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Abstract. Diabetes and the associated complications are 
becoming a serious global threat and an increasing burden 
to human health and the healthcare systems. Diabetic 
nephropathy (DN) is the primary cause of end‑stage kidney 
disease. Abnormal angiogenesis is well established to be 
implicated in the morphology and pathophysiology of 
DN. Factors that promote or inhibit angiogenesis serve an 
important role in DN. In the present review, the current 
issues associated with the vascular disease in DN are high‑
lighted, and the challenges in the development of treatments 
are discussed.
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1. Introduction

Diabetic nephropathy (DN) is clinically defined as micro‑
albuminuria with or without other microvascular lesions or 
angiopathies, followed by a gradual increase in the extent of 
proteinuria and a decrease in the glomerular filtration rate, in a 
patient with long‑term diabetes (1). DN is the primary cause of 
chronic kidney disease (CKD) that results in progressive renal 
hypofunction, with ~50% of patients progressing to end‑stage 
renal disease (ESRD) in the USA (2,3). Studies on DN indicate 
that 20‑30% patients with type I and II diabetes will progress 
to CKD and may eventually progress to ESRD (4,5).

The structural damage to the glomerular filtration barrier, 
as well as proteinuria are the primary features of DN, in 
addition to ultra‑structural alterations, glomerular basement 
membrane thickening, mesangial matrix expansion, nodular 
glomerulosclerosis, arteriolar hyalinosis, podocyte foot process 
fusion and detachment (6). The occurrence of these injuries 
is due to the imbalance between the destructive factors (such 
as advanced glycation end products, free radicals, immune 
agents, andpro‑inflammatory and pro‑fibrotic molecules) and 
protective factors (such as anti‑inflammatory agents, anti‑ROS 
molecules and anti‑fibrotic molecules) in the kidney (7‑11).

Although glomerular mesangial cells and podocytes are 
considered to be the primary mediators of DN, the micro‑
vascular system damage caused by diabetes also serves a 
key role in the pathogenesis. Similar to diabetic retinopathy, 
biopsy in patients with type 1 diabetes showed increased 
glomerular capillary density and an increased number of 
glomerular efferent arterioles caused by glomerular neovas‑
cularization (12,13). In addition, the glomerular expression of 
vascular growth factors, including angiogenin and vascular 
endothelial growth factor (VEGF) increases (12,14,15), which 
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may cause DN by promoting vascular leakage and decreasing 
transendothelial electrical resistance (14,16).

At present, the treatment of DN is primarily aimed at 
controlling blood glucose levels and lowering blood pressure 
using specific types of blood pressure drugs that block the 
renin‑angiotensin‑aldosterone system (RAAS). RAAS inhibi‑
tors have been shown to exhibit renal protection in patients 
with DN, but it is not always certain whether their efficacy 
is sufficient. Similarly, in large clinical trials, strict blood 
glucose control has led to inconsistent benefits for patients 
with kidney disease. Therefore, once obvious DN occurs, in 
addition to the use of RAAS inhibitors to control blood pres‑
sure and blood glucose, specific therapies for the underlying 
mechanisms are also required to prevent DN developing into 
ESRD.

In several animal experiments, angiogenesis has been 
shown to be a potential target for the early treatment of DN. 
VEGF is the primary mediator of abnormal diabetic glomerular 
angiogenesis. Although the beneficial effects of anti‑VEGF 
antibodies have been confirmed in diabetic animal experiments, 
recent basic and clinical evidence has suggested that blocking 
VEGF signaling can lead to proteinuria and renal thrombotic 
microangiopathy (17), indicating the importance of the normal 
levels of VEGF in the kidney. Therefore, anti‑angiogenic 
treatment of DN should eliminate the excessive angiogenic 
response of the glomeruli without accelerating endothelial 
damage. Some endogenous anti‑angiogenic factors, such as 
tumorstatin and endostatin, inhibit the excessive activation of 
endothelial cells, but do not specifically block the signal trans‑
duction of VEGF. In addition, the novel endothelial‑derived 
anti‑angiogenic factor vasohibin‑1 (VASH1) improves stress 
tolerance and the survival of endothelial cells, and inhibits 
excessive angiogenesis. These anti‑angiogenic factors have 
been shown to inhibit proteinuria and glomerular changes in 
diabetic mouse models (18). Therefore, anti‑angiogenic treat‑
ments with promising drug candidates may improve the renal 
prognosis of patients with early DN.

In the present review, the formation and possible causes 
of abnormal angiogenesis in DN are summarized, and inte‑
grated related treatment options are discussed, with the aim 
of highlighting potential novel avenues for future research and 
clinical treatment.

2. Abnormal angiogenesis in DN

Angiogenesis refers to the physiological and pathological 
process of neovascularization based on already present vessels. 
It is associated with embryogenesis, wound healing, tumor 
growth and metastasis, atherosclerosis and human inflamma‑
tory diseases (19). Abnormal angiogenesis is always associated 
with the morphology and pathophysiology of DN. Initially, it 
was reported that the formation of new blood vessels in the 
glomeruli of patients with type I and II diabetes represented 
abnormal angiogenesis (12,20,21), and abnormal blood vessels 
were discovered in the glomerular tuft area, the glomerular 
vascular pole and Bowman's capsule (21,22). A large number 
of proangiogenic and anti‑angiogenic factors are involved in 
the regulation of angiogenesis, including VEGF, angiopoi‑
etins, fibroblast growth factors (FGFs), transforming growth 
factor‑1 β (TGF‑1β) and ephrin, amongst others.

Proangiogenic factors
VEGFs. As is presented in Table I, VEGF or VEGF‑A is a critical 
inducer of angiogenesis, and its expression in the glomerulus 
is involved in the pathogenesis of DN. It has been suggested 
that the oxygen‑regulated protein 150 kDa (ORP150) may 
be involved in the development of proteinuria by regulating 
VEGF secretion in DN, as ORP150 expression is upregulated 
in patients with DN (23). Blockade of VEGF signaling with the 
pan‑VEGF receptor tyrosine kinase inhibitor, SU5416, amelio‑
rated diabetic (type II) albuminuria in a mouse model (24). 
Administration of neutralizing anti‑VEGF antibodies in type I 
and II diabetic animals decreased proteinuria and glomerular 
hypertrophy (16,25,26). Treatment with resveratrol, a poly‑
phenol with anti‑angiogenic activity, decreased the increase 
in glomerular diameter, mesangium accumulation, glomerular 
basement membrane thickness and renal fibrosis in a DN rat 
model, by decreasing the expression of pro‑angiogenic factors, 
such as VEGF (27). Chemerin is a fat cell factor that partici‑
pates in regulating inflammation. A previous study reported 
that the expression of chemerin and VEGF was associated 
with inflammatory factors and renal function in a DN rat 
model (28). Intravitreal injections of VEGF inhibitors can lead 
to a chronic decline in renal function (29). Additionally, the 
activation of protease‑activated receptor 2 (PAR2) can gener‑
ally exacerbate diabetic kidney disease, but PAR2 can protect 
against VEGF inhibitor‑induced kidney damage (30).

The VEGF‑A gene produces five closely associated 
subtypes via alternative splicing, and the most abundantly 
expressed species is VEGF‑A165, which encodes a glycoprotein 
with 20% homology to the A and B chains of platelet‑derived 
growth factor (PDGF) (31). Renal VEGF‑A gene expression 
is increased at the early stages and remains high at the later 
stages of diabetes in rats (32). There have been controversial 
results regarding the expression of VEGF‑A in glomeruli of 
DN. Immunohistochemical analysis of renal biopsy showed 
that VEGF‑A expression in the glomeruli was increased in the 
early stages of DN (33). However, the expression of VEGF‑A 
mRNA in the glomeruli of patients with DN was decreased 
by oligonucleotide microarray analysis (34). The increase 
of VEGF‑A expression in the serum of patients with type II 
diabetes is associated with blood glucose control, high levels 
of the sensitive C‑reactive protein and proteinuria, suggesting 
that VEGF‑A is a biomarker of diabetic inflammation and 
nephropathy (35). Serum VEGF‑A levels are significantly corre‑
lated with hypoxia inducible factor‑1 (HIF‑1) and insulin‑like 
growth factor‑1 (IGF‑1), which is hypothesized to be associated 
with the pathogenesis of DN (36). Podocyte specific VEGF‑A 
heterozygous deficient mice showed proteinuria and glomer‑
ular endothelial damage similar to preeclampsia, whereas 
podocyte‑specific VEGF‑A165 overexpressing mice showed 
significant striking collapsing glomerulopathy (37). VEGF‑A 
decreases the levels of inhibitory complement factor H in the 
kidney, and this known genetic alteration is a feature of heredi‑
tary thrombotic microangiopathy, suggesting that VEGF‑A is 
involved in the local regulation of the complement system (38). 
Under the control of α‑l antitrypsin promoter, transgenic 
rabbits expressing VEGF‑A165 in the kidney and liver also 
showed progressive proteinuria and renal dysfunction, early 
glomerular capillary hyperplasia and podocyte hypertrophy, 
late glomerular sclerosis and glomerular villus collapse (39). 



MOLECULAR MEDICINE REPORTS  23:  260,  2021 3

Eremina et al (40) found that when the VEGF‑A gene was 
conditionally deleted from the podocytes of adult mice, an 
increase in proteinuria, thrombus and capillary ring occlusion 
in capillaries and endothelial cell swelling were observed, 
which is similar to renal thrombotic microangiopathy (40). 
On the other hand, overexpression of VEGF‑A in podocytes of 
adult transgenic mice leads to proteinuria, glomerular enlarge‑
ment, glomerular basement membrane thickening, mesangial 
expansion and podocyte disappearance (41). In addition, over‑
expression of mutant VEGF‑A, which selectively stimulates 
VEGFR‑2, leads to mesangial matrix expansion and endothe‑
lial cell proliferation (42). In a case‑controlled study, it was 
shown that serum VEGF‑A was more preferable than that in 
plasma as a marker reflecting diabetic control in patients with 
type II diabetes, since a large portion of VEGF‑A is derived 
from platelets (35). Kidney injury was partially prevented 
using DIAVIT, a natural Vaccinium myrtillus (blueberry) and 
Hippophae Rhamnoides (sea buckthorn) extract, due to the 
alteration of VEGF‑A splicing in type II DN, particularly with 
delphinidin (43).

VEGF is a heparin‑binding growth factor specific 
for vascular endothelial cells to promote angiogenesis 
in vivo (44). VEGF‑A increases vascular permeability and 
monocyte chemotaxis (45,46). VEGF‑A binds to tyrosine 
kinase receptor VEGFR‑1 (Flt‑1) and VEGFR‑2 (KDR/Flk‑1), 
activating them (47). The angiogenic signal primarily comes 
from VEGF‑A binding to VEGFR‑2, whereas VEGFR‑1 can 
be used as a negative regulator of VEGF‑A, at least under 
certain conditions, such as embryogenesis (1). In addition, the 
activation of VEGFR‑2 inhibits the apoptosis of endothelial 
cells via a PI3K Akt pathway (48). The synergistic effect of 
hyperglycemia and increased VEGF‑A levels in diabetic 
glomerulopathy can be explained by the unique hypothesis of 
‘VEGF‑endothelial nitric oxide (NO) uncoupling’ (49,50).

VEGF‑B is expressed predominantly in renal medullary 
tubular cells, but not in glomeruli, and its receptor, VEGFR‑1, 
is expressed in endothelial cells (51). Inhibition of VEGF‑B 
can prevent the histological changes and renal dysfunction 
in diabetic mice, and particularly blocks the lipotoxicity of 
podocytes and improves insulin resistance (52).

Angiopoietins (Angs). Angs are a family of vascular growth 
factors that regulate vascular remodeling, maturation and 
stability. The Angs family includes Ang1, Ang2 and Ang4 
(human homologous gene of mouse Ang3), and they interact 
with tyrosine kinase receptors (Tie1 and Tie2). Ang‑Tie 
signaling is involved in different processes of vascular devel‑
opment and remodeling in different diseases. Angiotensin 
converting enzyme (ACE) also regulates vascular reactivity 
by regulating the production of nitric oxide (NO) (53,54).

In streptozotocin (STZ)‑induced type 1 diabetic mice, the 
alteration of the milieu of vascular growth factors include a 
decrease in Ang1 levels, increase in VEGF‑A levels, decrease 
in soluble VEGFR1 expression, and increase in phosphoryla‑
tion of VEGFR2 (55). This alteration is accompanied by 
significant proteinuria, renal hypertrophy, hyperfiltration, 
ultrastructural changes of glomeruli and abnormal angiogen‑
esis (55). Podocyte‑specific inducible repletion of Ang1 can 
decrease proteinuria by 70% and prevent the proliferation of 
glomerular endothelial cells induced by diabetes (55). Ang2 

levels are increased significantly in STZ‑injected rat models 
and in diabetic patients (56).

Cartilage oligomeric matrix protein (COMP)‑Ang1, a 
synthetic soluble, stable, and potent Ang1 variant, can phos‑
phorylate the Tie2 receptor and Akt, and promote angiogenesis 
in vitro and in vivo (57). Lee et al (58) found that delivery of 
COMP‑Ang1 in a type 2 diabetes model decreased mesangial 
dilation, basement membrane thickening and proteinuria, and 
significantly improved hyperglycemia (58). Ang1 redelivery 
increased ser1177 phosphorylation of endothelium nitric oxide 
synthase to maintain NO levels, and thus, the integrity of 
capillaries and endothelial cells (59,60). The overexpression 
of podocyte‑specific Ang1 contributes to the stability of capil‑
laries, in parallel to the decreased proliferation of glomerular 
endothelial cells in DN (55,61).

FGFs. It was suggested that FGF‑1 has beneficial anti‑inflam‑
matory and renal protective activity in vivo. Recombinant 
FGF1 significantly inhibited renal inflammation, glomerular 
and tubular injury, and renal insufficiency in type I and II 
diabetic mice (62). FGF1 can correct the hyperglycemia in 
type II, but not in type I diabetic mice (62,63).

The administration of FGF21 can prevent renal lipid accumu‑
lation, oxidative stress, inflammation and fibrosis in mice after 
treatment with excessive fatty acids or STZ (64). The circular 
RNA, CIRC_0080425, significantly increased the expres‑
sion of FGF11, through competitive binding with miR‑24‑3p, 
indirectly promoting DN (65). FGF21 negatively regulates the 
EMT process mediated by TGF‑β‑MDM2/Smad2/3 signaling 
by activating Akt/MDM2/p53 signaling pathway, so as to 
prevent renal fibrosis in DN (66). Conversely, in DN, serum 
FGF21 levels are associated with the severity of proteinuria 
and the rapid loss of glomerular filtration rate, which may 
be a biomarker of poor prognosis (67). Serum FGF21 levels 
are closely associated with the occurrence of nephropathy in 
type II diabetic patients, and is an independent predictor of 
functional renal loss (68). FGF21 is expressed in glomerular 
mesangial cells and in renal tubular epithelial cells of diabetic 
mice (69), and blocking the expression of FGF21 can aggravate 
fibrogenesis in mesangial cells induced by high glucose (70).

Diabetes‑associated factors may affect plasma FGF23 
levels, which are associated with the progression of CKD (71). 
High FGF23 levels seem to contribute to increased cardiovas‑
cular and mortality risks in type II diabetes patients, and this 
risk is significantly increased in DN (72).

Therefore, FGF/FGFR signaling in DN is more likely 
to induce fibrosis. Their role in angiogenesis is not direct, 
but instead mediated via regulation of members of the RTK 
family, such as Eph receptors and PDGFRs (73).

TGF‑1β. In animal experiments, TGF‑1 neutralizing anti‑
bodies and TGF‑1 signal transduction inhibitor can effectively 
alleviate DN renal fibrosis (74). However, a clinical study of 
TGF‑1 neutralizing antibodies failed to prove a sufficient 
effect on renal function in DN (74).

Angiogenesis inhibitors
Cell secretory proteins. (i) Pigment epithelium‑derived factor 
(PEDF). PEDF was first purified from the human retinal 
pigment epithelial cells (75) and was further identified as a 
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member of the serine protease inhibitor (Serpin) family (76). 
Dawson et al (77) found that PEDF inhibited the proliferation 
of endothelial cells in a dose‑dependent manner. Therefore, 
PEDF is regarded as the most potent endogenous angiogenesis 
inhibitor. Comparing the content of PEDF in the aqueous 
humor of patients with proliferative diabetic retinopathy 
(PDR) and non‑PDRshowed that the levels of PEDF in the 
former significantlydecreased, which suggested that PEDF 
was the primary inhibitor of abnormal angiogenesis in human 
ocular tissues (78). Overexpression of PEDF in transgenic 
mice can effectively inhibit retinal neovascularization (79). 
PEDF expression is decreased in DN (80,81), and admin‑
istration of recombinant PEDF protein successfully inhibits 
retinal neovascularization in a rat model of diabetes (82). 
The potential mechanism of PEDF may be associated with 
blocking of the Wnt signaling pathway (83), as inhibition of the 
Wnt/β‑catenin signaling pathway can alleviate retinal vascular 
leakage and inhibit angiogenesis in diabetic rats (84). PEDF 
may also block p38 MAPK‑GSK3‑β‑catenin signaling (85,86) 
and significantly decreased ATP production in agreement with 
direct binding to cell‑surface ATP synthase to exert the anti‑
angiogenic activity (87). PEDF is able to block VEGF‑induced 
angiogenesis via a γ‑secretase‑dependent pathway and by 
preventing dissociation of endothelial tight junction and 
adherens junction (88).

(i i)  Kallikrein‑binding protein (KBP/kallis tat in). 
Kallikrein‑binding protein (KBP), also termed SERPINA3K, 
was identified in human plasma as a Serpin (89). KBP is 
primarily synthesized and secreted by the liver, and it can bind 
to kallikrein in human tissues, inhibiting its function (90). 
KBP exerts pleiotropic effects on relaxation of blood vessels, 
and inhibits angiogenesis and antioxidative stress (90,91). 
Increased levels of circulating KBP are found in diabetic 
patients with microvascular complications (91), which is 
likely due to KBP binding with LRP6, thus inhibiting the 
proliferation of endothelial cells by antagonizing the classical 
Wnt signaling pathway (92). In an oxygen‑induced retinopathy 
(OIR) model, KBP overexpression attenuated hypoxia‑induced 
retinal angiogenesis and vascular permeability (93).

(iii) Thrombospondin (TSP)‑1. The TSPs are a family of 
calcium‑binding glycoproteins that are secreted by the 
majority of cell types and participate in transient or longer‑term 
interactions with other extracellular matrix components, 
termed matricellular proteins. TSP‑1 is primarily secreted by 
platelets, endothelial cells and tumor cells, and is present in 
the plasma and extracellular matrix. TSP‑1 is regarded as a 
regulator of angiogenesis via interactions with αvβ3 integrin, 
MMP9, VEGF, FGF‑2, MMP‑2 and TIMP‑2 (94). At the 
retinal level, TSP‑1 supports retinal pigment epithelium cell 
structure and inhibits vascular endothelial cell adhesion (95). 
An in vivo study performed on Akita/+ male mice deficient 
in TSP‑1 aggravated the pathological angiogenesis of diabetic 
retinopathy (96).

TSP‑1 has specific cell surface receptors, including CD36 
and CD47 (97). TSP‑1/CD36 binding was shown to activate 
apoptosis by inducing p38 and Jun N‑terminal kinase, and 
subsequently the cell‑surface expression of Fas‑L. Ligation 
of Fas by Fas‑L stimulated a caspase cascade and ultimately 

apoptotic cell death (98). TSP‑1/CD47 is an important factor 
mediating MWCNT‑induced microvascular dysfunction, which 
disrupts •NO signaling and enhances leukocyte‑endothelial 
interactions (99).

(iv) Soluble FMS‑like tyrosine kinase‑1 (sFLT‑1). SFLT‑1 is 
a soluble form of VEGFR‑1, which can bind with VEGF‑A, 
VEGF‑B and is a powerful VEGF antagonist (100). 
Overexpression of sFLT‑1 in podocytes of mice improves 
diabetic glomerulopathy and proteinuria (100). Overexpression 
of adeno‑associated virus transduced sFlt‑1 in db/db mice 
can decreasealbuminuria and improve podocyte injury (101). 
Adenovirus‑mediated sFlt‑1‑induced proteinuria and glomer‑
ular endothelial proliferation similar to VEGF‑A deficiency 
in mice (102).

(v) VASH‑1. Vasohibin is an endothelium‑derived negative feed‑
back regulator of angiogenesis, which can be induced by VEGF 
in endothelial cells (103). Certain basic amino acid residues in 
the C‑terminus of VASH‑1 are important for heparin binding 
and its anti‑angiogenic activities (104). The secretion and 
anti‑angiogenic activity of VASH‑1 requires the co‑expression 
of small vasohibin‑binding protein (105). The mechanism may 
be associated with the degradation of HIF‑1α, which is medi‑
ated by prolyl hydroxylase (106). VASH‑1 increases the stress 
tolerance of endothelial cells and promotes their survival (107). 
VASH‑1 gene knockout can induce senescence of endothelial 
cells, which are prone to death due to cell stress (108), whereas 
overexpression of VASH‑1 made endothelial cells resistant to 
premature aging and stress‑induced cell death, and increased 
the expression of superoxide dismutase 2 and sirtuin 1 (108). 
The number of VASH‑1‑positive cells was positively associ‑
ated with VEGFR‑2 positive area and crescent formation (109). 
VASH‑1 overexpression can significantly improve glomerular 
hypertrophy, glomerular filtration, proteinuria and glomerular 
endothelial area expansion in diabetic mice (18). Recombinant 
human VASH‑1 also blocked high glucose‑induced VEGFR‑2 
phosphorylation in a dose‑dependent manner (18). Type I 
diabetes induced by STZ, increased proteinuria, glomerular 
hypertrophy, mesangial matrix accumulation and decreased 
diaphragmatic density in VASH‑1 heterozygous mice (110). 
The positive area of glomerular CD31 and the expression of 
VEGF‑A in kidney of VASH‑1 heterozygous deficient mice 
was higher compared with diabetic wild‑type mice (110). 
Endogenous VASH‑1 may prevent angiogenesis of diabetic 
glomeruli and inflammation, as the anti‑inflammatory effect 
of endogenous VASH‑1 has also been confirmed in a unilateral 
ureteral obstruction model (111).

(vi) Matrix metalloproteinases (MMPs). MMP‑7 expression is 
increased in the renal biopsy tissues of patients with diabetic 
nephropathy, and its levels are closely associated with the 
abundance of β‑Catenin (112).

Hydrolytic fragments of precursor proteins
(i) Endostatin. Endostatin, a putative anti‑angiogenic factor, is a 
20‑kDa proteolytic fragment of collagen XVIII (113). In vitro, it 
can inhibit the proliferation, migration and catheter formation 
of endothelial cells induced by VEGF (114). The interaction 
between endostatin and α5β1 integrin resulted in the inhibition 
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of FAK and the subsequent inhibition of MAPK (115). Endostatin 
inhibits glomerular VEGF‑A primarily produced by podocytes 
in diabetic mice (116). In type I diabetic mice, endostatin signifi‑
cantly inhibited proteinuria and histological changes (116). The 
levels of circulating endostatin in patients with type II diabetic 
nephropathy is high, which suggests that endostatin may possess 
clinical value as a risk marker of diabetic nephropathy (117). 
Additionally, endostatin can decrease glomerular hypertrophy, 
hyperfiltration and proteinuria in STZ induced diabetic 
mice (116). Endostatin also significantly inhibits mesangial 
matrix expansion, extracellular matrix accumulation, endothelial 
cell proliferation and monocyte/macrophage infiltration (116). 
Anti‑angiogenic endostatin polypeptide improves early renal 
lesions in a model of type I diabetic nephropathy (116). Circulating 
endostatin levels can predict progression and mortality of kidney 
disease, independently of established renal disease markers in 
type II diabetic patients (117).

(ii) Tumstatin. Tumstatin is derived from the type IV collagen 
α3 chain, which can inhibit pathological angiogenesis by 
inhibiting endothelial cell proliferation (118), by binding to the 
αVβ3 integrin of endothelial cells (119). Tumstatin acts as a 
specific inhibitor of endothelial cell protein synthesis through 
inhibition of the activation of FAK, protein kinase B (PKB/Akt), 
PI3‑kinase and mammalian target of rapamycin (120). Tumor 
suppressor peptides significantly inhibited proteinuria 
and glomerular histological changes in diabetic mice, and 
increased the number of glomerular capillaries (121). Injection 
of tumstatin decreased glomerular hypertrophy, hyperfiltration 
and proteinuria in STZ‑induced diabetic mice (121). It also 
inhibited the increase in the levels of VEGF‑A and VEGFR‑2 
in kidneys induced by diabetes (121). Due to the high expres‑
sion of αVβ3 integrin in podocytes (122), the primary target of 
tumstatin may not be endothelial cells, but instead podocytes.

(iii) Angiostatin/Kringle1‑4. Angiostatin is a protective 
fragment of plasminogen, which can inhibit tumor angiogen‑
esis (123). Adenovirus mediated angiostatin can significantly 
improve proteinuria and glomerular hypertrophy in type I 
diabetic rats (124). In a model of CKD induced by a subtotal 
nephrectomy, angiostatin treatment decreased the number of 
peritubular capillaries and urinary nitric oxide levels (125). 
In vitro, angiostatin decreased the upregulated expression of 
VEGF and TGF‑β in human mesangial cells induced by high 
glucose, and increased the levels of pigment epithelium‑derived 
factor, an endogenous DN inhibitor (124).

(iv) Kringle5 (K5). K5 is the fifth domain of human plas‑
minogen associated with angiostatin (K1‑4). Its molecular 
weight is only 16 kDa and it is the most active anti‑angiogenic 
fragment in human plasminogen (126). In an OIR and 
STZ‑induced rat model, K5 inhibited retinal neovascular‑
ization (127). Additionally, K5‑induced endothelial cell 
apoptosis was shown to be mediated by a positive feedback 
loop involving VDAC1‑AKT‑GSK3β‑VDAC1 (128), which 
resulted in inhibition of angiogenesis.

Others. Netrin‑1 and UNC5B were shown to be upregulated 
in STZ‑induced rats, and UNC5B upregulation contributed 
partly to enhancing angiogenesis in DN (129). PDE5 inhibitors 

exert protective effects by improving perivascular inflamma‑
tion through modulating miR‑22 and BMP7 in a DN mouse 
model (130). The Slit2/Robo1 signaling pathway is involved in 
angiogenesis of glomerular endothelial cells in a diabetic‑like 
environment (131). Neurite outgrowth inhibitor‑B serves an 
important role in vascular remodeling, which protects the 
vasculature system in a model of DN (132).

Angiogenesis vs. vasculogenesis. Angiogenesis is the process 
by which fewer blood vessels branch and bud to form off shoot 
vessels. Vasculogenesis is the process in which endothelial 
cells differentiate from endothelial progenitor cells to connect 
and form a tube, ultimately resulting in the formation of new 
blood vessels.

3. Clinical and anti‑angiogenic treatment

The early diagnosis of DN (stage I DN) includes thickening of 
the glomerular basement membrane and renal tubular basement 
membrane, whereas after glomerular thickening, the mesangial 
cell dilation is considered stage II DN (133). The expansion of 
the mesangium further leads to glomerular leakage combined 
with the accumulation of fibronectin and type IV collagen, 
which also leads to nodular sclerosis (stage III DN) (133). 
Increased potassium secretion and angiogenesis signals are 
early renal responses in human DN (134).

Renin angiotensin enzyme inhibitors (such as ACEI or 
ARB) should be administered as soon as possible, as both of 
these can decrease systemic and intraglomerular blood pres‑
sure by inhibiting the action of ACEII on angiotensin II type 1 
receptor (AT1) receptor (1). ACEI lowers the production of 
angiotensin II (135), whereas the AT1 antagonists block the 
AT1 receptor (136). It has been reported that proteinuria and 
hypertension are common complications (137). In nodular 
diabetic glomerulopathy, there are vascular mesangial 
channels, which serve as indicators of the changes in neovas‑
cularization and blood flow in these glomeruli (138). Nilotinib 
hydrochloride is a highly potent tyrosine kinase inhibitor that 
can inhibit the progress of DN via the regulation of a variety 
of mechanisms (139).

It has been shown that promoting anti‑angiogenesis 
(particularly via anti‑VEGF mechanisms) may be a promising 
strategy for management of the early stages of DN, based on 
several animal experiments (1). However, there are currently 
no anti‑VEGF‑A based treatments for patients with DN. In 
some studies, patients with DN who received intravitreal injec‑
tion of VEGF‑A inhibitors have shown contrasting results; that 
is renal damage associated with glomerular microangiopathy, 
including thickening of the capillary wall and glomerular 
basement membrane (140), or rapidly worsening proteinuria 
and decreased kidney function (141). Therefore, therapies 
involving anti‑VEGF‑A in DN should first aim to maintain 
physiological levels of VEGF‑A. Otherwise, excessive inhibi‑
tion of VEGF‑A may cause harmful side effects. Recently, 
a study on patients with early DN showed that intravitreal 
injection of bevacizumab resulted in worsening proteinuria 
and renal function, and this was improved using ranibizumab, 
which had a lower potency (13).

The vasohibin family may participate in mesangial expan‑
sion by mediating VEGFR2 signaling. Current studies indicate 



TAO et al:  ANTIANGIOGENIC IN DIABETIC NEPHROPATHY6

Ta
bl

e 
I. 

Su
m

m
ar

y 
of

 p
ro

an
gi

og
en

es
is

 a
nd

 a
nt

ia
ng

io
ge

ne
si

s f
ac

to
rs

.

A
, P

ro
an

gi
on

ge
ne

si
s f

ac
to

rs

Fa
ct

or
s 

A
ni

m
al

 m
od

el
 

Tr
ea

tm
en

t (
ge

ne
 m

od
ul

at
io

n 
or

 d
ru

gs
 d

os
e)

 
R

es
ul

ts
 

M
ec

ha
ni

sm
s

V
EG

F‑
A

 
db

/d
b 

m
ic

e 
(2

4)
 (T

2D
) 

SU
54

16
 (2

4)
, 2

 m
g/

kg
 

A
m

el
io

ra
te

d 
di

ab
et

ic
 a

lb
um

in
ur

ia
 

Pa
n‑

V
EG

F 
re

ce
pt

or
 ty

ro
si

ne
 

 
 

 
ki

na
se

 in
hi

bi
to

r
 

ST
Z‑

in
du

ce
d 

m
ic

e 
(T

1D
)  

A
nt

i‑V
EG

F 
A

b 
(1

6,
25

,2
6)

 (d
os

e 
va

rie
d)

 
D

ec
re

as
ed

 p
ro

te
in

ur
ia

 a
nd

 g
lo

m
er

ul
ar

 
N

eu
tra

liz
es

 th
e 

V
EG

F
 

an
d 

db
/d

b 
m

ic
e 

(T
2D

) 
 

hy
pe

rtr
op

hy
 

T1
D

 ra
t m

od
el

 
R

SV
 (2

7)
, 2

0 
m

g/
kg

 
Lo

w
er

ed
 th

e 
in

cr
ea

se
s i

n 
gl

om
er

ul
ar

 
D

ec
re

as
ed

 V
EG

F
 

(u
ni

ne
ph

re
ct

om
iz

ed
+S

TZ
) 

 
di

am
et

er
, m

es
an

gi
um

 a
cc

um
ul

at
io

n,
 

 
 

gl
om

er
ul

ar
 b

as
em

en
t m

em
br

an
e

 
 

 
th

ic
kn

es
s a

nd
 re

na
l fi

br
os

is
 

A
du

lt 
tra

ns
ge

ni
c 

m
ic

e 
O

ve
re

xp
re

ss
io

n 
of

 V
EG

F‑
A 

in
 p

od
oc

yt
es

 (4
1)

 
Pr

ot
ei

nu
ria

, g
lo

m
er

ul
ar

 e
nl

ar
ge

m
en

t,
 

 
 

gl
om

er
ul

ar
 b

as
em

en
t m

em
br

an
e

 
 

 
th

ic
ke

ni
ng

, m
es

an
gi

al
 e

xp
an

si
on

 a
nd

 
 

 
po

do
cy

te
 d

is
ap

pe
ar

an
ce

 
A

du
lt 

m
ic

e 
V

EG
F‑

A
 g

en
e 

de
le

tio
n 

in
 p

od
oc

yt
es

 (4
0)

 
In

cr
ea

se
 in

 p
ro

te
in

ur
ia

, t
hr

om
bu

s a
nd

 
D

ec
re

as
ed

 V
EG

F
 

 
 

ca
pi

lla
ry

 ri
ng

 o
cc

lu
si

on
 in

 c
ap

ill
ar

ie
s,

 
 

 
en

do
th

el
ia

l c
el

l s
w

el
lin

g
A

ng
s 

ST
Z‑

in
du

ce
d 

m
ic

e 
(T

1D
) 

Po
do

cy
te

‑s
pe

ci
fic

 in
du

ci
bl

e 
re

pl
et

io
n 

of
 A

ng
1 

D
ec

re
as

ed
 p

ro
te

in
ur

ia
 b

y 
70

%
 a

nd
 

D
ec

re
as

in
gA

ng
1 

le
ve

ls
 

 
 

 
pr

ev
en

ts
 th

e 
pr

ol
ife

ra
tio

n 
of

 g
lo

m
er

ul
ar

 
 

 
en

do
th

el
ia

l c
el

ls
 (5

5)
 

ST
Z‑

in
du

ce
d 

ra
t m

od
el

s (
T1

D
) 

 
 

In
cr

ea
se

dA
ng

2 
(5

6)
 

db
/d

b 
m

ic
e 

(T
2D

) 
A

de
‑C

O
M

P‑
A

ng
1,

 X
10

9 
PF

U
 o

f (
58

) 
D

ec
re

as
ed

 m
es

an
gi

al
 d

ila
tio

n,
 b

as
em

en
t 

A
ng

1 
re

de
liv

er
y 

in
cr

ea
se

d
 

 
 

m
em

br
an

e 
th

ic
ke

ni
ng

 a
nd

 p
ro

te
in

ur
ia

,  
se

r1
17

7 
ph

os
ph

or
yl

at
io

n 
of

 
 

 
an

d 
si

gn
ifi

ca
nt

ly
 im

pr
ov

ed
 h

yp
er

gl
yc

em
ia

 
en

do
th

el
iu

m
 n

itr
ic

 o
xi

de
 

 
 

 
sy

nt
ha

se
 (e

N
O

S)
 to

 m
ai

nt
ai

n
 

 
 

 
N

O
 le

ve
l a

nd
 in

te
gr

ity
 o

f
 

 
 

 
ca

pi
lla

rie
s a

nd
 e

nd
ot

he
lia

l
 

 
 

 
ce

lls
 (5

9,
60

)

B
, A

nt
ia

ng
io

ng
en

es
is

 fa
ct

or
s

Fa
ct

or
s 

A
ni

m
al

 m
od

el
 

Tr
ea

tm
en

t (
ge

ne
 m

od
ul

at
io

n 
or

 d
ru

gs
 d

os
e)

 
R

es
ul

ts
 

M
ec

ha
ni

sm
s

PE
D

F 
Tr

an
sg

en
ic

 m
ic

e 
an

d 
O

IR
 m

od
el

 
O

ve
re

xp
re

ss
io

n 
of

 P
ED

F 
In

hi
bi

te
d 

re
tin

al
 n

eo
va

sc
ul

ar
iz

at
io

n 
(7

9)
 

 
ST

Z‑
in

du
ce

d 
ra

t m
od

el
s  

rP
ED

F 
pr

ot
ei

n,
 1

.5
 µ

g/
ey

e 
(8

2)
 

In
hi

bi
te

d 
re

tin
al

 n
eo

va
sc

ul
ar

iz
at

io
n 

W
nt

 si
gn

al
 b

lo
ck

in
g 

(8
3)

 
 

(T
1D

) a
nd

 O
IR

 ra
t m

od
el

 
 

 
p3

8M
A

PK
‑G

SK
3‑

β‑
ca

te
ni

n
 

 
 

 
si

gn
al

bl
oc

ki
ng

 (8
5,

86
). 

 
 

 
 

V
EG

F‑
in

du
ce

d 
an

gi
og

en
es

is
 

 
 

 
 

bl
oc

ki
ng

 (8
8)

.



MOLECULAR MEDICINE REPORTS  23:  260,  2021 7
Ta

bl
e 

I. 
C

on
tin

ue
d.

B
, A

nt
ia

ng
io

ng
en

es
is

 fa
ct

or
s

Fa
ct

or
s 

A
ni

m
al

 m
od

el
 

Tr
ea

tm
en

t (
ge

ne
 m

od
ul

at
io

n 
or

 d
ru

gs
 d

os
e)

 
R

es
ul

ts
 

M
ec

ha
ni

sm
s

K
B

P 
O

IR
 a

nd
 A

ki
ta

 m
ic

e 
K

B
P 

ov
er

ex
pr

es
si

on
 

A
tte

nu
at

ed
 h

yp
ox

ia
‑in

du
ce

d 
re

tin
al

 
Su

pp
re

ss
ed

 W
nt

 p
at

hw
ay

 a
ct

iv
at

io
n 

(9
2)

 
m

od
el

s (
93

) (
T1

D
) 

 
an

gi
og

en
es

is
 a

nd
 v

as
cu

la
r 

 
 

 
pe

rm
ea

bi
lit

y 
(9

3)
TS

P‑
1 

A
ki

ta
/+

 T
SP

1‑
/‑ 

m
al

e 
m

ic
e 

D
efi

ci
en

t i
n 

TS
P‑

1 
Pa

th
ol

og
ic

al
 a

ng
io

ge
ne

si
s o

f d
ia

be
tic

 
In

te
ra

ct
s w

ith
 α

vβ
3 

in
te

gr
in

, M
M

P9
,V

EG
F,

 F
G

F‑
2,

 
 

 
 

re
tin

op
at

hy
 

M
M

P‑
2 

an
d 

TI
M

P‑
2 

(9
4)

. T
SP

‑1
/C

D
36

 a
ct

iv
at

ed
 

 
 

 
ap

op
to

si
s (

98
). 

TS
P‑

1/
C

D
47

 m
ed

ia
te

dM
W

C
N

T‑
 

 
 

 
in

du
ce

d 
m

ic
ro

va
sc

ul
ar

 d
ys

fu
nc

tio
n 

(9
9)

.
sF

LT
‑1

 
db

/d
b 

m
ic

e 
(T

2D
) 

O
ve

re
xp

re
ss

io
n 

of
 sF

LT
‑1

 in
 p

od
oc

yt
es

 
Im

pr
ov

ed
 d

ia
be

tic
 g

lo
m

er
ul

op
at

hy
 

SF
LT

‑1
 is

 a
 so

lu
bl

e 
fo

rm
 o

f V
EG

FR
‑1

, w
hi

ch
 c

an
 

 
 

an
d 

pr
ot

ei
nu

ria
 (1

01
) 

bi
nd

 w
ith

 V
EG

F‑
A

, V
EG

F‑
B

, a
nd

 is
 a

 p
ow

er
fu

l
 

 
 

 
V

EG
F 

an
ta

go
ni

st
 (1

00
)

 
Pr

eg
na

nt
 a

nd
 n

on
‑p

re
gn

an
t 

A
de

no
vi

ru
s‑

m
ed

ia
te

d 
sF

lt‑
1 

G
lo

m
er

ul
ar

 e
nd

ot
he

lia
l 

 
B

al
b/

c 
m

ic
e 

 
pr

ol
ife

ra
tio

n 
(1

02
)

VA
SH

‑1
 

ST
Z‑

in
du

ce
d 

m
ic

e 
(T

1D
) 

VA
SH

‑1
 o

ve
re

xp
re

ss
io

n 
(1

8)
 

Im
pr

ov
ed

 g
lo

m
er

ul
ar

 h
yp

er
tro

ph
y,

  
D

eg
ra

da
tio

n 
of

 h
yp

ox
ia

 in
du

ci
bl

e 
fa

ct
or

‑1
α 

(H
IF

‑1
α)

 
 

 
gl

om
er

ul
ar

 fi
ltr

at
io

n,
 p

ro
te

in
ur

ia
 a

nd
 

m
ed

ia
te

d 
by

 p
ro

ly
l h

yd
ro

xy
la

se
 (1

06
) b

lo
ck

ed
 

 
 

gl
om

er
ul

ar
 e

nd
ot

he
lia

l a
re

a 
ex

pa
ns

io
n.

 h
ig

h 
gl

uc
os

e‑
in

du
ce

d 
V

EG
FR

‑2
 p

ho
sp

ho
ry

la
tio

n 
(1

8)
 

ST
Z‑

in
du

ce
d 

m
ic

e 
(T

1D
) 

VA
SH

‑1
 h

et
er

oz
yg

ou
s m

ic
e 

In
cr

ea
se

d 
pr

ot
ei

nu
ria

, g
lo

m
er

ul
ar

 
 

 
hy

pe
rtr

op
hy

, m
es

an
gi

al
 m

at
rix

 
 

 
ac

cu
m

ul
at

io
n 

an
d 

de
cr

ea
se

d
 

 
 

di
ap

hr
ag

m
at

ic
 d

en
si

ty
 (1

10
)

En
do

st
at

in
 

ST
Z‑

in
du

ce
d 

m
ic

e 
(T

1D
) 

En
do

st
at

in
 p

ep
tid

e 
tre

at
m

en
t 

G
lo

m
er

ul
ar

 h
yp

er
tro

ph
y,

  
In

hi
bi

te
d 

gl
om

er
ul

ar
 V

EG
F‑

A
 m

ai
nl

y 
pr

od
uc

ed
 b

y
 

 
(1

or
 5

 m
g/

kg
 b

od
y 

w
t) 

(1
16

) 
hy

pe
rfi

ltr
at

io
n,

 a
nd

 a
lb

um
in

ur
ia

 
po

do
cy

te
s i

n 
di

ab
et

ic
 m

ic
e

 
 

 
w

er
e 

si
gn

ifi
ca

nt
ly

 su
pp

re
ss

ed
 b

y
 

 
 

en
do

st
at

in
 p

ep
tid

e 
(5

 m
g/

kg
)

Tu
m

st
at

in
 

ST
Z‑

in
du

ce
d 

m
ic

e 
(T

1D
) 

Tu
m

st
at

in
‑p

ep
tid

e 
(T

8‑
pe

pt
id

e)
 a

t t
he

 
D

ec
re

as
ed

 g
lo

m
er

ul
ar

 h
yp

er
tro

ph
y,

  
In

hi
bi

te
d 

pa
th

ol
og

ic
al

 a
ng

io
ge

ne
si

s b
y 

in
hi

bi
tin

g
 

 
do

sa
ge

 o
f 1

 m
g/

kg
 (1

21
) 

hy
pe

rfi
ltr

at
io

n 
an

d 
pr

ot
ei

nu
ria

 
en

do
th

el
ia

l c
el

l p
ro

lif
er

at
io

n 
th

ro
ug

h 
in

hi
bi

tin
g 

th
e

 
 

 
 

ac
tiv

at
io

n 
of

 F
A

K
, P

I3
K

, P
K

B
/A

kt
, a

nd
 m

TO
R

 (1
20

)
A

ng
io

st
at

in
 

ST
Z‑

in
du

ce
d 

ra
ts

 (T
1D

) 
A

de
no

vi
ru

s‑
m

ed
ia

te
d 

an
gi

os
ta

tin
 (1

24
) 

Si
gn

ifi
ca

nt
ly

 a
lle

vi
at

ed
 a

lb
um

in
ur

ia
 

A
ng

io
st

at
in

 d
ow

nr
eg

ul
at

ed
 th

e 
ex

pr
es

si
on

 o
f V

EG
F

 
 

 
an

d 
at

te
nu

at
ed

 th
e 

gl
om

er
ul

ar
 

an
d 

TG
F‑

β1
 (1

24
)

 
 

 
hy

pe
rtr

op
hy

 
Su

bt
ot

al
 n

ep
hr

ec
to

m
y 

A
ng

io
st

at
in

 tr
ea

tm
en

t (
12

5)
 

D
ec

re
as

ed
 re

na
l p

er
itu

bu
la

r c
ap

ill
ar

y
 

C
R

D
 m

od
el

 
 

nu
m

be
r a

nd
 d

ec
re

as
ed

 u
rin

ar
y 

ni
tri

c
 

 
 

ox
id

e 
le

ve
ls

K
5 

O
IR

 a
nd

 S
TZ

‑in
du

ce
d 

 
K

5 
in

hi
bi

ts
 re

tin
al

 
K

5‑
in

du
ce

d 
en

do
th

el
ia

l c
el

l a
po

pt
os

is
 is

 m
ed

ia
te

d 
by

 
ra

t m
od

el
 

 
ne

ov
as

cu
la

riz
at

io
n 

(1
27

) 
th

e 
po

si
tiv

e 
fe

ed
ba

ck
 lo

op
 o

f ‘
V

D
A

C
1‑

A
K

T‑
G

SK
3β

‑
 

 
 

 
V

D
A

C
1’

 (1
28

)

V
EG

F,
 v

as
cu

la
r 

en
do

th
el

ia
l g

ro
w

th
 f

ac
to

r; 
ST

Z,
 s

tre
pt

oz
ot

oc
in

; R
SV

, r
es

ve
ra

tro
l; 

A
ng

s, 
an

gi
op

oi
et

in
s; 

CO
M

P,
 c

ar
til

ag
e 

ol
ig

om
er

ic
 m

at
rix

 p
ro

te
in

; O
IR

, o
xy

ge
n‑

in
du

ce
d 

re
tin

op
at

hy
; P

ED
F,

 p
ig

m
en

t 
ep

ith
el

iu
m

‑d
er

iv
ed

 fa
ct

or
; K

BP
, k

al
lik

re
in

‑b
in

di
ng

 p
ro

te
in

; T
SP

‑1
, t

hr
om

bo
sp

on
di

n 
1;

 F
G

F,
 fi

br
ob

la
st 

gr
ow

th
 fa

ct
or

; M
M

P,
 m

at
rix

 m
et

al
lo

pr
ot

ei
na

se
; T

IM
P,

 ti
ss

ue
 in

hi
bi

to
r o

f m
et

al
lo

pr
ot

ei
na

se
s; 

M
W

C
N

T;
 

sF
LT

‑1
, s

ol
ub

le
 F

M
S‑

lik
e 

ty
ro

sin
e 

ki
na

se
‑1

; V
A

SH
‑1

, v
as

oh
ib

in
 1

; F
A

K
, f

oc
al

 a
dh

es
io

n 
ki

na
se

; K
5,

 K
rin

gl
e 

5;
 V

D
A

C1
, v

ol
ta

ge
‑d

ep
en

de
nt

 a
ni

on
 c

ha
nn

el
 1

; T
1D

, t
yp

e 
I d

ia
be

te
s; 

T2
D

, t
yp

e 
II 

di
ab

et
es

.



TAO et al:  ANTIANGIOGENIC IN DIABETIC NEPHROPATHY8

that the vasohibin family may be a promising therapeutic 
target to reduce excessive angiogenesis and renal fibrosis in 
DN, however, further research is required to understand their 
relevance and clinical significance.

4. Other diabetic microvascular complications and 
treatments

Other diabetic microvascular complications include diabetic 
retinopathy, erectile dysfunction, macular oedema (DMO) 
and diabetic foot. Diabetic patients with retinal microvas‑
cular lesions, pericytes necrosis, endothelial barrier function 
damage and blood components from the blood vessels in 
the tissue, result in retinal lesions and dysfunction. This 
may be due to the fact that high glucose can induce the 
apoptosis of pericytes in diabetic retina, damaging the blood 
retinal barrier and activating vascular endothelial cells, 
thus promoting vascular budding and angiogenesis. Almost 
all cells in the retina can secrete VEGF under the stimula‑
tion of ischemia and hypoxia. A large amount of clinical 
data has shown that VEGF levels in the vitreous cavity of 
patients with PDR is significantly increased (142). Treatments 
include panretinal photocoagulation, intravitreal injection 
of bevacizumab, aflibercept or ranibizumab, and surgery. 
Resveratrol may improve diabetic retinopathy by regulating 
the expression of PEDF and TSP‑1 (143). PDE5 inhibitors 
(such as sildenafil and tadalafil) are currently used in the 
treatment of diabetic erectile dysfunction. PDGF can promote 
cell migration and smooth muscle proliferation and accelerate 
wound healing (144). In addition, recombinant VEGF (145), 
EGF (146), FGF (147), TGF‑β (148) and IGF‑1 (149) can be 
used treatment of diabetic foot. DMO is a common complica‑
tion of diabetic retinopathy, and antiangiogenic therapy with 
anti‑VEGF can decreaseoedema, improve vision and prevent 
further visual loss (150).
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