
R E S E A R CH A R T I C L E

In vivo disentanglement of diffusion frequency-dependence,
tensor shape, and relaxation using multidimensional MRI

Jessica T. E. Johnson1 | M. Okan Irfanoglu2 | Eppu Manninen1 |

Thomas J. Ross3 | Yihong Yang3 | Frederik B. Laun4 | Jan Martin5 |

Daniel Topgaard5 | Dan Benjamini1

1Multiscale Imaging and Integrative Biophysics

Unit, National Institute on Aging, NIH,

Baltimore, Maryland, USA

2Quantitative Medical Imaging Section,

National Institute of Biomedical Imaging and

Bioengineering, National Institutes of Health,

Bethesda, Maryland, USA

3Neuroimaging Research Branch, National

Institute on Drug Abuse, National Institutes of

Health, Baltimore, Maryland, USA

4Institute of Radiology, University Hospital

Erlangen, Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU), Erlangen, Germany

5Department of Chemistry, Lund University,

Lund, Sweden

Correspondence

Dan Benjamini, Multiscale Imaging and

Integrative Biophysics Unit, National Institute

on Aging, NIH, Baltimore, MD, USA.

Email: dan.benjamini@nih.gov

Funding information

National Institute on Drug Abuse; National

Institute on Aging

Abstract

Diffusion MRI with free gradient waveforms, combined with simultaneous relaxa-

tion encoding, referred to as multidimensional MRI (MD-MRI), offers microstruc-

tural specificity in complex biological tissue. This approach delivers intravoxel

information about the microstructure, local chemical composition, and importantly,

how these properties are coupled within heterogeneous tissue containing multiple

microenvironments. Recent theoretical advances incorporated diffusion time

dependency and integrated MD-MRI with concepts from oscillating gradients. This

framework probes the diffusion frequency, ω, in addition to the diffusion tensor, D,

and relaxation, R1, R2, correlations. A D ωð Þ�R1�R2 clinical imaging protocol was

then introduced, with limited brain coverage and 3mm3 voxel size, which hinder

brain segmentation and future cohort studies. In this study, we introduce an efficient,

sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2mm3

voxel size. We demonstrate its feasibility and robustness using a well-defined phan-

tom and repeated scans of five healthy individuals. Additionally, we test different

denoising strategies to address the sparse nature of this protocol, and show that effi-

cient MD-MRI encoding design demands a nuanced denoising approach. The MD-

MRI framework provides rich information that allows resolving the diffusion fre-

quency dependence into intravoxel components based on their D ωð Þ�R1�R2 distri-

bution, enabling the creation of microstructure-specific maps in the human brain.

Our results encourage the broader adoption and use of this new imaging approach

for characterizing healthy and pathological tissues.
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1 | INTRODUCTION

Several MRI approaches are inherently sensitive to microstructural

features on the order of micrometers, probing cell morphology and

organization, though, currently, they contend with having poor spatial

resolution. Notably, diffusion MRI (dMRI; Stejskal & Tanner, 1965) is

an important tool that encodes diffusive water displacement, which

is sensitive to cell membranes and physical barriers (Beaulieu, 2002;

Leuze et al., 2017; Williamson et al., 2019), making it well-suited for

indirectly assessing sizes and shapes of tissue components (Basser

et al., 1994; Burcaw et al., 2015; Komlosh et al., 2018; LeBihan, 1990;

Novikov et al., 2019; Pierpaoli et al., 1996). Relaxometry MRI is a

complementary approach that encodes temporal magnetization decay

(e.g., longitudinal and transverse relaxation rates, R1 and R2, respec-

tively), which allows it to probe different water microenvironments

and is especially sensitive to the local chemical composition, such as

the presence and volume fraction of macromolecules (Bouhrara

et al., 2020; Dvorak et al., 2021; Labadie et al., 2014; Mackay

et al., 1994; Whittall & MacKay, 1989).

Emergent diffusion-relaxation multidimensional MRI (MD-MRI)

acquisition protocols, combining the best elements of these

approaches by encoding both diffusion and relaxation “dimensions”
simultaneously (Hurlimann et al., 2006; Pizzolato et al., 2020;

Stanisz & Henkelman, 1998), have become a focal point in the field.

This imaging method introduces additional information, namely, the

correlations between diffusivity and relaxation, invaluable to the study

of tissue microstructure (Benjamini & Basser, 2017; Does &

Gore, 2002; Kundu et al., 2023; Lundell et al., 2019; Peled

et al., 1999; Veraart et al., 2018), brain connectivity (Benjamini &

Basser, 2020; DeSantis et al., 2016; Slator et al., 2021), and pathology

(Benjamini et al., 2021; Kim et al., 2017; Martin et al., 2021). Using dif-

fusion acquisition schemes with free gradient waveforms (Sjolund

et al., 2015) allows one to explore both the frequency-dependent and

tensorial aspects of the encoding spectrum b ωð Þ (Lasič et al., 2022;

Lundell & Lasic, 2020), enabling the investigation of frequency/time-

dependent changes of diffusion-relaxation correlations measures

using a single framework (Narvaez et al., 2022). This approach pro-

vides nonparametric distributions of diffusion and relaxation compo-

nents, and is based on the Gaussian phase distribution (GPD)

approximation (Neuman, 1974; Stepišnik, 1981).

Recent major advances in clinical translation (de Almeida Martins

et al., 2020; Reymbaut et al., 2021) led to an implementation of a

D�R1�R2 imaging protocol on a clinical scanner comprised of

633 volumes in total, with varying diffusion weightings and directions,

tensor ranks, echo times, and repetition times (Martin et al., 2021).

However, despite its potential, this 25-min protocol did not provide

full brain coverage (five axial slices) and had a relatively large 3mm3

voxel size. In addition, a proof-of-concept D�R1�R2 imaging proto-

col comprised of 134 volumes and 30 slices with 3mm3 voxel size

was recently demonstrated (Yon et al., 2023). Nevertheless, whole

brain coverage and higher spatial resolution are imperative for appli-

cations that requires identification and segmentation of brain regions,

thus enabling robust cohort studies. Therefore, designing a more effi-

cient and sparse acquisition protocol is desirable.

In this study, we first present an efficient and sparse in vivo fre-

quency dependent MD-MRI acquisition protocol that provides whole

brain coverage at 2 mm3 resolution. We demonstrate the feasibility

and robustness of this pipeline using a well-defined phantom (Laun,

Huff, & Stieltjes, 2009) and repeated scans of five healthy partici-

pants. Second, to explore noise effects in the data, we assert that

while popular and effective denoising techniques, such as the

Marchenko-Pastur PCA (MPPCA) method, exploit the inherent redun-

dancy in dMRI data (Veraart, Fieremans, & Novikov, 2016), the sparse

nature of the efficient MD-MRI encoding design cannot be considered

highly redundant, and may require a more nuanced denoising strategy.

Thus, we aimed to evaluate various denoising approaches and their

impact on the reliability of outputs of the current MD-MRI frame-

work. Analyzing the agreement between voxelwise D ωð Þ�R1�R2

distributions across two scanning sessions in the human brain, we

compactly quantify similarities across high-dimensional spectra

between corresponding voxels using the Earth mover's distance

(EMD; Rubner et al., 1998).

2 | MATERIALS AND METHODS

2.1 | Phantom

We used an anisotropic phantom (HQ imaging, Lörrach, Germany) to

assess the robustness of our MD-MRI acquisition and processing

pipeline, and the effects of different denoising strategies. The basic

properties of this phantom have previously been described in detail

(Laun, Huff, & Stieltjes, 2009). Briefly, the phantom consists of parallel

polyamide fibers of 15 μm diameter wound on a circular polyoxy-

methylene spindle. An aqueous solution was used as embedded fluid

between the fibers, resulting in restricted diffusion perpendicular to

the fibers. The spindle with the fibers was immersed in an aqueous

polyvinylpyrrolidone (PVP) solution (Pierpaoli et al., 2009; Wagner

et al., 2017). This design creates two regions of interest (ROIs): fluid

and tightly packed fibers, with isotropic and anisotropic diffusion

characteristics, respectively.

2.2 | Participants

Five healthy participants (ages 41.2 ± 8.3, 3 women) were each

scanned twice, a few weeks apart (i.e., total of 10 scans). Participants

were systematically drawn from ongoing healthy cohorts of the

National Institute on Drug Abuse (NIDA). Experimental procedures

were performed in compliance with our local Institutional Review

Board, and participants provided written informed consent. Prior to

each scan, NIDA clinical and nursing units conducted Covid-19 test-

ing, urine drug tests, a physical exam, and a questionnaire on pre-

existing conditions and daily habits. Exclusion criteria included major

2 of 17 JOHNSON ET AL.



medical illness or current medication use, a history of neurological or

psychiatric disorders or substance abuse.

2.3 | Data acquisition

Phantom and human data were acquired using a 3T scanner

(MAGNETOM Prisma, Siemens Healthcare AG, Erlangen, Germany) with

a 32 channel head coil. Data were acquired with 2 mm isotropic voxel

size using a single-shot spin-echo echo planar imaging (EPI) sequence

(Wetscherek et al., 2015) modified for tensor-valued diffusion encoding

with free gradient waveforms (Martin et al., 2021). The acquisition

parameters were set as follows: FOV = 228 � 228 � 110 mm3, voxel

size = 2 � 2 � 2 mm3, acquisition bandwidth = 1512 Hz/Px, in-plane

acceleration factor 2 using GRAPPA reconstruction with 24 reference

lines, effective echo spacing of 0.8 ms, phase-partial Fourier factor of

0.75, and axial slice orientation.

The acquisition protocol was designed following previously

described heuristic guidelines (Martin et al., 2021). A detailed sum-

mary of the acquisition protocol is displayed in Figure 1. In short, in

addition to a b = 0 ms/μm2 volume, numerically optimized (Sjolund

et al., 2015) linear, planar, and spherical b-tensors were employed

with b-values ranging between 0.1 and 3 ms/μm2. Here we augment

the data acquisition scheme with exploration of the ω-dimension of

b ωð Þ in the range of 6.6–21Hz centroid frequencies, ωcent=2π, to

allow the decoupling of frequency-dependent diffusion components.

F IGURE 1 Key experimental details. (a) Time-dependent effective gradients G tð Þ and (b) corresponding tensor-valued encoding spectra b ωð Þ
for linear, planar, and spherical encoding at different echo times and centroid frequencies, denoted by black vertical lines. (c) Acquisition protocol
with repetition time TR, echo time TE, as well as b-tensor magnitude b, normalized anisotropy bΔ (planar: �0.5, spherical: 0, linear: 1), orientation
(Θ,Φ), and centroid frequency ωcent=2π, versus image acquisition index.
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It should be noted that the highest frequencies reached for b-values

of 0.5, 1.5, and 3ms/μm2 were 21, 15, and 11Hz, respectively. The

datasets were acquired with a single phase encoding direction (ante-

rior to posterior, AP), and an additional b=0ms/μm2 volume with

reversed phase encoding direction (PA). Sensitivity to R1 and R2 was

achieved by acquiring data with different combinations of repetition

times, TR= (0.62, 1.75, 3.5, 5, 7, 7.6) s and echo times, TE= (40, 63,

83, 150) ms. The number of concatenations and preparation scans

was increased to allow values of TR below 5 s.

The acquisition protocol we present here comprised of 139 indi-

vidual measurements, with a scan time of �40 min. This protocol was

designed by empirically selecting encoding parameters from the

633 D�R1�R2 imaging protocol (Martin et al., 2021) such that

the signal differences between brain tissue types are maximized and

signal to noise ratio (SNR) is preserved. In addition, the TE and

(in particular) the TR ranges were extended to address shortcomings

of the 633 volumes protocol. In our study, SNR, defined as the ratio

between the b¼0 average signal intensity at the volume center, and

the standard deviation of the signal intensity within a background

region was 136±14 for the in vivo data (averaged over all subjects

and all repetitions), and 446 and 90 for isotropic and anisotropic

regions of the phantom, respectively.

2.4 | Preprocessing and denoising strategies

Two denoising strategies were evaluated, in which MPPCA was

applied on (1) the combined MD-MRI data and on (2) MD-MRI data

grouped according to TE. These were compared with skipping the

denoising step altogether and with a reference pipeline without any

processing steps. The four strategies are schematically shown in

Figure 2.

The preprocessing modules used in this work are part of the TOR-

TOISE dMRI processing package (Irfanoglu et al., 2023; Pierpaoli

et al., 2010). For the full pipeline, the dMRI data initially underwent

denoising with the MPPCA technique (Veraart, Novikov, et al., 2016),

which was followed by Gibbs ringing correction (Kellner et al., 2016)

for partial k-space acquisitions (Lee, Novikov, & Fieremans, 2021).

Motion and eddy currents distortions were subsequently corrected

with TORTOISE's DIFFPREP module (Rohde et al., 2004) with a physi-

cally based parsimonious quadratic transformation model and a nor-

malized mutual information metric. For susceptibility distortion

correction, a T1W image was initially converted to a T2W image with

b = 0 s/mm2 contrast (Schilling et al., 2019), which was fed into the

DRBUDDI (M. O. Irfanoglu et al., 2015) method for AP PA distortion

correction. The final preprocessed data was output with a single inter-

polation in the space of an anatomical image at native in-plane voxel

size. We note that the data did not contain any visible slice-to-volume

motion or motion-induced signal dropouts, therefore, these options

were disabled in the processing.

The extent of spatially correlated noise was quantified by com-

puting the Global Moran Statistic (GMS), based on Local Indicators of

Spatial Autocorrelation (Osadebey et al., 2019) for all volumes on our

dataset from the background regions. Analyzing the GMS histograms,

we did not observe a high level of spatial autocorrelation in our

dataset.

We applied the original recommendation of choosing the patch

size for MPPCA denoising so that the resulting matrices are

F IGURE 2 Schematic description of the evaluated denoising strategies. The Reference pipeline did not include any processing steps besides
reorientation to the anatomical image space. In Strategies 2 and 3, all volumes, regardless of echo time/repetition time (TE/TR) and b-tensor
encoding design, were initially combined into a single dataset. The MPPCA denoising step was skipped in Strategy 2, and turned on in Strategy
3. For Strategy 4, all datasets were grouped according to echo time prior to denoising. The grouped data were then combined again after
denoising for the remainder of the pipeline.
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approximately square (Veraart, Novikov, et al., 2016). When denoising

the combined dataset, which consists of 139 volumes, the patch size

was [5 � 5 � 5] voxels. When denoising data grouped according to

TE (echo times of 40, 63, 83, 150 ms), which consists of 4, 49,

73, 13 volumes, respectively, the patch sizes were [2 � 2 � 2],

[4 � 4 � 4], [4 � 4 � 4], and [2 � 2 � 2] voxels, respectively.

2.5 | Multidimensional data processing

The preprocessed data were processed in Matlab R2019b

(MathWorks, Natick, MA) using the Monte Carlo inversion algorithm

(Narvaez et al., 2022) as implemented in the multidimensional diffu-

sion MRI toolbox (Nilsson et al., 2018). Briefly, the b ωð Þ�TE�TR

encoded signal S is modeled as a sum of contributions; the ith compo-

nent is characterized by its signal weight, or fraction fi, tensor-valued

diffusion spectra Di ωð Þ, and longitudinal and transverse relaxation

rates R1,i and R2,i according to (Narvaez et al., 2022)

S b ωð Þ,TE,TR½ � ¼
X
i

f i exp �
ð∞
�∞

b ωð Þ :Di ωð Þdω
0
@

1
A

1� exp �TRR1,ið Þ½ �exp �TER2,ið Þ,
ð1Þ

where the colon denotes a generalized scalar product.

As previously described in detail (Narvaez et al., 2021), inversion

of Equation (1) is rendered tractable by approximating Di ωð Þ as axi-

symmetric Lorentzians parameterized by the zero-frequency axial and

radial diffusivities D���,i,D ⊥ ,i

2
4

3
5, azimuthal and polar angles Θi,Φi½ �,

high-frequency isotropic diffusivity D0,i, axial and radial transition fre-

quencies, Γ���,i,Γ ⊥ ,i

2
4

3
5, along with longitudinal and transversal relaxa-

tion rates R1,i,R2,i½ �. In this study, these parameters were sampled in

the ranges 0:05≤D���= ⊥ =0
≤5μm2/ms, 0≤Θ≤ π, 0≤Φ≤2π,

0:2≤R1 ≤2 s
�1, 1≤R2 ≤30 s

�1, and 0:01≤Γ���= ⊥ ≤10,000 s�1. The

Monte Carlo inversion algorithm finds an ensemble of solutions within

the above sampling range, and estimates the corresponding weights

f via nonnegative least-squares, iterating this process while applying

quasi-genetic filtering and bootstrapping with replacement to account

for the inherent ill-conditioned nature of the Laplace inversion

(Benjamini, 2020; de Almeida Martins & Topgaard, 2018). Following

the terminology in (de Almeida Martins & Topgaard, 2018), the Monte

Carlo inversion was performed with Nin ¼200 input components,

Np ¼20 proliferation steps, Nm ¼20 mutation steps, up to 10 Nout

output components, and Nb ¼100 rounds of bootstrapping.

Voxelwise D ωð Þ�R1�R2 distributions in the primary analysis

space D���,D ⊥ ,Θ,Φ,D0,Γ���,Γ ⊥ ,R1,R2

2
4

3
5 were evaluated at selected

values of ω within the narrow 6.6–21Hz window actually probed by

the gradient waveforms, giving a set of ω-dependent distributions in

the D��� ωð Þ,D ⊥ ωð Þ,Θ,Φ,R1,R2

2
4

3
5 space. For each value of ω, the

results are visualized as ω-independent distributions by projecting

D��� ωð Þ and D ⊥ ωð Þ to the dimensions of isotropic diffusivity Diso ωð Þ

and squared normalized anisotropy D2
Δ ωð Þ (Conturo et al., 1996),

according to

Diso ωð Þ¼
D��� ωð Þþ2D ⊥ ωð Þ

3
, ð2Þ

and

D2
Δ ωð Þ¼

D��� ωð Þ�D ⊥ ωð Þ
0
@

1
A

2

D��� ωð Þþ2D ⊥ ωð Þ
0
@

1
A

2
: ð3Þ

The means, variances, and covariances over relevant dimensions

and subdivisions (“bins”) of the distribution space are then computed.

There are typically three bins in the in vivo human brain, roughly cor-

responding to white matter (WM), gray matter (GM), and CSF (Martin

et al., 2021). These in vivo bins, which will be respectively referred to

as bin 1, 2, and 3, represent partial integration regions in the Diso�D2
Δ

distribution space, that is, bin 1: Diso < 2.5μm
2/ms and D2

Δ >0:25; bin

2: Diso < 2.5μm
2/ms and D2

Δ <0:25; and bin 3: Diso > 2.5μm
2/ms and

the full range of D2
Δ. The normalized weights of these bins were

mapped and are labeled as fbin1, fbin2, and fbin3. The phantom we used

has two distinct regions, isotropic and anisotropic diffusion, and

therefore only two bins were used, with the following partial integra-

tion regions in the D2
Δ�Diso distribution space: Diso < 1.25μm

2/ms and

D2
Δ >0:40 for bin 1 (anisotropic), and Diso > 1.15μm

2/ms and

D2
Δ <0:12 for bin 2 (isotropic). The normalized weights of these bins

were mapped and are labeled as faniso and f iso. Following conventions

often used to display results from oscillating gradient encoding

(Aggarwal et al., 2012) the effects of restricted diffusion were quanti-

fied by a finite difference approximation of the rate of change of the

diffusivity metrics with frequency within the investigated window,

which in our case was 21 and 6.6Hz.

2.6 | Error estimates from phantom measurements

The ROIs from the isotropic and anisotropic portions of the phantom

were used to assess the effect of different denoising strategies on the

error estimate from the MD-MRI pipeline. We note that the signal

intensity has been estimated from the fitted models; 100 bootstrap

solutions have been estimated, the expected signal intensity for each

measurement has been estimated from the models, and the median
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over those signal estimates has been taken. Let ym,v be the measured

normalized signal intensity of measurement (i.e., image volume) m at

voxel v. Let bym,v be the estimated signal intensity.

We then compute the root mean square error (RMSE) for each

measurement and for each voxel. To compute the RMSE for

each measurement, RMSEm, we square the difference between the

measured and fitted voxel-wise normalized signal for each measure-

ment and voxel, average those squared differences over the voxels

and take the square root:

RMSEm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPV
v¼1

ym,v �bym,v

� �2
V

vuuut
, ð4Þ

where V is the number of voxels.

To obtain the RMSE for each voxel, RMSEv, (i.e., error for the

whole fit instead of an error for each measurement), we compute

RMSEv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1

ym,v �bym,v

� �2
M�Nv

vuuut
, ð5Þ

where M�Nvð Þ is the error degrees of freedom, M is the number of

measurements, and Nv is the number of estimated parameters at voxel

v. The median value of Nv over the bootstraps is used because Nv can

be different for each bootstrap.

2.7 | Variability analysis

The effect of different denoising strategies on the variability of the

MD-MRI estimates was quantified by computing the distance

between pairs of corresponding (i.e., voxelwise) D ωð Þ�R1�R2 distri-

butions from the first and second scans within each participant. These

computations were performed in the midway space between the scan

and rescan volumes for each participant space using a rigid transfor-

mation to ensure that the image registration process exerted an

equivalent influence on the scan and rescan data (Reuter et al., 2012;

Veraart et al., 2021). This midway transformation was applied to the

discrete D ωð Þ�R1�R2 coordinates D��� ωð Þ,D ⊥ ωð Þ,Θ,Φ,R1,R2

2
4

3
5 and

their respective weights in each imaging session's native space, bring-

ing each map to the midway point between the scan and rescan

sessions.

We propose here the EMD (Rubner et al., 1998) as a novel dis-

tance measure between D ωð Þ�R1�R2 distributions, once both scan

sessions have been transformed to the midway space. In the current

context, the EMD between voxelwise distributions obtained from two

scans from the same subject will produce a complete description of

the variability using different denoising strategies. The EMD com-

putes the distance between two distributions of any dimension,

expressed as discrete coordinates and weights (as in the current

implementation), or as density functions (continuous representations,

e.g., Benjamini et al., 2020), which are represented by signatures. The

signatures are sets of weighted features that capture the distributions.

In our case, the features were the discrete D ωð Þ�R1�R2 coordi-

nates D��� ωð Þ,D ⊥ ωð Þ,Θ,Φ,R1,R2

2
4

3
5.

As described in Section 2.5, each voxel contains Nb ¼100 boot-

strap estimates of D ωð Þ�R1�R2. Therefore, all discrete coordinates

within each bootstrap iteration, D��� ωð Þ,D ⊥ ωð Þ,Θ,Φ,R1,R2

2
4

3
5
n

, and

their respective weights, fn , were joined together, followed by a final

normalization step of the weights. The EMD is defined as the mini-

mum amount of “work” needed to change one signature into the

other. The work is based on predefined ground distance, that is,

the distance between two features in corresponding voxels, which

was chosen here to be Euclidean distance. Because of their different

magnitudes and units, the features, D��� ωð Þ,D ⊥ ωð Þ,Θ,Φ,R1,R2

2
4

3
5, were

normalized according to their respective maximal values, detailed in

2.5. Further, the angles Θ,Φ½ � were wrapped to π,2π½ �, respectively, to
take the periodicity and inversion symmetry of the orientation space

into account.

2.8 | Statistical analysis

Voxelwise RMSE (RMSEv) from the isotropic and anisotropic ROIs

within the phantom were grouped according to denoising strategy

and compared using one-way ANOVA. In a similar manner, voxelwise

EMD from the five subjects were first joined together, grouped

according to denoising strategy, and compared using one-way

ANOVA. In both phantom and in vivo cases, a multiple comparison

test using the Bonferroni correction was performed to determine the

effect the different denoising strategies have on the MD-MRI

estimates.

3 | RESULTS

3.1 | Diffusion phantom

We first assessed various denoising approaches based on the RMSE

of the MD-MRI model fit, considering both isotropic and anisotropic

ROIs within the phantom. It is important to note that RMSE serves as

a measure of the model's fidelity in capturing the measurements,

although it may not independently validate the model. However,

when a straightforward physical ground truth is available that is

expected to be well-described by the MD-MRI model, as in the case

of the phantom, RMSE serves as a robust indicator of the SNR.

Figure 3a shows the RMSE of each measurement averaged over all
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voxels within each ROI, for each denoising strategy. Especially notable

in the isotropic ROI, some volumes have higher fit errors than others,

which may indicate more severe image artifacts. However, the

RMSEm remains below 1% of the S0 signal intensity for all except two

volumes in the isotropic ROI, and below 3% in the anisotropic ROI.

Voxelwise RMSE distributions for each ROI and denoising strat-

egy are presented in Figure 3b. One-way ANOVA in the isotropic ROI

showed that the source of most mean squares variability was between

groups (p < .00001), with RMSEv means of 6.75e�3, 5.72e�3,

3.95e�3, and 4.06e�3, for the Reference, combined data without

and with denoising, and TE-based denoising, respectively. Pairwise

comparisons using a multiple comparison test with the Bonferroni

method identified that all the denoising strategies have significantly

different RMSEv means. Similar analysis was done with the aniso-

tropic ROI voxels, with RMSEv means of 2.98e�2, 2.45e�2, 1.63e�2,

and 1.72e�2, for the Reference, combined data without and with

denoising, and TE-based denoising, respectively. Here too, most mean

squares variability was due to differences among the group means

(p< .00001), and Bonferroni-corrected pairwise comparisons showed

that all the denoising strategies have significantly different RMSEv

means. These results demonstrate an advantage toward combining

the sparse MD-MRI dataset first, and then applying MPPCA denoising

on all the volumes at once.

Next, we illustrate the stability of our efficient MD-MRI acquisi-

tion protocol using a well-defined anisotropic phantom. Figure 4a

shows the way in which sub-voxel microstructural information is

obtained by partitioning the 2D Diso�D2
Δ plane into two regions

F IGURE 4 Representative phantom voxels from the isotropic
(blue) and anisotropic (red) regions of interest (ROIs). (a) Bin
segmentation between the two components representing partial
integration regions in the 2D Diso�D2

Δ plane. (b) The resulting

isotropic and anisotropic signal fraction maps, color-coded
(blue= isotropic, red= anisotropic). (c) Single-voxel attenuation
profiles (colored circles) and their fits (black dots). (d) D ωð Þ�R1�R2

distributions for each voxel projected onto the 2D Diso�D2
Δ, Diso�R1,

and Diso�R2 planes for five frequencies in the range of
ω=2π¼6:6�21 Hz as indicated with the linear gray scale of the
contour lines.

F IGURE 3 Effect of denoising strategy on the model fit root
mean square error (RMSE). (a) Normalized RMSE for each
measurement (image volume) averaged over the isotropic (top) and
anisotropic (bottom) regions of interest (ROIs), color coded according
to denoising strategies. (b) Distribution of normalized RMSE over
voxels within each ROI, color coded according to denoising strategies.
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(or bins), based on isotropic diffusion length scale and diffusion anisot-

ropy. In the case of the phantom, in which only two well-defined dif-

fusion populations exist, applying the partial integration in Figure 4a

in each voxel results in signal fraction map (faniso, f iso) coded into red

and blue colors, respectively, and shown in Figure 4b. Single-voxel

attenuation profiles (colored circles) and their fits (black dots) from

both ROIs are shown in Figure 4c.

The per-voxel D ωð Þ�R1�R2 distributions from both the isotro-

pic and anisotropic ROIs are visualized in Figure 4d as projections

onto the 2D Diso�D2
Δ, Diso�R1, and Diso�R2 planes for frequencies

ω=2π between 6.6 and 21Hz (represented by the grayscale intensity

of the contour plots). The microstructural differences between the

ROIs are most visible in the Diso�D2
Δ projection from a representative

single voxel, in which water within the isotropic ROI appears to expe-

rience completely isotropic diffusion (D2
Δ close to 0), and Diso of about

1.25μm2/ms, without any notable diffusion frequency dependency.

Mostly single peaks in the Diso�R1 and Diso�R2 planes point to low

relaxation rates, as expected from aqueous PVP solution (Pierpaoli

et al., 2009). The Diso�D2
Δ projection from a single voxel within the

anisotropic diffusion ROI shows pronounced diffusion frequency/time

dependence behavior. A single water population with low Diso of

about 0.78μm2/ms and high D2
Δ of about 0.82 is observed at low fre-

quency. A microenvironment with the same Diso but with lower appar-

ent anisotropy (D2
Δ of about 0.20) is observed as the frequency

increases. Although D2
Δ values of about 0.2 have been previously

observed in the brain, corresponding to a nearly symmetric “butterfly”
spread of components centered about the DΔ ¼0 line (de Almeida

Martins et al., 2020; Yon et al., 2020), this inversion-related artifact is

not present in our data, as can be seen by the strictly positive DΔ in

Figure S1. Instead, the low anisotropy peak provides direct evidence

of the coupling of diffusion length and time scales. This diffusion

time/frequency dependency behavior in diffusion phantoms is

expected when the asymptotic diffusion time is not reached, and the

characteristic length scale, 7.6μm in our case, cannot be fully sampled.

While at 6.6Hz the diffusion length scale of about 11μm should fully

sample the microstructure, at 21Hz and a diffusion length scale of

about 6μm, a proportion of the diffusing water is not fully restricted

by the boundaries.

Figure 5 displays a compilation of parametric maps representing

global and bin-specific statistical characteristics derived from the vox-

elwise D ωð Þ�R1�R2 distributions, preprocessed using all volumes

combined for the denoising step. The axial slice of the phantom fea-

tures two concentric rings: the inner ring, composed of 15μm diame-

ter fibers in an aqueous solution, exhibits highly anisotropic

microstructure, whereas the outer ring contains aqueous PVP solu-

tion, known for its isotropic properties.

In Figure 5a, the maps illustrate per-voxel statistics, including

means E[x], variances V[x], and covariances C x,y½ � for Diso, D
2
Δ, R1, and

R2, assessed at ω=2π¼6:6 Hz. The means E[Diso], E[R1], and E[R2] cor-

respond to conventional mean diffusivity (Basser et al., 1994), quanti-

tative R1, and R2 (Weiskopf et al., 2021), respectively. The E D2
Δ

h i
map

is akin to metrics used to quantify microscopic diffusion anisotropy

(Lasič et al., 2014; Lawrenz et al., 2010; Shemesh et al., 2015).

Averaged across the ROIs, the E[Diso] values were 0.96± 0.07μm2/ms

and 1.29±0.01μm2/ms, for the anisotropic and isotropic ROIs,

respectively, in agreement with previous measurements (Laun, Schad,

et al., 2009). As expected, the microstructural difference between the

ROIs is demonstrated from the averaged anisotropic and isotropic

E D2
Δ

h i
values of 0.63 ±0.05 and 0.004±0.002, respectively. The

increased intravoxel variances in the anisotropic ROI compared with

the isotropic region suggest potential heterogeneity and imperfect

fiber packing.

Examining the relaxation properties of the phantom, we mea-

sured faster transverse relaxation rates in the anisotropic ROI

(E R2½ �=4.76±0.77 and 1.15±0.14 s�1, for the anisotropic and isotro-

pic ROIs, respectively). This observation aligns with expectations of

increased relaxation in the presence of polymer fibers due to surface

relaxation effects (Laun, Huff, & Stieltjes, 2009). In addition, we

observed comparable longitudinal relaxation rates of E[R1]=0.76

±0.05 and 0.74 ±0.06 s�1 in the anisotropic and isotropic ROIs,

respectively.

The frequency-dependence results, presented in Figure 5b, show

the rate of change with frequency within the investigated range of

6.6–21 Hz for the per-voxel means, variances, and covariance of Diso

and D2
Δ. In the Δω=2πE Diso½ � map, positive values indicate diffusion time

dependency behavior suggestive of restriction (Aggarwal et al., 2012).

Conversely, decreased anisotropy with higher frequency results in

negative values in the Δω=2πE D2
Δ

h i
map. In both cases, the phantom

regions demonstrated the expected results: positive and negative

values of Δω=2πE Diso½ � and Δω=2πE D2
Δ

h i
in the anisotropic ROI, respec-

tively, and negligible frequency dependency in the isotropic ROI.

We can extract subvoxel information from the Diso�D2
Δ plane

bins depicted in Figure 4a. These bin-resolved maps, displayed in

Figure 5c, illustrate the means of the tensorial, relaxation, and fre-

quency properties. Each map employs two orthogonal scales: the

brightness intensity reflects the relative signal fraction, while the color

scale represents the specific property value. In addition to these met-

rics, we computed the voxelwise principal orientation of the tensors

and visualized it as directionally-encoded color (DEC) maps for each

bin, utilizing the tensor orientation data (i.e., Θ,Φ½ �). The DEC map pat-

tern in Figure 5c aligns with findings from previous studies (Laun,

Huff, & Stieltjes, 2009; Laun, Schad, et al., 2009).

3.2 | In vivo MD-MRI

We first assessed the impact of different denoising strategies on the

MD-MRI pipeline and estimates. Voxelwise agreement between

the first and second scan sessions was quantified using the EMD, as

detailed in Section 2.7. We calculated EMD histograms for the entire

brain averaged across the five subjects for each denoising method, as

depicted in Figure 6a. A closer examination of the histogram highlights

that denoising the combined MD-MRI data yields the lowest overall

EMD values across the entire brain for the five subjects.

Voxelwise EMD distributions for each denoising strategy are pre-

sented in Figure 6b. One-way ANOVA showed that the source of
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most mean squares variability was between groups (p < .00001), with

EMD means of 3.89e�1, 3.14e�1, 3.10e�1, 3.15e�1 for the Refer-

ence, combined data without and with denoising, and TE-based

denoising, respectively. Pairwise comparisons using a multiple com-

parison test with the Bonferroni method revealed that while the EMD

obtained from denoising the combined MD-MRI data was significantly

lower than the other three strategies, combining the data without

denoising and performing TE-based denoising did not significantly

alter the EMD.

Figure 6c displays maps of the voxelwise EMD between

D ωð Þ�R1�R2 distributions at ω=2π¼6:6 Hz over two scans from a

representative subject using each denoising strategy. High intensities

correspond to low D ωð Þ�R1�R2 distributions reproducibility. The

Reference strategy, that is, no preprocessing at all, produced a large

and heterogeneous variability as expected. Although less apparent to

the naked eye, when compared with denoising the combined data

strategy, skipping or performing TE-based denoising yielded elevated

EMD levels (indicated by white arrows). Raw data images with repre-

sentative combinations of TE, TR, b-value, and b-tensor rank under

the different denoising strategies are shown in Supplementary

Figure 2. These analyses support the phantom findings, confirming

that the preferred denoising strategy here is to first combine the

sparse MD-MRI dataset and then apply MPPCA denoising to all

the volumes simultaneously; this approach was adopted for the

remainder of this study.

Figure 7 illustrates axial parameter maps derived from voxelwise

and bin-resolved statistical descriptors of D ωð Þ�R1�R2 distributions

assessed at ω=2π¼6:6 Hz in a healthy brain. Despite the relatively

small number of MD-MRI encoding volumes and higher resolution,

the resulting maps exhibit minimal artifacts and align with findings

F IGURE 5 Parameter maps of the diffusion phantom derived from voxelwise D ωð Þ�R1�R2 distributions. (a) Voxelwise means E[x], variances
V[x], and covariances C x,y½ � at a selected encoding frequency ω=2π¼6:6Hz. (b) Parameter maps of the rate of change with frequency, Δω=2πE x½ �.
(c) Bin-resolved maps of E[x] and Δω=2πE x½ � according to Figure 4a. The brightness and color scales represent, respectively, the signal fractions and
the values of each parameter.
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from prior studies that employed lower-dimensional methods using

denser acquisition strategies (de Almeida Martins et al., 2020;Martin

et al., 2021; Reymbaut et al., 2021).

Intravoxel information in the human brain can be obtained and

mapped by partially integrating regions of the voxelwise

D ωð Þ�R1�R2 distributions. We chose here to be consistent with

previous works and use three regions in the 2D D2
Δ�Diso distribution

space that roughly correspond to WM, GM, and CSF, referred to as

bin 1, bin 2, and bin 3, respectively, and which are visualized in

Figure 7a. When applied voxelwise, partial integration according to

these bins results in their respective signal fraction maps, which are

visualized as an RGB image, in which red, green, and blue correspond

to bins 1, 2, and 3, respectively. The RGB signal fractions map pro-

vides intravoxel information, and highlights WM, GM, and CSF contri-

butions, as well as their superpositions.

Similar to previous studies (Martin et al., 2021; Reymbaut

et al., 2021), we observed that in voxels containing multiple water

populations with distinct diffusion and relaxation properties, intra-

voxel heterogeneity metrics V[x] and C x,y½ � exhibit non-zero values.

Consequently, elevated values predominantly appear at tissue inter-

faces, for example, WM and CSF, with significant parameter variations

that can be seen in Figure 7b. In addition to the dominating partial

volume effects, the increased V[x] can be caused by contributions

from non-Gaussian diffusion effects that violate the GPD assumption

(Jespersen et al., 2019), and induce microscopic kurtosis (Novello

et al., 2022). In this case, the microscopic kurtosis is not accounted for

in our model, and would appear to split between variances of Diso

and D2
Δ.

The frequency-dependent findings, presented in Figure 7c,

illustrate the rate of change with frequency within the examined

range of 6.6–21 Hz for voxelwise means, variances, and covari-

ance of Diso and D2
Δ. As mentioned above, positive Δω=2πe Diso½ �

values indicate diffusion time dependency behavior suggestive of

restriction (Aggarwal et al., 2012), while negative Δω=2πE D2
Δ

h i
values

indicate decreased anisotropy with higher frequency. We observed

the highest positive values of Δω=2πE Diso½ � in GM, predominantly in

the occipital cortex. Negative Δω=2πE Diso½ � values, indicative of inco-

herent CSF flow (Baron & Beaulieu, 2014; Does et al., 2003), were

observed in the ventricles. The Δω=2πE D2
Δ

h i
map exhibited strictly neg-

ative values, with the strongest frequency dependency in

cerebral WM.

Intravoxel information can be directly imaged by resolving the dif-

fusion and relaxation properties in Figure 7b,c according to the prede-

fined bins. These bin-resolved means of the tensorial, relaxation, and

frequency maps are presented in Figure 7d. This analysis parses out

the characteristics of predominantly WM, GM, and CSF voxels, for

example, relaxation rates and D2
Δ anisotropy are markedly higher in

WM, compared with GM and CSF. Bin-resolved Δω=2πE D2
Δ

h i
maps

F IGURE 6 Assessing the impact different denoising strategies had on the MD-MRI pipeline and estimates. (a) Whole brain Earth mover's
distance (EMD) histograms averaged across the five subjects for each denoising method. Error bars represent standard deviations. (b) Voxelwise
EMD distributions across the study population for each denoising strategy. (c) Maps of the voxelwise EMD between D ωð Þ�R1�R2 distributions
at ω=6.6Hz over two scans from a representative subject for each denoising strategy. High intensities correspond to low D ωð Þ�R1�R2

distributions reproducibility. White arrows point to the areas with elevated variability.
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confirms that indeed cerebral WM regions demonstrate the strongest

frequency-dependence of anisotropy.

Whole-brain histograms of bin-resolved means E[x] for each sub-

ject and scan are shown in Figure 8. Overall, the data is consistent

across all subjects, and especially within repeated measurements. The

histogram peaks in Figure 8 align with the visually prominent colors in

each bin of Figure 7d. Consistent with previous observations

(de Almeida Martins et al., 2020; Martin et al., 2021; Reymbaut

et al., 2021), bin 1 consistently exhibits the highest values for E[R1]

and E[R2], followed closely by bin 2, while big 3 consistently shows

substantially lower values.

4 | DISCUSSION

The wealth of information encapsulated within the nonparametric

D ωð Þ�R1�R2 distributions was demonstrated here using a diffusion

phantom and healthy human subjects. Our work was focused on

designing and testing a sparse and efficient MD-MRI dataset compris-

ing 139 images, which provides full brain coverage at 2mm isotropic

voxel size, in just 40min. This work presents a framework that encom-

passes lower-dimensional methods, that is, 6D D�R1�R2 (Martin

et al., 2021), 5D D�R1 (Reymbaut et al., 2021) and D�R2

(de Almeida Martins et al., 2020), 4D D (Topgaard, 2019), and 2D

F IGURE 7 Parameter maps of a representative subject derived from voxelwise D ωð Þ�R1�R2 distributions. (a) S0 map displayed in gray scale,
diagram with the division of the 2D Diso�D2

Δ projection into three bins (bin1, bin2, bin3), and the resulting signal fractions (fbin1, fbin2, fbin3) coded
into RGB color. (b) Per-voxel means E[x], variances V[x], and covariances C[x, y] at a selected encoding frequency ω=2π¼6:6 Hz. (c) Parameter
maps of the rate of change with frequency, Δω=2πE x½ �. (d) Bin-resolved maps of E[x] and Δω=2πE x½ �. The brightness and color scales represent,
respectively, the signal fractions and the values of each parameter. EMD, Earth mover's distance.
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F IGURE 8 Histograms of bin-resolved means E[x] for each measurement. The histograms were obtained from maps like the ones in Figure 7
by evaluating the whole brain and weighting each bin-resolved value of E[x] with its respective signal fraction (fbin1, fbin2, fbin3), using a narrow
Gaussian kernel. The red, green, and blue traces report data for the bins one to three, loosely corresponding to white matter, gray matter, and
CSF, and the similarly colored vertical lines and numbers indicate visually estimated representative parameter values across all subjects and
repetitions. All subjects were scanned twice.
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distributions (English et al., 1991; Kim et al., 2017; Pas et al., 2020),

while including a diffusion time/frequency dependency that unlocks

unique information. The efficient acquisition design prompted an

inquiry into the denoising of sparse MD data, a question we have

methodically explored.

Utilizing the inherent spectral content of the diffusion gradient

waveforms to explore the frequency dependence of the diffusion ten-

sor distribution and their correlations with R1 and R2, may provide

crucial missing information regarding the diffusion time-dependency

in biological tissue (Burcaw et al., 2015; Fieremans et al., 2016), via a

unified, (biophysical) model-free framework. While conventional oscil-

lating gradient spin echo (OGSE) protocols (Stepišnik, 1981, 1985) can

reach a maximum frequency of 60Hz using clinical scanners (Arbabi

et al., 2020), the numerically optimized linear, planar, and spherical

b-tensors utilized in our study, while limited to a diffusion frequency

range of 6.6–21Hz with current standard hardware, offer distinct

advantages. These rank 2 and 3 b-tensors are able to encode diffusion

correlations (Mitra, 1995), and thus to generate the full-rank diffusion

covariance tensor (Benjamini et al., 2012; Ning et al., 2021; Westin

et al., 2014), setting them apart from OGSE-based techniques

(Baron & Beaulieu, 2014; Xu et al., 2016). Consequently, we have

demonstrated how this frequency dependency can be dissected into

intravoxel components based on their D ωð Þ�R1�R2 distribution,

enabling the creation of microstructure-specific maps.

Although high-dimensional data is expected to contain redundan-

cies that could be leveraged in MPPCA denoising (Olesen et al., 2023),

the validity of this assertion toward the sparse MD-MRI protocol we

present here had to be examined. We used the RMSE of the MD-MRI

model fit from the isotropic and anisotropic ROIs within the phantom

to assess the performance of several denoising strategies: denoising

the diffusion data for each TE separately (Veraart et al., 2018), denois-

ing the full MD data, and skipping the denoising step altogether. The

results showed, as expected and previously demonstrated (Does

et al., 2019; Schilling et al., 2023), that MPPCA denoising improves

the overall performance, while indicating an advantage toward denois-

ing the full MD data over the other strategies (Figure 3). We used a

conservative choice of the denoising window based on the original

recommendation (Veraart, Novikov, et al., 2016). Such a choice, which

translates to relatively small window sizes in the case of our sparse

data acquisition, also avoids unwanted bias and reduced sensitivity in

the output, as was recently shown (Fernandes et al., 2023).

A diffusion phantom was then used to demonstrate the robust-

ness of the sparse imaging protocol and processing pipeline, and to

illustrate how the high dimensional diffusion-relaxation information

can be linked to a priori known and well-characterized microstructure.

Full distributions from single voxels in the two distinct phantom ROIs

were projected onto 2D Diso�D2
Δ, Diso–R1, and Diso–R2 planes

(Figure 4). These lower-dimensional distributions showed how the

microstructural information is robustly captured via distinct spectral

signatures for the isotropic and anisotropic regions of the phantom.

Further, the frequency dependence of Diso and D2
Δ was clearly exhib-

ited: water restricted between the fibers experience reduced interac-

tions with barriers in the short diffusion time regime (high ω), resulting

in increased apparent Diso and in the rise of a water population with

decreased anisotropy D2
Δ. The appearance of a low diffusion anisot-

ropy peak at high frequency provides direct evidence of the coupling

of diffusion length and time scales. With assumed hexagonal close

packing of the phantom's fibers (Laun, Huff, & Stieltjes, 2009), the

physical characteristic length scale is about 7.6μm, while the diffusion

length scales in the phantom are about 6 and 11μm for 21 and

6.6Hz, respectively. And indeed, these numbers are supported by the

relatively unrestricted water population seen at the high end of

the frequency range, which vanishes as the diffusion length scale

becomes greater than the physical characteristic length scale.

First and second-order statistical descriptors of Diso, D
2
Δ, R1, and

R2 were used to summarize and visualize aspects of the phantom vox-

elwise 6D distributions in a straightforward manner (Figure 5). These

maps were all in accordance with the expected diffusion and relaxa-

tion values (Laun, Huff, & Stieltjes, 2009). The frequency-dependence

map of Δω=2πE Diso½ � is equivalent to Δf ADC measured with OGSE

(Aggarwal et al., 2012; Kershaw et al., 2013), and showed no

frequency-dependence in the isotropic ROI but did show positive

values in the anisotropic ROIs, as expected due to restriction. Simi-

larly, the Δω=2πE D2
Δ

h i
map showed no frequency-dependence in the

isotropic ROI but showed negative values in the anisotropic ROIs,

which is expected because the diffusion length scale at ω=2π¼21 Hz

is smaller than the nominal characteristic length scale of the phantom,

described above.

We further assessed the performance of the investigated denois-

ing strategies using in vivo human data to complement the results

obtained from the phantom study. We conducted scans on five con-

trol subjects, which is close to the median sample size of six reported

for technical MRI studies (Hanspach et al., 2021), each scanned twice

with a few weeks in between, and quantified the variability of voxel-

wise D ωð Þ�R1�R2 distributions between scans under different

denoising strategies. The results, depicted in Figure 6, reaffirm the

conclusions drawn from the phantom-based experiments. Specifically,

they highlight the preference for denoising the complete MD dataset

when dealing with sparsely encoded data. While taking advantage of

the inherent redundancy in each dimension of multidimensional data

can enhance noise removal (Olesen et al., 2023), it necessitates sam-

pling across diffusion and relaxation dimensions in a grid-like pattern.

Our efficient MD-MRI acquisition protocol does not meet these con-

ditions, as explained in the Introduction.

Parameter maps, presented in Figure 7, such as E[Diso] and E D2
Δ

h i
show similar trends as in previous in vivo human brain studies

(de Almeida Martins et al., 2020; Martin et al., 2021; Reymbaut

et al., 2021). As expected, bin-resolved E[Diso], E D2
Δ

h i
, E[R1], and E[R2]

all show larger values in WM (bin 1) compared with GM (bin 2). It is

crucial to consider the time and length scales defined by the diffusion-

encoding gradients for interpretation of the frequency dependence

maps. In this work, our sampling scheme included centroid frequen-

cies varying from 6.6 to 21Hz (see Figure 1), which can be used to

explore restricted diffusion. The current frequency content range is

expected to be particularly sensitive to length scale of �13μm

(if spherical geometry is assumed; Stepišnik, 1993; Woessner, 1963).

Therefore, the observed elevated values of Δω=2πE Diso½ � in deep WM

and cortical brain regions should be considered with respect to the
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probed length scale of 13μm, which would be in line with neuronal

soma dimensions in the human cortex (Rajkowska et al., 1998). Ele-

vated Δω=2πE Diso½ � values were also hypothesized to indicate increased

local tissue disorder (Arbabi et al., 2020), which supports our findings

of lower frequency dependence in WM tracts compared with subcor-

tical WM and cortical GM. Negative Δω=2πE Diso½ � values were

observed in the ventricles, indicative of incoherent CSF flow (Baron &

Beaulieu, 2014; Does et al., 2003).

Basic considerations in the pulse sequence and acquisition design

prevent quantitative R1 and R2 comparisons with different studies.

When considering the current relaxation encoding, the measured sig-

nal arises from a complex interplay involving partial excitation by

radiofrequency pulses, relaxation processes, and exchange phenom-

ena among multiple proton pools, each possessing unique MR proper-

ties related to R1, R2, and linewidth (Manning et al., 2021). These

complex relationships make the measured R1 and to a lesser extent,

the R2, dependent upon the particular choice of pulse sequence, slice

thickness, and radiofrequency pulses bandwidth. Specifically, we see

this effect in Figure 8, in which R1 values are higher than previously

presented using a different imaging protocol. In addition, diffusion

gradient hardware limitations constrained the minimal TE in this study

to 40ms, in which myelin water (with R2 of �100 s�1) is expected to

be fully attenuated (Manning et al., 2021). Reducing the minimal echo

time can be achieved by, for example, implementing spiral sampling of

k-space (Lee, Wilm, et al., 2021) or using next-generation diffusion

gradients (Huang et al., 2021).

The framework we present here is best suited when biophysical

model-based approaches may not be applicable (Novikov

et al., 2018), in which the information on the underlying tissue com-

position is not available beforehand. The most likely scenarios would

involve pathological tissue resulting from a wide range of neurological

conditions such as neurodegeneration, neuroinflammation, cancer, or

even in normal aging. And indeed, diffusion-relaxation MD-MRI has

been recently gaining momentum, showing that it is uniquely posi-

tioned to address a range of challenging biological questions such as

prostate cancer (Wei et al., 2022; Zhang et al., 2020), breast cancer

(Naranjo et al., 2021), placenta characterization (Slator et al., 2019),

spinal cord injury (Benjamini et al., 2020; Kim et al., 2017), axonal

injury (Benjamini et al., 2021), and astrogliosis (Benjamini

et al., 2022).

5 | CONCLUSION

This study establishes the feasibility of D ωð Þ�R1�R2 correlation, com-

bining diffusion-relaxation weighting, time/frequency dependence,

and tensor-valued encoding, using an efficient 40-min protocol with full

brain coverage at 2mm3 voxel size. The MD-MRI framework provides

rich intravoxel information, without presuming tissue composition, of

high-dimensional correlations of relaxation and diffusion properties,

offering insights into cell types, chemical composition, axonal density,

restriction, and orientations within a voxel. We demonstrated that this

experimental design and acquisition protocol, in conjunction with the

MD-MRI processing pipeline, produce robust estimates, encouraging

the broader adoption and use of this new imaging approach in charac-

terizing both healthy and pathological tissues.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Phil Cholak for facilitating the

MRI scans. This work was funded by the Intramural Research Pro-

grams of the National Institute on Aging (NIA) and the National Insti-

tute on Drug Abuse of the National Institutes of Health (NIDA).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author. The data are not publicly

available due to privacy or ethical restrictions.

ORCID

Dan Benjamini https://orcid.org/0000-0002-9558-7056

REFERENCES

Aggarwal, M., Jones, M. V., Calabresi, P. A., Mori, S., & Zhang, J. (2012).

Probing mouse brain microstructure using oscillating gradient diffusion

MRI. Magnetic Resonance in Medicine, 67, 98–109. https://doi.org/10.
1002/mrm.22981

Arbabi, A., Kai, J., Khan, A. R., & Baron, C. A. (2020). Diffusion dispersion

imaging: Mapping oscillating gradient spin-echo frequency depen-

dence in the human brain. Magnetic Resonance in Medicine, 83, 2197–
2208. https://doi.org/10.1002/mrm.28083

Baron, C. A., & Beaulieu, C. (2014). Oscillating gradient spin-echo (OGSE)

diffusion tensor imaging of the human brain. Magnetic Resonance in

Medicine, 72, 726–736. https://doi.org/10.1002/mrm.24987

Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spec-

troscopy and imaging. Biophysical Journal, 66, 259–267. https://doi.
org/10.1016/S0006-3495(94)80775-1

Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous

system—A technical review. NMR in Biomedicine, 15, 435–455.
https://doi.org/10.1002/nbm.782

Benjamini, D. (2020). Nonparametric inversion of relaxation and diffusion

correlation data. Royal Society of Chemistry. https://doi.org/10.1039/

9781788019910-00278

Benjamini, D., & Basser, P. J. (2017). Magnetic resonance microdynamic

imaging reveals distinct tissue microenvironments. NeuroImage, 163,

183–196. https://doi.org/10.1016/j.neuroimage.2017.09.033

Benjamini, D., & Basser, P. J. (2020). Multidimensional correlation MRI.

NMR in Biomedicine, 33, e4226. https://doi.org/10.1002/nbm.4226

Benjamini, D., Hutchinson, E. B., Komlosh, M. E., Comrie, C. J.,

Schwerin, S. C., Zhang, G., Pierpaoli, C., & Basser, P. J. (2020). Direct

and specific assessment of axonal injury and spinal cord microenviron-

ments using diffusion correlation imaging. NeuroImage, 221, 117195.

https://doi.org/10.1016/j.neuroimage.2020.117195

Benjamini, D., Iacono, D., Komlosh, M. E., Perl, D. P., Brody, D. L., &

Basser, P. J. (2021). Diffuse axonal injury has a characteristic multidi-

mensional MRI signature in the human brain. Brain, 144, 800–816.
https://doi.org/10.1093/brain/awaa447

Benjamini, D., Katz, Y., & Nevo, U. (2012). A proposed 2D framework for

estimation of pore size distribution by double pulsed field gradient

NMR. The Journal of Chemical Physics, 137, 224201. https://doi.org/

10.1063/1.4769792

14 of 17 JOHNSON ET AL.

https://orcid.org/0000-0002-9558-7056
https://orcid.org/0000-0002-9558-7056
https://doi.org/10.1002/mrm.22981
https://doi.org/10.1002/mrm.22981
https://doi.org/10.1002/mrm.28083
https://doi.org/10.1002/mrm.24987
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1002/nbm.782
https://doi.org/10.1039/9781788019910-00278
https://doi.org/10.1039/9781788019910-00278
https://doi.org/10.1016/j.neuroimage.2017.09.033
https://doi.org/10.1002/nbm.4226
https://doi.org/10.1016/j.neuroimage.2020.117195
https://doi.org/10.1093/brain/awaa447
https://doi.org/10.1063/1.4769792
https://doi.org/10.1063/1.4769792


Benjamini, D., Priemer, D. S., Perl, D. P., Brody, D. L., & Basser, P. J. (2022).

Mapping astrogliosis in the individual human brain using multidimen-

sional MRI. Brain, 146, 1212–1226. https://doi.org/10.1093/brain/

awac298

Bouhrara, M., Rejimon, A. C., Cortina, L. E., Khattar, N., Bergeron, C. M.,

Ferrucci, L., Resnick, S. M., & Spencer, R. G. (2020). Adult brain aging

investigated using BMC-mcdespot-based myelin water fraction imag-

ing. Neurobiology of Aging, 85, 131–139. https://doi.org/10.1016/j.

neurobiolaging.2019.10.003

Burcaw, L. M., Fieremans, E., & Novikov, D. S. (2015). Mesoscopic struc-

ture of neuronal tracts from timedependent diffusion. NeuroImage,

114, 18–37. https://doi.org/10.1016/j.neuroimage.2015.03.061

Conturo, T. E., McKinstry, R. C., Akbudak, E., & Robinson, B. H. (1996).

Encoding of anisotropic diffusion with tetrahedral gradients: A general

mathematical diffusion formalism and experimental results. Magnetic

Resonance in Medicine, 35, 399–412. https://doi.org/10.1002/mrm.

1910350319

de Almeida Martins, J. P., Tax, C. M. W., Szczepankiewicz, F., Jones, D. K.,

Westin, C.-F., & Topgaard, D. (2020). Transferring principles of solid-

state and laplace NMR to the field of in vivo brain MRI. Magnetic Reso-

nance, 1, 27–43. https://doi.org/10.5194/mr-1-27-2020

de Almeida Martins, J. P., & Topgaard, D. (2018). Multidimensional correla-

tion of nuclear relaxation rates and diffusion tensors for model-free

investigations of heterogeneous anisotropic porous materials. Scientific

Reports, 8, 2488. https://doi.org/10.1038/s41598-018-19826-9

DeSantis, S., Barazany, D., Jones, D. K., & Assaf, Y. (2016). Resolving

relaxometry and diffusion properties within the same voxel in the

presence of crossing fibres by combining inversion recovery and

diffusion-weighted acquisitions. Magnetic Resonance in Medicine, 75,

372–380. https://doi.org/10.1002/mrm.25644

Does, M. D., & Gore, J. C. (2002). Compartmental study of T1 and T2 in

rat brain and trigeminal nerve in vivo. Magnetic Resonance in Medicine,

47, 274–283. https://doi.org/10.1002/mrm.10060

Does, M. D., Olesen, J. L., Harkins, K. D., Serradas-Duarte, T.,

Gochberg, D. F., Jespersen, S. N., & Shemesh, N. (2019). Evaluation of

principal component analysis image denoising on multi-exponential

MRI relaxometry. Magnetic Resonance in Medicine, 81, 3503–3514.
https://doi.org/10.1002/mrm.27658

Does, M. D., Parsons, E. C., & Gore, J. C. (2003). Oscillating gradient mea-

surements of water diffusion in normal and globally ischemic rat brain.

Magnetic Resonance in Medicine, 49, 206–215. https://doi.org/10.

1002/mrm.10385

Dvorak, A. V., Swift-LaPointe, T., Vavasour, I. M., Lee, L. E., Abel, S.,

Russell-Schulz, B., Graf, C., Wurl, A., Liu, H., Laule, C., Li, D. K. B.,

Traboulsee, A., Tam, R., Boyd, L. A., MacKay, A. L., & Kolind, S. H.

(2021). An atlas for human brain myelin content throughout the adult

life span. Scientific Reports, 11, 269. https://doi.org/10.1038/s41598-

020-79540-3

English, A. E., Whittall, K. P., Joy, M. L. G., & Henkelman, R. M. (1991).

Quantitative two-dimensional time correlation relaxometry. Magnetic

Resonance in Medicine, 22, 425–434. https://doi.org/10.1002/mrm.

1910220250

Fernandes, F. F., Olesen, J. L., Jespersen, S. N., & Shemesh, N. (2023). MP-

PCA denoising of fMRI time-series data can lead to artificial activation

“spreading”. NeuroImage, 273, 120118. https://doi.org/10.1016/j.

neuroimage.2023.120118

Fieremans, E., Burcaw, L. M., Lee, H.-H., Lemberskiy, G., Veraart, J., &

Novikov, D. S. (2016). In vivo observation and biophysical interpreta-

tion of time-dependent diffusion in human white matter. NeuroImage,

129, 414–427. https://doi.org/10.1016/j.neuroimage.2016.01.018

Hanspach, J., Nagel, A. M., Hensel, B., Uder, M., Koros, L., & Laun, F. B.

(2021). Sample size estimation: Current practice and considerations

for original investigations in MRI technical development studies. Mag-

netic Resonance in Medicine, 85, 2109–2116. https://doi.org/10.1002/
mrm.28550

Huang, S. Y., Witzel, T., Keil, B., Scholz, A., Davids, M., Dietz, P.,

Rummert, E., Ramb, R., Kirsch, J. E., Yendiki, A., Fan, Q., Tian, Q.,

Ramos-Llordén, G., Lee, H. H., Nummenmaa, A., Bilgic, B.,

Setsompop, K., Wang, F., Avram, A. V., … Rosen, B. R. (2021). Connec-

tome 2.0: Developing the next-generation ultra-high gradient strength

human MRI scanner for bridging studies of the micro-, meso- and

macro-connectome. NeuroImage, 243, 118530. https://doi.org/10.

1016/j.neuroimage.2021.118530

Hurlimann, M. D., Burcaw, L., & Song, Y.-Q. (2006). Quantitative character-

ization of food products by twodimensional D–and–distribution func-

tions in a static gradient. Journal of Colloid and Interface Science, 297,

303–311. https://doi.org/10.1016/j.jcis.2005.10.047
Irfanoglu, M., Nayak, A., Taylor, P., & Pierpaoli, C. (2023). Tortoise v4:

Reimagining the nih diffusion MRI processing pipeline.

Irfanoglu, M. O., Modi, P., Nayak, A., Hutchinson, E. B., Sarlls, J., &

Pierpaoli, C. (2015). Dr-Buddi (diffeomorphic registration for blip-up

blip-down diffusion imaging) method for correcting echo planar imag-

ing distortions. NeuroImage, 106, 284–299. https://doi.org/10.1016/j.
neuroimage.2014.11.042

Jespersen, S. N., Olesen, J. L., Ianuş, A., & Shemesh, N. (2019). Effects of
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Lasič, S., Yuldasheva, N., Szczepankiewicz, F., Nilsson, M., Budde, M.,

Dall'Armellina, E., Schneider, J. E., Teh, I., & Lundell, H. (2022). Stay on

the beat with tensor-valued encoding: Time-dependent diffusion and

cell size estimation in ex vivo heart. Frontiers in Physics, 10, 812115.

https://doi.org/10.3389/fphy.2022.812115

Laun, F. B., Huff, S., & Stieltjes, B. (2009). On the effects of dephasing due

to local gradients in diffusion tensor imaging experiments: Relevance

for diffusion tensor imaging fiber phantoms. Magnetic Resonance Imag-

ing, 27, 541–548. https://doi.org/10.1016/j.mri.2008.08.011

JOHNSON ET AL. 15 of 17

https://doi.org/10.1093/brain/awac298
https://doi.org/10.1093/brain/awac298
https://doi.org/10.1016/j.neurobiolaging.2019.10.003
https://doi.org/10.1016/j.neurobiolaging.2019.10.003
https://doi.org/10.1016/j.neuroimage.2015.03.061
https://doi.org/10.1002/mrm.1910350319
https://doi.org/10.1002/mrm.1910350319
https://doi.org/10.5194/mr-1-27-2020
https://doi.org/10.1038/s41598-018-19826-9
https://doi.org/10.1002/mrm.25644
https://doi.org/10.1002/mrm.10060
https://doi.org/10.1002/mrm.27658
https://doi.org/10.1002/mrm.10385
https://doi.org/10.1002/mrm.10385
https://doi.org/10.1038/s41598-020-79540-3
https://doi.org/10.1038/s41598-020-79540-3
https://doi.org/10.1002/mrm.1910220250
https://doi.org/10.1002/mrm.1910220250
https://doi.org/10.1016/j.neuroimage.2023.120118
https://doi.org/10.1016/j.neuroimage.2023.120118
https://doi.org/10.1016/j.neuroimage.2016.01.018
https://doi.org/10.1002/mrm.28550
https://doi.org/10.1002/mrm.28550
https://doi.org/10.1016/j.neuroimage.2021.118530
https://doi.org/10.1016/j.neuroimage.2021.118530
https://doi.org/10.1016/j.jcis.2005.10.047
https://doi.org/10.1016/j.neuroimage.2014.11.042
https://doi.org/10.1016/j.neuroimage.2014.11.042
https://doi.org/10.1016/j.jmr.2019.01.007
https://doi.org/10.1002/mrm.26054
https://doi.org/10.1016/j.neuroimage.2012.12.036
https://doi.org/10.1016/j.neuroimage.2012.12.036
https://doi.org/10.1002/mrm.26629
https://doi.org/10.1016/j.micromeso.2017.05.030
https://doi.org/10.1016/j.micromeso.2017.05.030
https://doi.org/10.1093/braincomms/fcad258
https://doi.org/10.1093/braincomms/fcad258
https://doi.org/10.1002/mrm.24670
https://doi.org/10.1002/mrm.24670
https://doi.org/10.3389/fphy.2014.00011
https://doi.org/10.3389/fphy.2022.812115
https://doi.org/10.1016/j.mri.2008.08.011


Laun, F. B., Schad, L. R., Klein, J., & Stieltjes, B. (2009). How background

noise shifts eigenvectors and increases eigenvalues in DTI. Magnetic

Resonance Materials in Physics, Biology and Medicine, 22, 151–158.
https://doi.org/10.1007/s10334-008-0159-6

Lawrenz, M., Koch, M. A., & Finsterbusch, J. (2010). A tensor model and

measures of microscopic anisotropy for double-wave-vector

diffusion-weighting experiments with long mixing times. Journal of

Magnetic Resonance, 202, 43–56. https://doi.org/10.1016/j.jmr.2009.

09.015

LeBihan, D. (1990). Diffusion/perfusion MR imaging of the brain: From

structure to function. Radiology, 177, 328–329. https://doi.org/10.

1148/radiology.177.2.2217762

Lee, H., Novikov, D. S., & Fieremans, E. (2021). Removal of partial fourier-

induced GIBBS (RPG) ringing artifacts in MRI. Magnetic Resonance in

Medicine, 86, 2733–2750. https://doi.org/10.1002/mrm.28830

Lee, Y., Wilm, B. J., Brunner, D. O., Gross, S., Schmid, T., Nagy, Z., &

Pruessmann, K. P. (2021). On the signal-to-noise ratio benefit of spiral

acquisition in diffusion MRI. Magnetic Resonance in Medicine, 85,

1924–1937. https://doi.org/10.1002/mrm.28554

Leuze, C., Aswendt, M., Ferenczi, E., Liu, C. W., Hsueh, B., Goubran, M.,

Tian, Q., Steinberg, G., Zeineh, M. M., Deisseroth, K., & McNab, J. A.

(2017). The separate effects of lipids and proteins on brain MRI con-

trast revealed through tissue clearing. NeuroImage, 156, 412–422.
https://doi.org/10.1016/j.neuroimage.2017.04.021

Lundell, H., & Lasic, S. (2020). Chapter 2. Diffusion encoding with general

gradient waveforms. https://doi.org/10.1039/9781788019910-00012
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