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A B S T R A C T   

Objective: To explore the molecular processes associated with cellular regulatory programs in patients with 
COVID-19, including gene activation or repression mediated by epigenetic mechanisms. We hypothesized that a 
comprehensive gene expression profiling of nasopharyngeal epithelial cells might expand our understanding of 
the pathogenic mechanisms of severe COVID-19. 
Methods: We used single-cell RNA sequencing (scRNAseq) profiling of ciliated cells (n = 12,725) from healthy 
controls (SARS-CoV-2 negative n = 13) and patients with mild/moderate (n = 13) and severe (n = 14) COVID-19. 
ScRNAseq data at the patient level were used to perform gene set and pathway enrichment analyses. We 
prioritized candidate miRNA-target interactions and epigenetic mechanisms. 
Results: We found that mild/moderate COVID-19 compared to healthy controls had upregulation of gene 
expression signatures associated with mitochondrial function, misfolded proteins, and membrane permeability. 
In addition, we found that compared to mild/moderate disease, severe COVID-19 had downregulation of 
epigenetic mechanisms, including DNA and histone H3K4 methylation and chromatin remodelling regulation. 
Furthermore, we found 11-ranked miRNAs that may explain miRNA-dependent regulation of histone methyl
ation, some of which share seed sequences with SARS-CoV-2 miRNAs. 
Conclusion: Our results may provide novel insights into the epigenetic mechanisms mediating the clinical course 
of SARS-CoV-2 infection.   

Key messages  

● Severe COVID-19 was associated with altered gene expression 
pathways involved in mitochondrial function, membrane perme
ability, ciliogenesis, and downregulation of epigenetic mechanisms.  

● Gene expression signatures mediated by miRNAs (either from the 
host, including miRNA-548 or the SARS-CoV2) may explain different 
clinical outcomes. 

● Gene-drug interaction analysis showed diethylstilbestrol, trichosta
tin A, hydralazine hydrochloride, and chlorambucil as significantly 
predicted drugs associated with severe COVID-19. 

1. Introduction 

Cumulative and consistent evidence based on the records of patients 
with COVID-19 demonstrated that the disease course is characterized by 
a complex clinical spectrum, including asymptomatic infection-which is 
often not fully captured by cross-sectional epidemiological surveys-, 
mild symptoms, critical illness, and even the so-called long-COVID-19 

☆ SS and CJP should be considered joint senior authors. 
* Corresponding authors. Instituto de Investigaciones Médicas, IDIM-CONICET Combatientes de Malvinas 3150, CABA-1427, Argentina 

E-mail addresses: ssookoian@intramed.net (S. Sookoian), pirola.carlos@conicet.gov.ar (C.J. Pirola).  

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2022.105895 
Received 14 April 2022; Received in revised form 21 June 2022; Accepted 16 July 2022   

mailto:ssookoian@intramed.net
mailto:pirola.carlos@conicet.gov.ar
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2022.105895
https://doi.org/10.1016/j.compbiomed.2022.105895
https://doi.org/10.1016/j.compbiomed.2022.105895
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2022.105895&domain=pdf


Computers in Biology and Medicine 148 (2022) 105895

2

[1–4]. 
While progress has been made to understand the mechanism/s 

behind the evolution from mild to severe clinical outcomes, the molec
ular processes associated with the worst COVID-19 phenotypes, 
including severe pneumonia, acute respiratory distress syndrome, and 
even systemic organ failure, are not entirely understood. 

SARS-CoV-2 disseminates by exposure to infectious respiratory 
fluids, and before symptoms onset, the viral load in cells of nasopha
ryngeal epithelium is usually high [5]. Therefore, the functional role of 
the nasal epithelial cells not only as the first physical barrier against viral 
entry but also in controlling the local immune response is of utmost 
importance in determining the disease course. 

Single-cell RNA sequencing (scRNA-seq) profiling has allowed the 
identification of genes and molecular pathways associated with diverse 
human conditions, including pathways that define how a given cell can 
modify its phenotype after specific stimuli like a viral infection. Thus, 
scRNA-seq is a state-of-the-art approach for exploring changes in cellular 
regulatory programs, including activation or repression of genes that 
may explain the pathophysiology of human disease traits. For example, 
Ahn and co-workers recently demonstrated that SARS-CoV-2 is 
massively replicated in a distinct subset of human nasal epithelial cells 
[6]. Furthermore, by scRNA-seq and in situ mappings of SARS-CoV-2 
entry–related host molecules, the investigators showed multiciliate 
cells but not secretory or basal cells of human nasal respiratory epithe
lium are the primary target for SARS-CoV-2 replication [6]. Ziegler 
et al., by performing elegant scRNA-seq profiling on nasopharyngeal 
cells from healthy and COVID-19 participants, revealed vital mecha
nisms that may define protective or detrimental responses to 
SARS-CoV-2 [7]. Specifically, the authors demonstrated impaired im
mune response and anti-viral immunity in cells of the nasal epithelium 
along 18 different clusters -from inflammatory macrophages to epithe
lial cell identities that underline severe COVID-19 [7]. Likewise, Ziegler 
and co-workers mapped the developmental transitions among nasal 
epithelial cells from healthy epithelium to the epithelium of patients 
with severe disease [7]. The authors also provided compelling evidence 
on the mechanisms of host-SARS-CoV-2 interaction in terms of pheno
typic differences among cell subtypes and the anti-viral and 
interferon-mediated response curbing the intracellular levels of viral 
replication [7]. However, the molecular processes of gene transcrip
tional regulation in severe COVID-19, particularly those under the in
fluence of miRNAs, have not been fully elucidated. Here, we leveraged 
scRNA-seq open data to expand the analysis of biological processes 
and gene regulation programs associated with severe COVID-19. 

2. Methods 

2.1. Biological samples 

Our study comprises data from samples of the nasopharyngeal 
epithelium of 50 individuals from the University of Mississippi Medical 
Centre recruited between April and September 2020 [7]. The sample 
included 15 healthy subjects with negative SARS-CoV-2 PCR tests, 
denoted by healthy control (HC), and 35 individuals diagnosed with 
COVID-19, and nasopharyngeal swabs were collected within the first 
three days following admission to the hospital. Based on the World 

Health Organization (WHO) guidelines for COVID-19 severity stratifi
cation, these 35 patients with positive SARS-CoV-2 PCR tests were 
divided into two subgroups: 14 individuals with mild/moderate 
COVID-19 (WHO scores equal to 1–5, COVID-19 M), and 21 individuals 
with severe COVID-19 (WHO scores equal to 6–8, COVID-19 S). We have 
taken scRNAseq data from Single Cell Portal: https://singlecell.broadins 
titute.org/. 

2.2. Single-cell RNA-seq data analysis 

We used the single-cell RNA-seq data from nasopharyngeal swabs 
publicly available for download and visualization via the Single Cell 
Portal: https://singlecell.broadinstitute.org/, under the identification 
SCP1289. Specifically, we focused our analyses on cells of the respira
tory epithelium located in the nasal mucosa; the transcriptomic profile 
of 32,871 genes in 32,588 cells was obtained. Owing to the typical 
dropout of single cells, many of these genes have zero counts in many 
cells. The analysis of these data is a real challenge because the number of 
ciliated cells varies from patient to patient, and some cell types are 
rarely found in some individuals. Thus, we selected those patients with a 
representative number of ciliated cells. In this sense, only those patients 
with more than 45 ciliated cells were considered for the analysis. 

In addition, our study considered only those genes with a non-null 
record in at least 650 cells (2% of all cells). Thus, with this restriction, 
the present study included 11,870 filtered genes. The original research 
by Ziegler et al. [7] classified cells into 18 cell types (basal cells, B cells, 
ciliated cells, dendritic cells, deuterosomal cells, developing ciliated 
cells, developing secretory and goblet cells, enteroendocrine cells, 
erythroblasts, goblet cells, ionocytes, macrophages, mast cells, mitotic 
basal cells, plasmacytoid DCs, secretory cells, squamous cells, T cells). In 
the present study, we only considered the groups of ciliated cells, which 
include “ciliated cells,” “deuterosomal cells,” and “developing ciliated 
cells,” representing a set of 12,725 cells. Unlike previous studies where 
gene expressed genes are determined considering “each cell” as an in
dependent sample or replicate, we thought “each individual or patient” 
as an independent replicate. Thus, we used the arithmetic mean of 
normalized gene expression data of ciliated cell for each patient. Spe
cifically, we calculated the mean expression level of each gene in each 
individual by averaging the normalized counts of all cells of the specific 
ciliated cell type belonging to that individual. In this manner, we avoi
ded inflating statistical differences as the whole single-cell data taking 
individual cells as biological replicates might result in an overestimation 
of significant gene expression changes. The number of cells of a given 
type varies from patient to patient; some are rare in some individuals. 
Only those patients with more than 45 ciliary cells were considered in 
this study. 

2.3. Pathway enrichment analysis and data visualization 

The scRNA-seq data derived from the different groups of patients 
were contrasted in three different ways: 1) functional analysis of bio
logical processes (BPs) comparing HC vs. COVID-19 M, and COVID-19 S 
vs. COVID-19 M using GSEA, as described below; 2) analysis of regula
tory target gene sets associated with miRNAs contrasting COVID-19 S vs. 
COVID-19 M using GSEA; and 3) gene-set enrichment tools by the 
ToppGene Suite available https://toppgene.cchmc.org/. 

First, we analysed the GO (gene ontology) terms for BPs associated 
with gene expression changes using GSEA (Gene Set Enrichment Anal
ysis software, https://www.gsea-msigdb.org) [8]). GSEA is a computa
tional method that determines whether a ranked gene list shows 
statistically significant, concordant differences between two pheno
types. Here, the rank of genes was established by the Signal2Noise 
metric, which is defined as the difference between the means expression 
in each phenotypic class divided by the sum of the deviations as 
implemented in the GSEA platform for dichotomic phenotypes. 

More specifically, we started with the normalized counts as a mea

Abbreviations 

BP biological process 
GSEA Gene set enrichment analysis 
GO gene ontology 
miRNA microRNA 
scRNA-seq single-cell RNA sequencing  
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sure of the expression level of genes for all cells. First, we selected the 
ciliated cells of each individual. We considered individuals whose 
number of ciliated cells was greater than 45 cells. We calculated the 
mean expression level of gene i in this individual, Ei

j, by averaging the 
expression level of all its ciliated cells, that is: 

Ej
i =N − 1

j

∑Nj

k
ej

ik,

where ej
ik is the normalized counts of gene i in the cells k belonging to 

individual j and Nj is the number of ciliated cells for individual j. This 
define an average expression profile of ciliated cells for each patient, 
that will be used for dichotomic comparisons in further steps by means 
of GSEA. 

The matrix E (genes x patients) feeds the GSEA software to perform 
the pathway enrichment analysis. The rank of genes is established by 
GSEA for each dichotomic phenotype by using the Signal2Noise metric 
(other metrics are also available in GSEA), which is defined as: 

Signal2Noise=
μA − μB

σA + σB ,

where μA and σA are the mean and standard deviation, respectively, of 
gene expression levels observed in the phenotypic class A. More spe
cifically for a gen i 

μA
i =N − 1

A

∑NA

j
Ej

i ,

σA
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

Ej
i − μA

i
)2

NA − 1

√

,

where NA is the number of individuals in the condition A. 
We performed the comparisons considering a subset of the C5 gene 

set (version 7.4, from MSigDB collection) that includes the BP ontology 
and a gene set size of 10–500 genes. GO sets are based on ontologies and 
do not necessarily comprise co-regulated genes. In all cases, we used 
1000 permutations over genes to compute the statistical significance of 
enrichment scores. Next, we performed a cluster analysis of significant 
BPs by Enrichment Map Cytoscape App 3.3 [9] to obtain a BP network, 
where nodes represent BPs and edges represent gene overlap between 
gene sets associated with the connected nodes. Edges with a similarity 
score lower than 0.5 did not included in the BP network plot. Network 

Fig. 1. Methodology flow chart 
Step 1: The specific type of cells is selected from each 
patient (ciliated cells in our case). 
Step 2: Normalized counts for each gene are averaged 
(arithmetic mean) over the selected cells population 
of each patient, obtaining the average expression 
profile of ciliated cells for each patient. 
Step 3: Signal2Noise metric is computed among the 
patients of the two conditions of interest. μA(μB) and 
σA(σB) are the mean and standard deviation of gene 
expression levels computed in the previous step for 
patients under condition A (B). Then, the genes are 
ranked by decreasing order of the metric value. 
Step 4: Finally, it is determined if the ranked gene set, 
associated with a given biological process (BP), shows 
statistically significant, concordant differences be
tween the two conditions. This last step can be per
formed with different BPs or even with gene set 
associated with molecular functions or miRNAs.   
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clustering and annotation were performed by MCL (Markov Cluster al
gorithm), and Word Cloud (normalization factor 0.5) using the Cyto
scape plug-in auto annotate [10]. 

Second, we used the GSEA algorithm to prioritize candidate miRNA- 
target interactions in patients with COVID-19 across the two primary 
clinical outcomes of interest, including patients with severe vs. patients 
with mild/moderate disease. To this end, we used the subset of the C3 
gene sets (version 7.4, from MSigDB collection) that includes miRNA- 
targets genes as catalogued by the miRDB v6.0 algorithm [11]. We 
considered only gene sets with a size of 300–1000 genes. 

Finally, we performed gene list functional enrichment of a selected 
input list (see the results section for further details) to predict gene-drug 
interactions and co-expression analysis that was compiled from various 
data sources and used to a build training set gene profile by the Top
pGene/ToppCluster resource (https://toppgene.cchmc.org/) [12,13]. 
The same platform was used to interpret BPs, molecular functions, 
family genes, and human traits associated with particular subsets of 
genes or prioritize putative viral miRNA targets. 

A detailed flow chart to explain all steps of the methodology is shown 
in Fig. 1. 

3. Results 

We found that the number of cells of a given type varied considerably 
from patient to patient, and some cell types are rare in some individuals. 
Therefore, we only considered those patients that presented more than 
45 ciliary cells. Consequently, we included 13 healthy controls that were 
SARS-CoV-2 negative by PCR, 13 patients with mild/moderate COVID- 
19, and 14 patients with severe COVID-19. 

3.1. Gene set enrichment analysis associated with COVID-19 across all 
levels of the disease severity identifies distinctive biological processes 

As explained earlier, we performed gene set enrichment analysis 
(GSEA) of BPs associated with SARS-CoV-2 infection in cells of the res
piratory epithelium located in the nasal mucosa. Hence, we analysed a 
total number of 12,725 ciliated cells. We first compared BPs in infected 
patients presenting mild/moderated COVID-19 versus control (healthy) 
subjects. Besides the GO terms associated with innate immune response 
and TNF-mediated signalling, genome replication and viral release, viral 
budding and symbiont-host interaction, granulocyte migration, and 
lymphocyte homeostasis that were already described by Ziegler et al. 
[7], we found some other BPs and or sub-networks that deserve further 
analysis (Fig. 2). For example, we found that sub-networks associated 
with mitochondrial membrane permeabilization, protein targeting to 
mitochondria, and lysosome and protein targeting to the membrane 
were significantly enriched in mild/moderate COVID-19. In addition, 
sub-networks related to protein folding and misfolding are highlighted. 
This last observation could be related to a previous characteristic 
described for SARS-CoV2 codon composition of highly expressed genes, 
which could influence the tRNAs pools of the infected cells with relevant 
implications in host protein folding and expression [14]. The entire list 
of BPs, including the GO terms, is shown in Supplementary Table 1. 

We next asked whether the differential pattern of BPs observed in 
ciliated cells may distinguish mild and moderate cases from severe 
COVID-19. The most relevant sub-networks identified by GSEA are 
shown in Fig. 3. Compared to mild/moderate COVID-19 infection, pa
tients with the severe disease showed an overrepresentation of sub- 
networks linked to fatty acid metabolism and eicosanoid synthesis, 
acute inflammatory processes, keratinocyte differentiation, and hu
moral immune response, which were all described by Ziegler et al. [7]. 
However, we noted that cells derived from severe COVID-19 patients 
had some remarkable underrepresented sub-networks linked to 

Fig. 2. Gene set enrichment analysis derived from ciliated cells in mild/moderate COVID-19 patients vs. healthy controls 
The Figure illustrates a network of GO (Gene Ontology) terms corresponding to biological processes (BPs) significantly enriched in genes upregulated (blue nodes) 
and downregulated (red nodes) in mild-moderate COVID-19 (COVID-M) patients concerning to healthy control (HC) individuals (Bonferroni adjusted p-value, FDR 
0.05). The node’s size is proportional to the number of genes associated with that BP. The edges represent gene overlap between gene sets related to different GO 
terms. Connected nodes are organized in clusters of interconnected BPs obtained by the MCL algorithm, which considers similarity among gene sets to assign the 
edges, with a similarity score threshold of 0.5. 
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epigenetic mechanisms, including histone H3K4 methylation and regu
lation of histone methylation (Fig. 3). In addition, GO terms associated 
with ciliogenesis (GO:0003341, GO:0035082, GO:1905515, and 
GO:0001578) were significantly downregulated in severe COVID-19 
(Fig. 3). The entire list of BPs, including the GO terms, is shown in 
Supplementary Table 2. 

3.2. Gene expression profile of cells derived from the nasal mucosa in 
patients with COVID-19 across diverse stages of disease severity: sub- 
networks analysis focused on organelle function 

To gain further insight into the gene lists generated by the GSEA 
analysis, we focus on specific pathways connected with impaired 
organelle function. Specifically, we selected the pathways of mito
chondrial membrane permeabilization, protein targeting to mitochon
dria, and lysosome and protein targeting to the membrane, in which 
transcript levels of most upregulated genes in COVID-19 M patients 
concerning to control subjects are in the percentile 0.10. Then, we 

Fig. 3. Gene set enrichment analysis derived from ciliated cells in severe vs. mild/moderate COVID-19 patients 
The Figure illustrates enrichment analysis of biological processes (BPs) upregulated (blue nodes) and downregulated (red nodes) in patients with severe COVID-19 vs. 
patients with mild/moderate disease(Bonferroni adjusted p-value, FDR 0.05). BPs were clustered by using the MCL algorithm with a similarity score threshold of 0.5. 

Fig. 4. Heat map of expression genes belonging to the pathways associated with mitochondrial membrane permeabilization, protein targeting to mitochondria, and 
lysosome and protein targeting the membrane. 
Blue squares correspond to downregulated genes and red squares to upregulated genes. We selected only the subset of genes most upregulated (the percentile 0.1 of 
the ranked genes)in mild/moderate COVID-19 vs. healthy patients. The colour scale represents the RNA abundance relative to the media of transcript levels in all 
subjects and then log2 transformed. 
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compared the expression profile of these genes within each experimental 
group, including HC, COVID-19 M, and COVID-19 S; transcript levels in 
each group of subjects were referred to the media of all samples. A heat 
map of the results appears in Fig. 4. Including the COVID-19 S group, the 
analysis shows significant downregulation of specific genes in cells 
derived from COVID-19 patients with severe disease. For instance, the 
expression of LCK (Lymphocyte Cell-Specific Protein-Tyrosine Kinase, of 
which the encoded protein is a key signalling molecule in the selection 
and maturation of developing T-cells), TP63 (a member of the p53 
family of transcription factors), TRAM1 (Translocation Associated 
Membrane Protein 1), and SLC40A1 (Solute Carrier Family 40 Member 
1) were significantly decreased in severe COVID-19. Upon inspecting the 
expression pattern in members of the ribosomal protein family (RPL and 
RPS) that encode structural constituents of ribosomes, we found that 
patients with COVID-19 had significant upregulation regardless of the 
disease severity. Interestingly, these ribosomal protein members are 
associated with other viral diseases, particularly influenza [15]. 

3.3. The regulatory network of miRNAs associated with severe COVID-19 

We next sought to explore the putative regulatory mechanisms 
associated with more severe illnesses. Specifically, we asked whether 
miRNA-mediated gene expression deregulation may explain severe 
COVID-19. Hence, using the ranked list of genes obtained by GSEA from 

the comparison of COVID-19 S vs. COVID-19 M as input, we detected 29 
miRNAs potentially affecting the disease severity. 

Some of these miRNAs share the same so-called seed region, which 
ultimately defines the mRNA target, and in that case, have the same gene 
targets. Therefore, we curated the list of miRNAs by an in-house script to 
avoid redundancy in the subsequent analyses. The correlations among 
the targets of the 29 miRNAs mentioned above are depicted in Supple
mentary Fig. 1. Upon inspection of redundancy, 11 ranked miRNAs 
(miR-16-5p, miR-130-3p, miR548h-3p, miR-1283, miR548an, miR-19a- 
3p, miR144-3p, miR9983, miR101-3p, miR181a-5p, and miR8485) 
were used in the search for their targets among the whole set of putative 
miRNA target genes of the human genome (hsa-miRNA targets as cata
logued by the miRDB v6.0 algorithm). As a result, we found a total of 
3076 target genes. The complete list of target genes associated with the 
11 miRNAs is shown in Supplementary Table 3. 

In parallel, we selected the 10% top-ranked genes downregulated in 
COVID-19 S vs. COVID-19 M according to the ranking based on the 
Signal2Noise metric, which yielded 1167 genes (Fig. 5a). From the 
intersection of the 11 miRNAs-targeted genes (3076) and the above 
described 1167 downregulated genes in severe COVID-19, we found 336 
deregulated transcripts also targets of the 11 miRNAs (Fig. 5b). The 
expression pattern of these 336 genes within each group of patients 
relative to the media of all groups (healthy controls, COVID-19 M, and 
COVID-19 S) is shown in Fig. 5c. A comprehensive network of the BPs 

Fig. 5. The role of epigenetic mechanisms in COVID-19: a regulatory network of miRNAs-target genes 
A. Rank of genes according to the Signal2Noise metric as implemented in the GSEA platform (COVID-19 S vs. COVID-19 M) using the media of the normalized counts 
of the whole cell population in each individual. The top 10% of downregulated genes (rank over the dashed line) was used in the subsequent analysis shown in panels 
B and C. 
B. Venn Diagram showing the overlap between the 3076 gene targets of the 11 miRNAs associated with the target sets enriched in COVID-19 S vs. COVID-19 M and 
the 1167 top-ranked genes downregulated in COVID-19 S (as explained in panel A). The intersection shows the 336 genes used in panel C. 
C. A heat map of the 336 genes that result from the intersection mentioned in panel B. Squares in blue and red represent genes with lower and higher RNA abundance 
relative to the media of transcript level of all subjects and then log2 transformed, respectively. 
COVID-19 S: severe disease; COVID-19 M: mild/moderate disease. 
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represented by these downregulated genes in patients with severe 
COVID-19 is shown in Fig. 6. 

We then focused our analysis on those miRNA-target pairs involved 
in epigenetic mechanisms, including BPs linked to H3K4 methylation 
and regulation of histone methylation. These 11 miRNAs together 
regulate most of the histone methylation pathway genes that were 
downregulated in severe COVID-19 (MYB, BCOR, DNMT1, KMT2C, 
TET3, KMT2A, KMT2C, WDR82, GATA3, AUTS2, MECP2, and MLLT6) 
(Supplementary Fig. 2). 

3.4. Gene list enrichment analysis based on functional annotations: 
insights into drug-target and co-expression functional enrichments 

We finally sought to explore potential druggable targets in the list of 
differentially expressed miRNA-target genes associated with epigenetic 
mechanisms. 

The transcripts in the input list (MYB, BCOR, DNMT1, KMT2C, TET3, 
KMT2A, KMT2C, WDR82, GATA3, AUTS2, MECP2, and MLLT6) were 
then screened for gene-drug interactions using the ToppGene Suite 
resource. 

We found several compounds as putative ligands of the genes 
enriched in the input list; however, some specific drugs were ranked 
among the top ones. These drugs included diethylstilbestrol (FDR =
2.904E-2), trichostatin A (FDR = 1.902E-2), hydralazine hydrochloride 
(FDR = 1.902E-2), and chlorambucil (FDR = 1.902E-2). In addition, we 
found that a large proportion of the predicted tissue co-expression of the 
target genes was mainly located in cells of the immune system, including 
alpha-beta T cells and gamma-delta T cells of the pancreas, thymus, 
lymph node, spleen, and CD4 positive of the spleen (FDR 1.209E-2). 
Furthermore, by searching for clinical trial targets’ in the Ther
apeutical target database (TTD, http://db.idrblab.net/ttd/) [16] we 
found that MYB (LR3001, antisense anticancer drug in phase 2), DNMT1 

Fig. 6. Network of the 336 genes downregulated in COVID-S and their associated GO terms for biological processes (BP) 
The network was constructed using the ToppGene/ToppCluster resource (https://toppgene.cchmc.org/) with an FDR of 0.05. Hexagons in red and squares in light 
blue stand for genes and BPs, respectively, which were distributed using the edge-weighted Spring embedded layout and slightly modified for readability using 
Cytoscape v3.4.0. In general, the upper left region shows BP associated with DNA and histone modifications, regulation of transcription, and chromatin or chro
mosome remodelling. In contrast, the right middle part shows BPs associated with organ morphogenesis, particularly cardiac and vascular. The lower left region 
shows metabolic processes, primarily catabolic. 

L. Diambra et al.                                                                                                                                                                                                                                

http://db.idrblab.net/ttd/
https://toppgene.cchmc.org/


Computers in Biology and Medicine 148 (2022) 105895

8

(S-110, DNA demethylating agent, phase 2/3), and KMT2A (KO-539, 
Menin-mll interaction inhibitor, phase 1/2), have specific interacting 
drugs in diverse clinical trial phases. 

4. Discussion 

This study identified distinctive biological processes related to 
epigenetic mechanisms in patients with severe COVID-19. Specifically, 
we analysed scRNA-seq profiles from nasopharyngeal ciliated cells of 
patients with COVID-19 and performed pathway enrichment analysis. 
Our research was based on two distinctive strategies, including the 
analysis of scRNA-seq data at an individual-patient level rather than at 
the bulk cell-level and the prioritization of molecular mechanisms 
associated with severe COVID-19. 

Patients with severe COVID-19 presented deregulation of gene 
expression in pathways linked to mitochondrial function and membrane 
permeability. The expression of certain genes, including LCK- a tyrosine 
kinase involved in T-cells maturation and expansion, the tumour 
encoding protein TP63 that plays a role in the regulation of epithelial 
morphogenesis, TRAM1 that encodes for a multi-pass membrane protein 
that is part of the mammalian endoplasmic reticulum, and SLC40A1 that 
mediates iron ion transmembrane transporter activity-among other 
transcripts, were consistently decreased across ciliated cells from all 
severe COVID-19 patients. Collectively, these findings reinforce the 
importance of ciliated cells differentiation, maturation, and immune 
response in these specific cells of the nasopharyngeal epithelium as 
highlighted by Ziegler et al. [7]. In addition to the relevance of mito
chondrial dynamics, impairment of mitochondrial membrane potential, 
and cell death in any viral infection, including SARS-CoV-2 infection, 
one may speculate that some other molecular mechanisms are relevant 
to determine the worst disease outcome. For instance, Singh et al. re
ported that SARS-CoV-2 interferes with mitochondrial function to evade 
host cell immunity and facilitate virus replication and COVID-19 
development [17]. Likewise, disturbances in iron transport may affect 
mitochondrial function and induce oxidative stress. Earlier reports 
demonstrated that hyperferritinemia is a predictor of increased mor
tality of the disease [18]. Besides, ferroptosis, an iron-related cell death 
program, may be involved in COVID-19-induced multiple organ failure 
[19]. 

Furthermore, our results highlight the importance of ciliated cells in 
tissue homeostasis. Nasopharyngeal ciliated cells of patients with severe 
COVID-19 presented significant downregulation of pathways associated 
with cilium movement, microtubule bundle formation, and axoneme 
assembly. This finding has implications for understanding impaired 
physiological processes of the nasal mucosa, for instance, olfaction- 
related disorders and systemic functioning deregulation of ciliated 
cells across the body, including primary cilia in testicular cells. Recent 
clinical evidence suggests that the spermatogenic function of the testis is 
impaired in patients with COVID-19 [20]. It is then plausible to specu
late that the dysfunction of ciliated cells in severe COVID-19 underlies 
pleiotropic effects in many different tissues and organs of the body. 
Here, we found that in this phenomenon, the dynein protein family may 
play a crucial role, a finding already reported by others [21]. Therefore, 
the associated signalling pathways resemble the syndromic disorders 
known as ciliopathies. 

We also noted that cells derived from severe COVID-19 patients had 
downregulation of sub-networks linked to epigenetic mechanisms, 
including histone H3K4 methylation and regulation of histone methyl
ation. As shown in Fig. 6, genes in the pathways of histone modifica
tions, histone lysine methylation, DNA methylation or demethylation, 
DNA modification, chromatin remodelling, chromosome organization, 
negative regulation of RNA biosynthetic process, negative regulation of 
the cellular biosynthetic process, and even cardiac morphogenesis 
-among many other pathways, are all dramatically downregulated in 
cells derived from severe COVID-19 patients. Some genes in this network 
belong to the Methyl-CpG binding domain-containing NuRD complex, 

Zinc fingers C2HC-type PHD finger proteins, Lysine acetyltransferases, 
and Zinc fingers CXXC-type gene families. Collectively, these findings 
might explain the differences in developmental and maturation trajec
tories of ciliated cells in severe COVID-19 patients reported by Ziegler 
and co-workers [7]. 

To expand the understanding of the potential molecular processes 
involved in the regulation of gene expression, we examined the 
enrichment of miRNAs in the list of genes deregulated in cells of patients 
with severe vs. mild/moderate COVID-19. We found some miRNA-gene- 
target pairs that might be relevant to the disease biology. For example, 
we highlight the miRNA-548, which has been shown to down-regulate 
host anti-viral response via direct targeting of IFN-λ1 [22]. Notably, 
miRNA-548 seems to participate in numerous signalling pathways, such 
as the Wnt, the MAPK and TGF-β pathways, and regulation of the im
mune system in the transition from immune tolerance to immune acti
vation in chronic hepatitis B [23]. Notably, predictions of putative small 
ligands of genes enriched in the input list of predicted miRNAs showed 
some interesting gene-drug interactions that might explain differences 
in clinical outcomes mediated by epigenetic mechanisms or help treat 
the disease. For example, we predicted a significant interaction between 
five of the target genes of the list of enriched miRNAs with diethylstil
bestrol. It appears that oestrogen treatment silences the inflammatory 
reactions and decreases virus titters leading to an improved survival rate 
[24]. Previous experimental studies showed that 17β-oestradiol protects 
females against influenza by recruiting neutrophils and increasing 
virus-specific CD8 T cell responses in the lungs [25]. Perets and col
leagues showed that 17β-oestradiol reduces influenza A virus replication 
in primary human nasal epithelial cells derived from females [26]. Some 
other gene-drug target predictions suggest that compounds used to treat 
haematological conditions, such as leukaemia and lymphomas, or the 
antihypertensive agent hydralazine hydrochloride could be tested for 
drug repurposing in the treatment of severe COVID-19. 

As a putative mechanistic explanation, we observed some overlap 
between the seeds of gene expression changes associated with miRNAs 
and those of the recently reported SARS-CoV-2-encoded viral miRNAs 
[27–29], as shown in Supplementary Table 4. Thus, these findings could 
indicate that SARS-CoV-2 has miRNAs-like sequences [29], and -like 
many other viruses-, hitchhikes the regulatory processes of the host cells 
by targeting epigenetic modulators. 

We are aware that our research may have limitations. First, the na
ture of retrieved metadata and the limited number of patients do not 
allow us to examine relevant demographic information of the infected 
patients. Therefore, we did not examine the correlation between the 
patients’ features, such as age and gender, with deregulated gene 
expression pathways. Second, the analysed dataset contains scRNA-seq 
data from the nasopharyngeal swabs collected within the first three 
days following admission to the hospital [7], which does not allow any 
assessment of patient’s follow-up. Hence, further validation of our ob
servations using experimental models, either in cell lines or animal 
models is required. 

Together, our results may provide novel insights into the cellular and 
molecular mechanisms that modulate the clinical course of SARS-CoV-2 
infection. Based on predicted biological processes and functional 
enrichment analysis, we detected some relevant mechanisms that may 
explain the pathogenesis of severe COVID-19. Among these molecular 
explanations, we found some clues on the importance of post- 
transcriptional regulation of gene expression by small-non coding 
RNAs and epigenetic mechanisms of gene transcription regulation, such 
as DNA and histone methylation and ultimately chromatin remodelling. 
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