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ARTICLE INFO ABSTRACT

Restricted mean survival time is an alternative measure of treatment effect to hazard ratio in clinical trials with
time-to-event outcome. The current methods have been focused on one-stage designs. In this article, we propose
optimal two-stage designs for a single-arm study with the smallest expected sample size. We compare the perfor-
mance of the new optimal two-stage designs with the existing one-stage design with regards to the expected sam-
ple size and the expected total study length. The simulation results indicate that the new two-stage designs can
save the expected sample size substantially as compared to the one-stage design. We use a non-small cell lung
cancer trial to illustrate the application of the proposed designs. The proposed optimal two-stage designs are rec-
ommended for use when time for patient accrual is longer than the pre-specified follow-up time.
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1. Introduction

Restricted mean survival time (RMST) is an alternative measure of
treatment effect to hazard ratio (HR) for a study with time-to-event
data [1-3]. RMST is calculated as the area under the survival curve
from time O to a pre-specified time 7 (e.g., 1-year) [4]. Thus, it can be
interpreted as the expected survival time for a patient being followed
up to 7 [5,6]. Although HR is traditionally used in designing clinical tri-
als, its statistical inference depends on the assumption of proportional
hazards over time. It was reported that almost 25% of cancer studies
did not meet the proportional hazards assumption [7], but the HR-
based models were still used in data analysis. In early phase cancer clin-
ical trials with survival outcome as the primary endpoint, treatment ef-
fects are often compared by using the survival rates at the pre-specified
time. The survival rate at 7 provides information at that particular time,
while RMST captures the survival information from baseline to z with a
better and comprehensive understanding of the treatment effect on av-
erage survival.

Recently, Trinquart et al. [7] compared statistical inferences using
HR and the difference of RMST with 54 randomized cancer clinical tri-
als selected from five leading oncology journals. They found that both
measures generally agree with each other with regards to the group dif-
ference using HR or RMST [8,9]. They also reported that the computed
HR is often larger than the ratio of RMST from those cancer studies.
Later, Huang and Kuan [10] used simulation studies to compare the
performance of the HR-based inference and the RSMT test [11]. Their
simulation results indicated that the log-rank test is generally more
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powerful than the RSMT test when the proportional hazard assumption
is satisfied [8,12]. However, when that assumption is not met, the
RSMT test is preferable.

In early phase cancer clinical trials, single-arm studies are widely
used to quickly investigate the activity of a new treatment as compared
to the treatment effect estimated from historical data. Current designs
based on RMST have been focused on one-stage designs (e.g., the R
package ssrmst) [1,4,13,14]. In the case when a new treatment under
investigation is not as effective as expected, a study should be allowed
for futility stopping earlier. Therefore, there is a need to develop new
optimal single-arm two-stage designs based on RMST to investigate the
activity of a new treatment. The new two-stage designs in this article
are based on the same criteria as Simon's two-stage designs for binary
outcome [15-21], having the smallest expected sample size under the
null hypothesis [22-24]. In a two-stage design, investigators could tem-
porarily suspend the patient enrollment after the enrollment of the last
patient at the first stage, and wait for time 7 to observe the time-to-
event outcome of each participant. A two-stage design without interim
accrual could be used when 7 is short. Alternatively, investigators may
consider the optimal two-stage designs with interim accrual to save
study time [9,15,25].

The rest of the article is organized as follows. In Section 2, we pro-
vide the detailed steps to compute sample sizes for optimal two-stage
designs based on RMST. In Section 3, we compare the performance of
the existing one-stage design with the proposed two-stage designs with
regards to the expected sample size and the expected total study length.
Then, a non-small cell lung cancer trial is used as historical data to cal-
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Fig. 1. The ESS and the ETSL of the proposed two-stage designs as compared to the one-stage design, when y (r = 12) = 0.57 = 6 months and the alternative
expected survival months (0.607 (top), 0.657 (middle), and 0.707 (bottom).

culate sample size for optimal two-stage designs. Lastly, we provide Hy : p(z) < pgy(r) against H, : p (1) >pqg (1),

some comments in Section 4.
where the statistical power of a study is computed at u; (7).

2. Methods For a study with N participants, we assume that they are uniformly
enrolled during the accrual time [0, T,,], where 7, = N/, and @ is the pa-
When the patient accrual time 7, is relatively longer than the re- tient accrual rate. Let E; and C; be the event time and the right censor-
stricted follow time (z), a two-stage design can potentially save sample ing time for the i-th participant, respectively, where i = 1,2,---, and N.
sizes and costs as compared to the one-stage design. Let u(7) be the The censoring data are A; = I (E; < ;).
RMST with the pre-specified follow-up time of z. In this article, we pro- For a one-stage design, a study is ended when all participants are be-
pose developing new optimal two-stage designs based on RMST in a sin- ing followed by z. Upon the completion of the study with the total study
gle-arm study setting. Suppose the estimated RMST from previous stud- time of 7, =T, +7, the observed time for the i-th participant is:
ies is yo (), and a new treatment is expected to have a larger RMST as 0; = min (E;, ;). It follows that the RMST 4 (7) after the completion of a
uy (r), where u; (t) >puq (). Then, the hypotheses to test the effective- study can be estimated as:

ness of a new treatment are presented as
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Fig. 2. The MPSS of the optimal two-stage designs and the MPSS of the mini-

max two-stage designs for the 9 configurations in Fig. 1 when
Ho (z = 12) = 0.57 = 6 months.
T/\
()= / S(r)dt, 1
0

where S () is the Kaplan-Meier (KM) estimator [26] for the survival
function of T based on the observed data {(0;.A,),i=1,2,---,and N}.
The 7i (r) can be computed by using the survRM?2 package from the sta-
tistical software R [27]. Specifically, the rmst_1 function is used from
the survRM?2 package for a single-arm study. The developed R software
program is available per request from the author.

For a two-stage design, we propose two commonly used optimal de-
signs which control for the type I error and power:

(1) the optimal two-stage design with the smallest expected sample
size (ESS) under the null hypothesis;

(2) the minimax two-stage design having the smallest ESS among the
ones with the smallest maximum possible sample size (MPSS).

These two optimal designs are commonly utilized in cancer clinical
trials, and often known as the optimal design and the minimax design,
respectively. For a study with time-to-event endpoint, the outcome is a
long-term measure. Optimal two-stage designs with interim accrual
which could significantly reduce study time. Meanwhile, designs with-
out interim accrual are able to observe the time-to-event outcome of all
participants at the interim analysis.

When the first stage time 7 is too short (e.g., T1<7), the computed
area under the survival curve is from 0 to 77, not from O to z. Then, that
RMST estimator from the first stage can not be considered as an estima-
tor for RMST in Equation (1). Therefore, the first stage time 7| must be
longer than 7, such as 1.1¢.

For a study with N, patients in the first stage, the total time in the
first stage is N, /6 + 7 for a study without interim accrual, and its RMST
at the first stage is estimated as

iy (1) = /O S,

where S (¢) is the Kaplan-Meier estimator for the survival function of T
based on {(0;,4;).i=1,2,---,and N, }.

For a study with interim accrual, participants enrolled close to T
may be censored due to a short follow-up time. Suppose ?; is the enter-
ing time of the i-th participant. Then, the observed time for the i-th par-
ticipant is 0% = min (E;, C;, max (0,7, — v;)), and the censoring outcome
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is AP =1 (E; < C,) I (E; +v; < T). Then, its RMST at the first stage for a
T
~b
study with interim accrual is estimated as / S, (t)dt, where S’l’ (1) is the
0

KM estimator for the survival function of T based on
{(00.AY),i=1.2,---,and N, }.

To compute the required sample size for a study with design para-
meters (z, 4o (7), 4 (1), a, f, and k), the very first step is to determine
the scale parameters of the Weibull distribution, where « is the shape
parameter of the Weibull distribution. The scale parameter of the
Weibull distribution under the null hypothesis, 4, can be determined
by solving the equation Ji(r) = uy(r) in a one-stage design setting,
where S (¢) in the i (r) follows the Weibull distribution with the shape
parameter of x and the scale parameter 4. Similarly, the scale parame-
ter under the alternative hypothesis 4, is solved from the equation
H(7) = py (7).

For a one-stage optimal design, data are simulated from the Weibull
distributions with « as the shape parameter, and 4( and 4, as scale para-
meters. For each simulated data, we use the survRM?2 package to calcu-
late 7i (r) which is based on the KM estimator, and /i (r) is used as the
test statistic for type I error and power calculation. The (1-a) upper
quantile of all the test statistics from the null data is the threshold to
control for the type I error. Power is then computed as the proportion of
data under the alternative distribution whose test statistics are above
that threshold. The optimal one-stage design is defined as the one with
the smallest N and the estimated power above 1 — . Suppose N, is the
required sample size for a one-stage design.

We search for optimal two-stage designs with the MPSS N from
0.9N,,, to 1.2N,,.. In practice, the sample size boundaries should be
adjusted when an optimal two-stage design is identified near the
boundary of the sample size space. For a given N, the lower bound of
the first stage sample size N is set as 1.176, where the constant 1.1 is
added to make sure at least 10% participants being followed by 7. The
upper bound of N, is set as N — 1. For each given N, and N, the test sta-
tistics %, (r) for the first stage and 7 (z) for both stages combined, are
computed under the null and alternative hypotheses. The type I error
rate is calculated as

TIE (ry,r) = P (7, (v) > ry and fi (z) > r|Hy) .

where 7 and r are the thresholds for the first stage and both stages com-
bined, respectively. We use the range of 7, (r) for the possible | values
(uniformly distributed), and a similar approach is used to choose the r
values from the computed 7 (r) values. For any set of (rj,r) with
TIE (rl, r) <a, we compute power of a two-stage design as:

Power (ry,r) =P (fi; (r) 2 ryand i (z) > r|H,) .

If the computed power is above the nominal level (1-4), its associ-
ated sample sizes and threshold values (N;, N, |, r) are saved as a candi-
date for the desired optimal design. The ESS under the null hypothesis
is computed as

ESS =N, +(1 - PET) (N —N,),

where PET = P (ji; (r)<r||H,) is the probability of early termination
(PET) at the first stage due to futility. The ETSL for a study with interim
accrual is calculated as

N, N =N,
ETSL = —= + (1 - PET) 7)) @
and the ETSL for a study without interim accrual is

ETSL = <%+r>+(1—PET)<¥+T>. 3
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Fig. 3. The ESS and the ETSL of the proposed two-stage designs as compared to the one-stage design, when i (7 = 12) = 0.27 = 2.4 months and the alternative

expected survival months (0.307 (top), 0.357 (middle), and 0.407 (bottom).

It should be noted that the PETs in Equation (2) and Equation (3) are
computed using different 7, (z) distributions. The ESS and the ETSL are
highly correlated: a study with a large ESS often has a long ETSL. When
the PET is high, the computed ESS is close to the first stage sample size
and the ETSL is close to 7| for the first stage.

3. Results

We compare the performance of the one-stage design and the two-
stage optimal designs with regards to the ESS and the ETSL under the
null hypothesis. The considered RMST values under the null hypothesis
are: Uy (r) = 0.27, 0.5, and 0.7z, where the restricted follow-up time ¢
is set as 12 months. The difference between #; (7) and p¢ () is 0.10z,
0.157, and 0.20z. The shape parameter of the Weibull distribution is as-
sumed to be the same under the null and the alternative hypotheses,

with the values of k¥ =0.5, 1, and 1.25. The exponential distribution is a
special case of the Weibull distribution with x = 1. The type I error rate
is set as ¢ = (.05, and the nominal level of power is 80% (# = 0.2). Since
the null hypothesis is rejected for a large RMST value, it is a one-sided
test with ¢ = 0.05.

We use Monte Carlo simulation studies to generate random samples
to identify the designs that meet both the type I error and power re-
quirements as described in the Methods section. Fig. 1 shows the one-
stage design and the two-stage designs when the RMST is
Ho (12) = 0.57 = 6 months. The required one-stage sample sizes decrease
as the shape parameter of the Weibull distribution « increases. The ESS
of two-stage optimal designs is much smaller than the sample size of the
one-stage design, with savings from 24% to 32% having the average
saving of 29%. The ESS of the minimax two-stage design is between the
optimal two-stage design and the one-stage design, and it saves the ESS
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Fig. 4. The ESS and the ETSL of the proposed two-stage designs as compared to the one-stage design, when i (7 = 12) = 0.7t = 8.4 months and the alternative

expected survival months (0.807 (top), (0.857 (middle), and 0.807 (bottom).

in the average of 17% with the range from 10% to 22% as compared to
the one-stage design. The savings of the ETSL for the proposed two-
stage designs are similar to the ESS savings.

We present the MPSS of the optimal and minimax two-stage designs
in Fig. 2 using the 9 configurations from Fig. 1 when p( (12) =0.57 =6
months. It can be seen that the MPSS of the minimax designs is gener-
ally smaller than that of the optimal designs, with the average saving of
15%. We observe similar results for the ESS and the ETSL comparisons
between the one-stage design and the two-stage designs in Fig. 3 when
#o(12) =0.27 =24 months, and in Fig. 4 when p(12) =0.7r =84
months.

We use a phase II refractory or recurrent non-small cell lung cancer
trial [28] to further study the proposed single-arm two-stage optimal
designs. Data from the phase II study reported by Takiguchi et al. [28]
are used as pilot data to estimate the RMST given 7 =12 months. The

RMST is estimated as uq (7) = 0.327, which can be calculated by using
the digital software, Engauge Digitizer, to capture the measures on the
progression-free survival (PFS) curve. Suppose we have a new treat-
ment for refractory or recurrent non-small cell lung cancer with the es-
timated RMST of 0.427 which is 0.1z = 1.2 months longer than the treat-
ment with second-line chemotherapy consisting of weekly irinotecan
and cisplatin in the reported phase II study. The calculated one-stage
sample size is 62 to attain 80% power at ¢ = (.05 based on RMST. Alter-
natively, one may use the HR model for sample size calculation, and it
is computed as 60 patients for the one-stage design [8].

We assume that N,,, = 62 patients are enrolled uniformly over the
2-year time period. The optimal and minimax two-stage designs are
presented in Table 1 for studies with interim accrual. The expected sam-
ple sizes of optimal two-stage designs are much less than that of the
one-stage design: ESS = 34.10 for the optimal design and ESS = 38.30
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Table 1

Optimal two-stage designs with interim accrual based on the pilot data from
the non-small cell lung cancer trial, with the design parameters: r =12
months, #(r) = 0.327 = 3.8 months, y; (z) = 0.427 = 5.0 months, ¢ = 0.05, and
80% power. The sample size for the one-stage design is N,,, = 62 patients.

| r N, N PET ESS ETSL

Patient accrual time: 2 years

5.54 4.55 34 67 0.99 34.10 13.25
5.18 4.59 38 60 0.99 38.30 15.01
Patient accrual time: 3 years
5.35 4.54 23 70 0.98 24.01 14.21
5.07 4.60 24 58 0.96 25.53 15.38
Patient accrual time: 5 years
5.07 4.50 14 67 0.91 18.63 19.14
4.26 4.58 29 55 0.74 35.64 37.66
Table 2

Optimal two-stage designs without interim accrual based on the pilot data
from the non-small cell lung cancer trial, with the design parameters: 7 = 12
months, #y(7) = 0.327 = 3.8 months, y, (r) = 0.427 = 5.0 months, ¢ = 0.05, and
80% power. The sample size for the one-stage design is N,,, = 62 patients.

" r Ny. N PET ESS ETSL

Patient accrual time: 2 years

4.31 4.44 34 72 0.80 41.60 30.52
4.07 4.58 40 60 0.68 46.34 33.76
Patient accrual time: 3 years

4.23 4.43 25 77 0.73 38.87 37.80
4.09 4.61 41 58 0.68 46.39 42.77
Patient accrual time: 5 years

4.18 4.46 23 71 0.70 37.40 51.91
4.19 4.59 48 54 0.78 49.30 62.47

for the minimax design. The ETSL is shorter in the optimal design as
compared to the minimax design. As expected, the MPSS of the mini-
max design is less than that of the optimal design. Given N,,, = 62 pa-
tients in the one-stage design, we also investigate the effect of patient
accrual time on the ESS and the ETSL, with 7, = 3 years or 5 years in
Table 1. It can be seen that the ESS of the optimal design decreases as 7,
is longer. When a study has a longer accrual time, the lower bound of
the first stage sample size becomes smaller which leads to a smaller ESS
of the optimal design. But the ETSL is getting longer in general. We no-
tice that the PETs of these designs are very high for this example. In the
aforementioned simulation studies, the PET is near 75% for the configu-
rations in Fig. 1 with () = 6 months.

We also present the optimal and miniax two-stage designs with no
interim patient accrual for this example in Table 2. When a study is de-
signed with no interim patient accrual, patient enrollment is temporar-
ily suspended when N, patients at the first stage are enrolled. In this
case, data analysis is going to be conducted at the time 7} + 7 to follow
all patients by 7 to observe the time-to-event outcome. The ETSL is cal-
culated by using Equation (3). As expected, designs without interim ac-
crual in Table 2 have longer expected study lengths than the designs
with interim accrual in Table 1. The ESS of the optimal design is consis-
tent as the patient accrual time 7, increases, although the ETSL be-
comes longer.

4. Discussion

For a two-stage design, when the first stage sample size N, is very
close to the upper bound (N — 1), the sample size difference between
the two-stage optimal designs and the one-stage design is negligible. On
the other side, when the first stage sample size N, is very close to the
lower boundary and the PET is high, its ESS is small. For this reason, it
could be a practically useful to design a two-stage design with a new
constraint on the sample size ratio between the two stages:

Contemporary Clinical Trials Communications 21 (2021) 100732

N/ (N = N;), to potentially reduce the issue of the obtained designs
near the parameter boundaries.

In the simulation studies, we add the restriction of the time for the
first stage with at least 10% more than 7. Given a small to medium sam-
ple size in an early phase clinical trial, it is important to measure the
treatment effect with as many completed cases as possible. For this rea-
son, we would suggest researchers to provide optimal or minimax de-
signs with multiple #; restrictions to investigators (e.g., 1.2 7, 1.4 7). The
developed R software program can be modified to search for the opti-
mal designs by adding that constraint. In the discussed lung cancer ex-
ample, when we increase the percentage of patients completed the fol-
low-up (e.g., 1.370, 1.570), the optimal two-stage designs are often iden-
tified with N, being very close to the lower boundary, and the first stage
sample size of the minimax designs towards the lower boundary as that
percentage increases. As pointed out of the reviewers, the proposed
two-stage designs can be applied to studies whose patient accrual time
T, is longer than the follow-up time z. When a study's follow-up time is
very long (e.g., trials for Alzheimer's Disease [29,30]), it is possible that
all patients are already enrolled while no patient has been followed by
7. In such cases, other new two-stage designs should be developed.

Conditional power after the first stage may be considered as an al-
ternative criteria to the first stage threshold 71 for futility stopping at the
end of the first stage. Jennison and Turnbull [31] reviewed several ap-
proaches for conditional power calculation for group sequential de-
signs. Conditional power is computed under the assumption that future
patients are similar to the already enrolled patients. A study is stopped
early for futility due to a low conditional power. When only a few pa-
tients complete the follow-up, the information from existing patients
may not be reliable enough to test that important assumption.

When the estimated RMST from historical data is not reliable (e.g., a
very few studies with different populations), a two-arm or multiple-arm
randomized study may be utilized to compare the new treatment(s) and
the control. Uno et al. [1,27] developed one-stage designs for a random-
ized clinical trial comparing one treatment with the control based on
RMST. It would be a straightforward extension of their one-stage de-
signs to a study with multiple arms. However, it is computational inten-
sive to extend their work to randomized two-stage designs with two or
more arms. We consider this as future work. Another interesting topic
would be adaptive designs based on RMST, where the second stage
sample size and the censoring distribution can be modified using the
observed results from the first stage [21]. In order to develop such
adaptive designs, effective search algorithms are critical to search for
the optimal adaptive designs [14,32].
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