial
contribution to disparities in obesity between AA and EA. It will
be important to assess the impact of sharing this information with
6

patients and clinicians, and to study the role of APOL1 gene–
environment interactions in obesity.
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