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Abstract
1.	 The	interface	between	field	biology	and	technology	is	energizing	the	collection	
of	vast	quantities	of	environmental	data.	Passive	acoustic	monitoring,	the	use	
of	unattended	recording	devices	to	capture	environmental	sound,	is	an	exam-
ple	where	 technological	 advances	 have	 facilitated	 an	 influx	 of	 data	 that	 rou-
tinely	exceeds	 the	capacity	 for	analysis.	Computational	advances,	particularly	
the	integration	of	machine	learning	approaches,	will	support	data	extraction	ef-
forts.	However,	the	analysis	and	interpretation	of	these	data	will	require	parallel	
growth	in	conceptual	and	technical	approaches	for	data	analysis.	Here,	we	use	
a	 large	hand-	annotated	dataset	to	showcase	analysis	approaches	that	will	be-
come	increasingly	useful	as	datasets	grow	and	data	extraction	can	be	partially	
automated.

2.	 We	 propose	 and	 demonstrate	 seven	 technical	 approaches	 for	 analyzing	 bio-
acoustic	data.	These	include	the	following:	(1)	generating	species	lists	and	de-
scriptions	of	vocal	variation,	(2)	assessing	how	abiotic	factors	(e.g.,	rain	and	wind)	
impact	vocalization	rates,	(3)	testing	for	differences	in	community	vocalization	
activity	across	sites	and	habitat	 types,	 (4)	quantifying	 the	phenology	of	vocal	
activity,	 (5)	testing	for	spatiotemporal	correlations	in	vocalizations	within	spe-
cies,	(6)	among	species,	and	(7)	using	rarefaction	analysis	to	quantify	diversity	
and	optimize	bioacoustic	sampling.

3.	 To	demonstrate	these	approaches,	we	sampled	in	2016	and	2018	and	used	hand	
annotations	of	129,866	bird	vocalizations	from	two	forests	in	New	Hampshire,	
USA,	including	sites	in	the	Hubbard	Brook	Experiment	Forest	where	bioacous-
tic	data	could	be	integrated	with	more	than	50	years	of	observer-	based	avian	
studies.	Acoustic	monitoring	revealed	differences	in	community	patterns	in	vo-
calization	activity	between	forests	of	different	ages,	as	well	as	between	nearby	
similar	watersheds.	Of	numerous	environmental	variables	that	were	evaluated,	
background	noise	was	most	clearly	related	to	vocalization	rates.	The	songbird	
community	included	one	cluster	of	species	where	vocalization	rates	declined	as	
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1  |  INTRODUC TION

Ecological	insights	and	informed	conservation	rely	on	understanding	
when	and	where	organisms	occur	 (Fisher	 et	 al.,	 1943;	MacArthur,	
1984).	Ecologists	and	conservation	biologists	have	used	many	differ-
ent	approaches	to	document	the	distribution	of	organisms,	ranging	
from	detailed	observations	by	skilled	field	personnel	to	aerial	over-
flights	and	analysis	of	 trace	environmental	DNA	(Dejong	&	Emlen,	
1985;	Ficetola	et	al.,	2008;	Hodgson	et	al.,	2016;	Scott	et	al.,	1981).	
Technological	advances	continue	to	provide	new	avenues	for	mon-
itoring	habitats,	with	 acoustic	 analysis	 rapidly	 gaining	prominence	
as	a	powerful	method	for	assessing	the	distribution	and	behavior	of	
animals	(Sugai	et	al.,	2019;	Wood	et	al.,	2019).

Passive	acoustic	monitoring	 (PAM)	 is	a	sampling	approach	that	
uses	 unattended	 audio	 recorders	 to	 sample	 sounds	 over	 large	
swaths	of	space	and	time	(Sugai	et	al.,	2019).	Autonomous	recording	
units	(ARUs)	collect	data	without	the	presence	of	a	human	observer	
and	provide	an	enduring	record	of	habitat	use,	behavioral	patterns,	
phenology,	and	changes	 in	sound	production	by	wildlife	over	 time	
(Davis	et	al.,	2017;	Desjonquères	et	al.,	2020;	Wood	et	al.,	2019a).	
Passive	acoustic	monitoring	also	facilitates	the	detection	of	species	
that	 are	 uncommon,	 secretive,	 or	 occur	 during	 seasons,	 times	 of	
day,	or	weather	conditions	when	human	observers	are	less	likely	to	
sample	(Sebastián-	González	et	al.,	2018).	As	autonomous	recording	
units	become	more	advanced,	affordable,	and	power	efficient,	pas-
sive	acoustic	monitoring	offers	a	complementary	and	non-	invasive	
approach	 for	 ecological	 studies	 and	 biodiversity	monitoring	 (Gibb	
et	al.,	2019;	Potamitis,	2014;	Sebastián-	González	et	al.,	2018;	Sugai	
et	al.,	2019;	Xie	et	al.,	2018).	Furthermore,	automated	ARUs	allow	for	
broader	temporal	and	spatial	sampling	and	minimize	the	potential	for	
in-	field	observer	bias	(Sugai	et	al.,	2019).

Currently,	passive	acoustic	monitoring	data	are	often	analyzed	by	
humans	who	review	spectrograms	(visual	 images	of	acoustic	 infor-
mation)	and	listen	to	audio	recordings	to	identify	species.	However,	
manual	annotation	is	time-	consuming	and	limits	the	amount	of	data	
that	 can	be	processed.	The	ability	 to	 survey	many	more	 locations	
for	longer	periods	of	time	provides	crucial	data,	but	also	raises	new	
challenges	and	opportunities	in	data	analysis.	Advancements	in	au-
tomation,	 particularly	machine	 learning	 approaches,	 are	 poised	 to	
accelerate	and	scale	annotation	dramatically	(Kahl	et	al.,	2018;	Shiu	
et	al.,	2020;	Vickers	et	al.,	2019).	Advances	in	data	extraction	capac-
ity	must	therefore	be	met	by	parallel	advancements	in	methodologi-
cal	frameworks	and	statistical	analysis	(Gasc	et	al.,	2017;	Gibb	et	al.,	
2019;	Sebastián-	González	et	al.,	2018;	Wood	et	al.,	2021).

Much	work	 has	 been	 done	 on	 the	marine	 soundscape,	with	 a	
long	and	robust	history	of	using	acoustics	to	study	marine	mammals	
(Lin	et	al.,	2016;	Marques	et	al.,	2009,	2011;	Matthews	et	al.,	2014;	
Rice	et	al.,	2019).	However,	the	application	of	passive	acoustic	mon-
itoring	 to	 terrestrial	 systems	 is	 more	 recent	 (Sebastián-	González	
et	al.,	2018;	Sugai	et	al.,	2019),	with	studies	utilizing	passive	acous-
tic	monitoring	becoming	more	widespread	in	the	mid-	2000s	(Sugai	
et	 al.,	 2019).	 Although	 some	 of	 the	 approaches	 that	 we	 consider	
may	be	 relevant	 to	marine	work,	our	 focus	here	 is	on	soundscape	
approaches	for	terrestrial	animals	that	vocalize	frequently,	such	as	
birds,	 anurans,	 and	 some	mammals.	Compared	 to	other	 terrestrial	
organisms,	birds	are	one	of	the	best-	known	and	best-	studied	taxo-
nomic	groups,	with	vocalizations	that	are	used	in	diverse	contexts,	
including	 territoriality	 and	 resource	 defense,	 attraction	 of	 mates,	
and	alerting	other	birds	to	the	presence	of	a	predator	 (Webster	&	
Podos,	2018).

We	develop	and	present	methods	for	the	refinement	and	analy-
sis	of	acoustic	data	obtained	from	passive	acoustic	monitoring.	We	

ambient	noise	increased	and	another	cluster	where	vocalization	rates	declined	
over	the	nesting	season.	In	some	common	species,	the	number	of	vocalizations	
produced	per	day	was	correlated	at	scales	of	up	to	15	km.	Rarefaction	analyses	
showed	that	adding	sampling	sites	increased	species	detections	more	than	add-
ing	sampling	days.

4.	 Although	our	analyses	used	hand-	annotated	data,	the	methods	will	extend	read-
ily	to	large-	scale	automated	detection	of	vocalization	events.	Such	data	are	likely	
to	become	increasingly	available	as	autonomous	recording	units	become	more	
advanced,	 affordable,	 and	 power	 efficient.	 Passive	 acoustic	 monitoring	 with	
human	or	automated	identification	at	the	species	level	offers	growing	potential	
to	complement	observer-	based	studies	of	avian	ecology.

K E Y W O R D S
bioacoustics,	biodiversity	assessment,	birdsong,	Hubbard	Brook	Experimental	Forest,	passive	
acoustic	monitoring,	rarefaction
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begin	with	methods	that	are	currently	used	with	small	manually	gen-
erated	datasets	but	are	suitable	for	expansion	to	much	larger	data-
sets.	We	then	present	analytical	approaches	that	are	only	feasible	
with	 large	 samples	 in	 space	 and	 time.	 These	 approaches	 include:	
(1)	the	generation	of	species	lists	(Lellouch	et	al.,	2014;	Luther,	2009)	
and	 descriptions	 of	 vocal	 variation	 in	 traits	 such	 as	 duration	 and	
frequency	 (e.g.,	 Duan	 et	 al.,	 2011;	 Planqué	&	 Slabbekoorn,	 2008;	
Potamitis,	2014;	Towsey	et	al.,	2012;	Xie	et	al.,	2018),	providing	an	
account	of	the	species	detected	in	a	given	area	and	time	period.	If	
vocalization	 rates	 are	measured	on	 a	 fine-	grained	 scale	 (e.g.,	min-
utes,	hours,	or	days),	 it	becomes	possible	 to	estimate,	 (2)	how	vo-
calization	rates	are	impacted	by	abiotic	factors	such	as	precipitation	
(Bruni	 et	 al.,	 2014;	Hasan,	 2010;	 Keast,	 1994;	 Lengagne	&	 Slater,	
2002),	wind	(Hasan,	2010;	Lengagne	et	al.,	1999),	and	temperature	
(Bruni	et	 al.,	 2014;	Gottlander,	1987;	Keast,	1994;	Thomas,	1999).	
Passive	acoustic	data	can	also	be	combined	with	information	about	
habitat	type	and	land-	use	history	to	produce	(3)	community	patterns	
in	 vocalization	 activity	 across	 sites	 (Depraetere	 et	 al.,	 2012;	Gasc	
et	al.,	2013;	Rodriguez	et	al.,	2014).	Detailed	data	on	vocalizations	
over	 time	also	make	 it	 possible	 to	quantify	 the	 (4)	 timing	of	 vocal	
activity,	such	as	changes	in	acoustic	signaling	across	hours	to	days	
(Gasc	 et	 al.,	 2013;	 Rodriguez	 et	 al.,	 2014;	 Towsey	 et	 al.,	 2012)	 or	
months	 to	years	 (Towsey	et	al.,	2014).	This	approach	can	be	used	
directly	to	answer	research	questions,	such	as	whether	a	warming	
climate	shifts	activity	dates	(Llusia	et	al.,	2013),	or	to	control	for	the	
impact	 of	 phenology	 and	 diurnal	 patterns	 on	 other	 analyses	 and	
comparisons.	Large-	scale	synchronized	recording	can	also	provide	a	
novel	tool	for	behavioral	research	(Tobias	et	al.,	2014).	By	deploying	
passive	acoustic	recorders	that	record	multiple	locations	simultane-
ously,	it	becomes	possible	to	apply	statistical	tools	from	population	
ecology	 to	 test	 for	 (5)	 spatiotemporal	 correlations	 in	vocalizations	
within	 species	 and	 (6)	 among	 species	 (e.g.,	 Brumm,	 2006;	 Burt	 &	
Vehrencamp,	 2005;	 Laiolo	 et	 al.,	 2011;	 Luther,	 2009;	 Planqué	 &	
Slabbekoorn,	2008;	Tobias	et	al.,	2014).	Finally,	(7)	Species	accumu-
lation	functions	and	optimization	of	bioacoustic	sampling	schemes	
use	rarefaction	analyses	to	describe	species	richness	across	scales	

and	 can	 aid	 in	 planning	 and	 designing	 acoustic	 sampling	 schemes	
(Dixon	et	al.,	2020;	Marín-	Gómez	et	al.,	2020;	Naithani	et	al.,	2018).	
To	demonstrate	these	approaches,	we	used	passive	acoustic	record-
ings	of	the	dawn	birdsong	chorus,	with	manual	counts	of	the	number	
of	vocalizations	per	species	per	unit	time.	These	approaches	provide	
a	 package	of	 tools	 for	 approaching	 and	 interpreting	 acoustic	 data	
to	test	ecological	hypotheses	and	assess	biodiversity	across	space	
and	time.

2  |  METHODS

2.1  |  Study sites

Acoustic	 sampling	 was	 conducted	 in	 hardwood	 forests	 at	 500–	
800	m	elevation	in	the	White	Mountains	of	New	Hampshire,	USA.	
Study	sites	(Figure	1,	Table	S1)	were	located	in	the	Hubbard	Brook	
Experimental	 Forest	 and	 in	 a	 similar	 habitat	 within	 the	 Jeffers	
Brook	 Forest,	 approximately	 15	 km	 from	Hubbard	 Brook	 (Table	
S1).	Hubbard	Brook	Experimental	Forest	was	established	in	1955	
with	a	 focus	on	hydrologic	and	 forest	science	 (Holmes	&	Likens,	
2016),	 and	 studies	 of	 avian	 ecology	 have	 been	 running	 continu-
ously	since	1969	(e.g.,	Holmes,	2011;	Holmes	et	al.,	1979;	Holmes	
&	Sherry,	2001;	Holmes	&	Sturges,	1975;	Townsend	et	al.,	2013).	
The	forests	at	both	Hubbard	Brook	and	Jeffers	Brook	consist	of	
variably	aged	second	growth	northern	hardwoods,	dominated	by	
sugar	maple	 (Acer saccharum),	American	beech	 (Fagus grandifolia)	
and	yellow	birch	(Betula alleghaniensis),	with	occasional	white	ash	
(Fraxinus americana),	 white	 birch	 (Betula papyrifera),	 red	 spruce	
(Picea rubens),	 and	 balsam	 fir	 (Abies balsamea)	 (Campbell	 et	 al.,	
2007).	 The	 understory	 included	 saplings	 of	 the	 canopy	 species	
(especially	 American	 beech)	 as	 well	 as	 patches	 of	 hobblebush	
(Viburnum lantanoides)	 and	 occasional	 striped	 maple	 (Acer pen-
sylvanicum).	 Both	 sites	 contained	 relatively	 mature	 forests	 (last	
harvested	 in	 1910–	1915)	 and	 middle-	aged	 stands	 (clearcut	 in	
1970–	1975)	(Goswami	et	al.,	2018).	In	mid-	aged	stands	compared	

F I G U R E  1 Relative	positions	of	audio	recorders	within	study	sites	in	Jeffers	Brook	and	Hubbard	Brook	watersheds,	NH.	Coordinates	and	
site	characteristics	are	in	Table	1.	Base	images	are	from	Google	Earth
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to	mature	stands,	the	diameters	of	the	largest	trees	were	smaller	
(<40	 versus	 up	 to	 ~50	 cm	 diameter),	 but	 trees	 per	 hectare	was	
higher	 with	 the	 result	 that	 above-	ground	 biomass	 was	 similar	
(basal	area	=	25–	35	m2/ha).	Bird	vocalizations	from	the	two	ages	
of	forests	(hereafter	“mature”	and	“mid-	aged,”	respectively)	were	
sampled	at	both	 sites	 to	 compare	acoustic	 samples	 from	nearby	
forests	of	different	successional	stages.

2.2  |  Data collection and recording hardware

This	paper	contains	two	acoustic	datasets,	one	collected	in	2016	
and	 the	other	 in	2018.	 In	2016,	we	conducted	sampling	 to	com-
pare	 avian	 vocalizations	 in	 mid-	aged	 and	 mature	 forest	 stands,	
replicated	 across	Hubbard	Brook	 and	 Jeffers	 Brook	watersheds.	
In	2018,	sampling	was	concentrated	in	Hubbard	Brook	forest	and	
designed	to	provide	high	resolution	within	one	forest	area,	allow-
ing	for	more	detailed	examination	of	spatial	patterning	in	vocaliza-
tion	activity.	In	both	years,	recorders	were	activated	each	morning	
for	a	10-	minute	period	spanning	06:20–	06:30	local	time	(UTC-	4).	
Depending	on	the	date,	the	recordings	started	at	55–	75	min	after	
sunrise.	The	10-	min	 interval	 for	 recording	bouts	parallels	a	com-
mon	 point	 count	 duration	 (Buskirk	 &	McDonald,	 1995)	 and	 was	
chosen	 to	 be	 long	 enough	 to	 capture	most	 species	 vocalizing	 at	
that	site	on	that	morning,	but	short	enough	that	we	could	still	an-
notate	many	different	mornings	and	compare	inter-		and	intraspe-
cific	patterning	of	vocalizations	among	days	 (Tobias	et	al.,	2014).	
For	 annotation,	we	 chose	 a	 sample	 size	 of	 20	 dates	 per	 year	 as	
being	 both	 sufficient	 and	 manageable.	 We	 selected	 the	 dates	
within	years	such	that	they	were	distributed	throughout	the	period	
of	 available	 recordings,	 but	with	 longer	 intervals	 between	 dates	
later	in	the	season	when	there	were	generally	fewer	vocalizations.	
Dates	 for	 annotation	 were	 chosen	 in	 advance	 of	 examining	 the	
sound	recordings	and	so	were	not	biased	with	respect	to	vocaliza-
tion	activity	or	ambient	sound	levels.

We	used	Olympus	DS-	40	recorders	(Olympus,	Center	Valley,	PA,	
USA)	deployed	 in	plastic	boxes	and	connected	 to	 their	original	mi-
crophone	by	a	1-	m	extender	cable.	Each	microphone	was	placed	at	
a	height	of	2	m	and	was	suspended	below	a	fabric	rain	shield	25	cm	
in	diameter.	The	recorders	generated	MP3	files	with	a	sampling	rate	
of	 44.1	 kHz	 on	 the	 “high-	quality”	 setting,	with	 the	manufacturer's	
maximum	microphone	sensitivity,	no	frequency	filter,	and	no	variable	
control	voice	actuator.	The	MP3	files	were	converted	to	16	bit	WAV	
files	using	Switch	Plus	converter	(NCH	software,	Canberra,	Australia)	
so	that	recordings	could	be	digitally	analyzed	and	manipulated.	The	
compressed	MP3	format	discards	some	high-	frequency	information,	
resulting	 in	 smaller	 files,	 but	 lower	 acoustic	 resolution,	 particularly	
at	 frequencies	higher	 than	 those	used	by	most	bird	species.	These	
missing	data	are	not	recovered	with	the	conversion	to	WAV	format.

In	 2016,	 three	 recorders	 were	 in	 the	 mature	 forest	 and	
two	 were	 in	 mid-	aged	 forest	 in	 both	 the	 Hubbard	 and	 Jeffers	
Brook	 forests.	Within	watersheds,	 recorders	were	 separated	 by	

TA B L E  1 Total	number	of	songbird	vocalizations	annotated	
from	sound	recordings	collected	in	2016	(200	10-	min	recordings	
at	Hubbard	Brook	and	Jeffers	Brook,	combined)	and	2018	(210	
10-	min	recordings	at	Hubbard	Brook).	Species	are	sorted	by	total	
vocalizations	recorded

Species common name Code

Total vocalizations

2016 2018

Red-	eyed	Vireo REVI 46,817 26,998

Black-	throated	Blue	
Warbler

BTBW 6890 4316

Black-	throated	Green	
Warbler

BTNW 5399 4096

Ovenbird OVEN 3781 4192

Hermit	Thrush HETH 4051 1824

Red-	breasted	Nuthatch RBNU 32 2804

American	Redstart AMRE 2278 233

Blue-	headed	Vireo BHVI 427 1995

Swainson's	Thrush SWTH 880 1313

Red	Squirrela RESQ 910

Yellow-	rumped	Warbler YRWA 48 847

Winter	Wren WIWR 514 215

Golden-	crowned	Kinglet GCKI 511 172

Black-	capped	Chickadee BCCH 92 561

Yellow-	bellied	Sapsucker YBSA 299 304

Eastern	Wood-	Pewee EWPE 0 542

Black-	and-	white	Warbler BAWW 73 459

Scarlet	Tanager SCTA 48 338

Blue	Jay BLJA 62 296

Magnolia	Warbler MAWA 0 328

White-	breasted	Nuthatch WBNU 0 315

Blackburnian	Warbler BLWA 7 307

Dark-	eyed	Junco DEJU 0 249

Hairy	Woodpecker HAWO 68 177

American	Robin AMRO 218 18

Pine	Siskin PISI 0 220

Brown	Creeper BRCR 87 106

Cape	May	Warbler CMWA 34 159

Rose-	breasted	Grosbeak RBGR 56 100

Red	Crossbill RECR 0 92

Louisiana	Waterthrush LOWA 64 0

Purple	Finch PUFI 24 39

Downy	Woodpecker DOWO 48 1

Veery VEER 0 31

Wood	Thrush WOTH 0 26

Eastern	Chipmunka EACH 24

Ruby-	throated	
Hummingbird

RTHU 21 1

Pileated	Woodpecker PIWO 10 11

Alder	Flycatcher ALFL 0 18
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50–	200	m,	minimizing	the	chances	that	an	individual	songbird	was	
captured	by	multiple	recording	devices.	Recorders	were	activated	
for	 10	min	 each	morning	 from	 09	 June	 to	 21	 July.	 In	 2016,	 the	
estimated	dates	of	leaf	out	of	canopy	trees	and	median	initiation	
of	first	clutch	by	a	representative	locally	breeding	bird,	the	Black-	
throated	 Blue	 Warbler	 (Setophaga caerulescens),	 were	 approxi-
mately	12	May	and	31	May,	 respectively	 (Lany	et	al.,	2016).	We	
analyzed	 audio	 data	 for	 the	 following	20	dates	 in	 2016:	 09-	Jun,	
11-	Jun,	 15-	Jun,	 16-	Jun,	 18-	Jun,	 20-	Jun,	 24-	Jun,	 26-	Jun,	 28-	Jun,	
30-	Jun,	01-	Jul,	03-	Jul,	04-	Jul,	06-	Jul,	07-	Jul,	08-	Jul,	14-	Jul,	16-	Jul,	
19-	Jul,	and	21-	Jul.

In	2018,	we	sampled	vocalizations	only	within	Hubbard	Brook	
Experimental	Forest.	The	10	recorders	were	distributed	across	an	
area	that	has	been	the	focus	of	long-	term	studies	of	breeding	song-
birds	(Holmes	et	al.,	1986;	Holmes,	2011;	Rodenhouse	&	Holmes,	
1992;	Townsend	et	al.,	2013).	Distances	between	recorders	ranged	
from	176	to	1729	m	(Figure	1),	allowing	us	to	test	for	correlations	
in	 behavior	 at	 different	 distances.	 Recorders	 were	 activated	 for	
10	min	 each	morning	 from	20	May	 to	15	August.	 The	 estimated	
dates	 of	 leaf-	out	 and	 median	 initiation	 of	 first	 clutch	 by	 Black-	
throated	 Blue	Warblers	 in	 2018	 were	 10	May	 and	 30	May.	We	
analyzed	 audio	data	 for	 the	 following	21	dates	 in	2018:	13-	May,	
15-	May,	 17-	May,	 20-	May,	 23-	May,	 26-	May,	 29-	May,	 01-	Jun,	 04-	
Jun,	07-	Jun,	10-	Jun,	13-	Jun,	16-	Jun,	19-	Jun,	22-	Jun,	25-	Jun,	28-	Jun,	
01-	Jul,	04-	Jul,	07-	Jul,	10-	Jul.

All	410	10-	minute	recordings	(200	from	2016	and	210	from	2018),	
and	their	associated	metadata	are	available	at	Symes	et	al.	(2021).

2.3  |  Data selection and annotation

Recordings	 were	 annotated	 with	 species	 names	 by	 listening	 to	
sound	 recordings	 and	 looking	 at	 spectrograms	 (visual	 and	 audi-
tory	review).	To	review	recordings	visually	we	used	the	spectro-
gram	view	in	the	sound	analysis	software	RavenPro	(version	1.5.0	
Build	43	for	Windows,	2017).	The	DFT	size	was	512	samples	with	
an	overlap	of	50%,	giving	a	resolution	of	±	256	Hz.	The	spectro-
gram	of	each	recording	was	viewed	in	a	standard	gamma	II	color	

scheme	with	a	power	threshold	 floor	setting	of	56	dB,	although	
it	 should	 be	 noted	 that	 these	 recordings	 are	 not	 calibrated	 and	
this	 dB	 value	 is	 relative	 to	 the	 arbitrary	 reference	 value	 of	 the	
Raven	software.	For	recordings	with	high	background	noise,	the	
floor	 threshold	was	gradually	 raised	 to	diminish	noise	and	high-
light	 avian	 acoustic	 communication.	 All	 reviews	 of	 the	 spectro-
grams	 and	 sound	were	 conducted	 by	 one	of	 us	 (KDK)	who	was	
experienced	with	the	vocalizations	of	this	bird	community.	Noise-	
cancelling	 over-	ear	 headphones	 were	 used	 during	 review.	 Bird	
vocalizations,	 consisting	 of	 songs	 and	 calls,	 were	 identified	 to	
species.	We	 tallied	 only	 vocalizations	with	 a	 recognizable	 spec-
trogram	 that	 was	 clearly	 distinguishable	 by	 eye	 and	 ear	 from	
background	noise.	Two	10-	minute	samples	in	2018	occurred	dur-
ing	substantial	rain	and	were	excluded	from	further	analysis	(see	
Approach	2	 for	additional	details	on	quantifying	and	addressing	
sound	from	rain	and	wind).	There	were	occasional	high	amplitude	
vocalizations	that	exceeded	the	sensitivity	scale	of	the	maximum	
amplitude	 that	 the	 recording	 system	 could	 record	 accurately	 (a	
phenomenon	known	as	“clipping”),	but	clipped	vocalizations	could	
still	be	identified	to	species.	The	sound	recordings	were	reviewed	
in	 random	 order	 to	 limit	 effects	 from	 listener	 bias	 and	 listener	
learning.	The	complete	species	annotations	for	all	410	10-	min	re-
cordings	are	depos	in	(Symes	et	al.,	2021).

Each	 10-	min	 recording	 was	 analyzed	 by	 counting	 the	 number	
of	vocalizations	(calls	and	songs)	of	each	species	present	in	the	re-
cording.	Our	objective	was	to	recognize	species	and	quantify	their	
vocalization	activity,	so	we	did	not	attempt	to	distinguish	between	
songs	 and	 calls,	 but	we	 tested	 for	 the	 uniformity	 of	 vocalizations	
within	species.

The	duration	 and	 structure	of	 bird	 vocalizations	 varied	 among	
species.	For	example,	Red-	eyed	Vireos	(Vireo olivaveus)	had	a	short	
but	 repeated	 song	 that	 included	 two	 elements	 over	 only	 about	
700	ms.	Black-	throated	Blue	Warblers	had	a	song	with	several	ele-
ments	over	about	1.5	s,	whereas	Winter	Wrens	(Troglodytes hiemalis)	
had	songs	of	5–	10	s	that	consisted	of	a	dozen	or	more	elements	per	
second.	Operationally,	we	defined	a	vocalization	event	as	an	acous-
tic	element	separated	from	others	by	a	pause	of	more	than	one	sec-
ond.	This	was	partly	subjective,	so	we	characterized	our	operational	
definitions	with	sample	sound	recordings,	associated	spectrograms,	
and	statistical	analyses	of	mean	duration	and	dominant	frequency.	
Occasional	incomplete	vocalizations	were	still	scored	as	one	vocal-
ization	 if	 they	 could	be	 identified	 to	 species.	Vocalizations	of	 two	
mammals,	red	squirrels	 (Tamiasciurus hudsonicus)	and	Eastern	chip-
munks	 (Tamias striatus),	 were	 also	 recorded	 in	 the	 annotations	 of	
sound	recordings	from	2018.

2.3.1  |  Repeatability	of	annotation

At	 the	 end	 of	 the	 annotation	 process,	 the	 same	 observer	 (KDK)	
blindly	 re-	annotated	 thirteen	 randomly	 selected	 10-	min	 record-
ings.	This	allowed	us	to	assess	the	consistency	of	the	species	lists	
and	call	counts.

Species common name Code

Total vocalizations

2016 2018

American	Goldfinch AMGO 0 14

Cedar	Waxwing CEDW 0 13

Blackpoll	Warbler BLPW 0 8

Canada	Warbler CAWA 0 5

Pine	Warbler PIWA 0 4

Common	Loon COLO 3 0

Great-	crested	Flycatcher GCFL 2 0

Northern	Parula NOPA 0 2

aOnly	enumerated	in	2018.

TA B L E  1 (Continued)
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2.4  |  Data distributions, transformations,  
and analyses

Species-	specific	vocalization	 rates	 (number	per	10-	min	 recording)	
had	 frequency	 distributions	 that	were	 skewed	 toward	 higher	 vo-
calization	 rates	 (approximated	gamma	distributions).	 These	distri-
butions	were	well-	normalized	with	 a	 square	 root	 transformation,	
which	facilitated	statistical	analyses.	The	analyses	are	summarized	
in	Table	S2.

2.5  |  Research questions and statistical analyses

2.5.1  |  Species	lists	and	descriptions	of	
vocal	variation

Determining	the	list	of	species	present	in	a	site	is	among	the	most	
basic	uses	of	annotated	data	and	underlies	many	management	and	
conservation	 decisions.	We	 used	 the	 annotated	 data	 to	 generate	
an	overall	species	list	for	Hubbard	Brook	that	we	could	compare	to	
decades	of	field	observations	from	this	well-	studied	bird	community	
(Holmes	et	al.,	2021).

We	quantified	species-	specific	patterns	of	vocalizations	for	the	
songs	 of	 the	 eight	most	 common	 songbird	 species	 and	 compared	
them	to	determine	how	species	were	differentiated	by	duration	and	
frequency.	To	select	vocalizations	for	analysis,	we	isolated	and	ana-
lyzed	a	stratified	random	sample	of	recordings	that	consisted	of	two	
vocalizations	per	species	from	each	of	six	recorders	on	each	of	two	
dates	during	2016.	Presumably,	each	recorder	represented	different	
individual	birds.	The	two	dates	for	each	species	×	recorder	combi-
nation	were	chosen	as	those	that	contained	the	most	vocalizations	
for	that	species.	We	then	selected	two	random	numbers	from	1	to	
n,	where	n	was	the	number	of	vocalizations	by	that	species	in	that	
recording.	 By	 manual	 review,	 we	 located	 those	 two	 vocalizations	
within	recordings,	noted	the	start	and	stop	times	to	±	0.01	s,	and	
extracted	the	short	segments	of	sound	(snips)	corresponding	to	the	
selected	 vocalization.	 This	 produced	 stratified	 random	 samples	 of	
9–	22	vocalizations	per	species	 (total	of	157	snips)	that	we	used	to	
compare	variation	within	vs.	among	species	in	the	duration	and	char-
acter	of	vocalizations.	We	examined	all	spectrograms	by	eye	to	as-
sess	variation	in	vocalization	characteristics	within	and	among	bird	
species	and	deposited	the	snip	sound	files	at	Symes	et	al.	(2021).	We	
could	not	readily	calculate	dominant	frequency	from	these	samples	
because	most	randomly	selected	bird	vocalizations	overlapped	with	
vocalizations	from	other	birds.	Therefore,	from	the	same	sound	re-
cordings,	we	also	attempted	 to	 locate	 two	clean	vocalizations	per	
species	(i.e.,	vocalizations	that	did	not	overlap	with	vocalizations	of	
other	birds,	or	other	transient	acoustic	events	such	as	from	thunder,	
rain,	or	wind).	It	was	not	possible	in	each	recording	to	find	two	clean	
vocalizations,	but	we	obtained	2–	22	clean	vocalizations	from	seven	
species.	We	used	seewave	(Sueur	et	al.,	2019)	and	tuneR	(Ligges	et	al.,	
2018)	functions	in	R	Version	3.5.2	(R	Core	Team,	2017)	to	calculate	
the	dominant	frequency	for	each	clean	vocalization.

2.5.2  |  Relationships	among	environmental	
variables,	vocalization	activity,	and	acoustic	detection

Environmental	 variables	 such	 as	 rain,	 wind,	 cloud	 cover,	 baro-
metric	 pressure,	 and	 temperature	 can	 impact	 avian	 physiology	
and	behavior,	as	well	as	signal	transmission	and	the	probability	of	
detecting	 a	 vocalization	 on	 a	 recording	 unit	 (Bruni	 et	 al.,	 2014).	
Understanding	 the	 interaction	 between	 vocalization	 and	 abiotic	
factors	 inform	 natural	 history	 (Bruni	 et	 al.,	 2014;	 Lengagne	 &	
Slater,	2002)	and	can	have	value	for	 identifying	the	habitats	and	
sampling	windows	that	will	be	most	valuable	 for	observer-	based	
fieldwork.

We	analyzed	weather	data	that	were	collected	in	Hubbard	Brook	
0.2	to	2.4	km	from	our	Hubbard	Brook	recorders	and	16	km	from	our	
Jeffers	Brook	recorders.	Weather	data	came	from	the	publicly	avail-
able	Soil	Climate	and	Analysis	Network	(SCAN	site	2069,	elevation	
451	m	asl)	operated	by	the	Natural	Resources	Conservation	Service	
(NRCS)	of	 the	U.S.	Department	of	Agriculture.	We	extracted	data	
from	each	recording	day	for	air	temperature,	precipitation,	wind	di-
rection,	wind	speed,	solar	radiation,	relative	humidity,	and	dewpoint.	
All	measurements	were	for	06:00	to	07:00	(which	included	our	re-
cording	period	of	06:20	to	06:30	local	time,	UTC-	4)	except	for	rel-
ative	humidity,	which	was	an	instantaneous	measurement	at	07:00.	
Measurements	of	average	daily	barometric	pressure	(and	change	in	
pressure	from	previous	day)	came	from	the	Stagecoach	Hill	weather	
station	 in	Plymouth,	NH	 (43.74°N,	71.69°W,	accessed	via	https://
www.wunde	rgrou	nd.com/dashb	oard/pws/KNHPL	YMO5	on	29	May	
2020),	which	was	21	and	35	km,	respectively,	from	the	acoustic	re-
corders	at	Hubbard	Brook	and	Jeffers	Brook.

Quantification of rain and wind intensity
Rain	and	wind	pose	particular	challenges	for	bioacoustics	because	
they	can	affect	both	the	rate	of	signaling	in	animals	and	the	detect-
ability	of	signals.	We	employed	multiple	approaches	to	quantifying	
background	sound	pressure	from	rain,	wind,	and	water	drops.	The	
first	 approach	was	 to	 reference	hourly	 data	 from	nearby	weather	
stations	(see	above).	A	second	approach	was	human	review	and	eval-
uation	of	acoustic	signatures	associated	with	rain	and	wind	(Towsey	
et	al.,	2012).	Sound	from	water	drops	was	ranked	on	a	five-	tier	scale	
by	listening	to	the	recordings	and	visualizing	spectrograms:	absence	
(0),	drizzle	to	light	(1),	moderate	and	constant	(2),	hard	rain	(3),	and	
very	 hard	 rain	 (4)	 (Figure	 S1).	 Wind,	 which	 tended	 to	 be	 audible	
but	with	a	broadband	spectral	contribution	below	the	visualization	
threshold,	was	 ranked	 on	 a	 three-	tier	 auditory	 scale:	 absence	 (0),	
soft	(1),	or	hard	(2).

We	 also	 employed	 two	 statistical	 assessments	 of	 ambient	
sound	pressure	as	recorded	in	the	wave	files:	Amanual	and	Aautomated. 
Amplitude-	calibrated	 equipment	 is	 currently	 rare	 in	 terrestrial	
PAM.	 Our	 equipment	 was	 not	 amplitude	 calibrated	 and	 conse-
quently,	 the	 measurements	 are	 proportional	 to	 sound	 pressure	
levels	 but	 cannot	 be	 represented	 as	 absolute	 values.	Our	 calcu-
lations	 assumed	 that	 microphone	 sensitivity	 was	 approximately	
equal	 across	 recorders	 and	 across	 the	duration	of	 the	 recording	

https://www.wunderground.com/dashboard/pws/KNHPLYMO5
https://www.wunderground.com/dashboard/pws/KNHPLYMO5
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season	(verified	by	recording	the	same	tone	series	using	all	record-
ers	at	the	beginning	and	end	of	the	seasons).	For	the	calculation	of	
Amanual,	we	randomly	selected	42	audio	recordings	from	2016	and	
manually	 identified	 (using	 the	 spectrogram	 view	 in	 RavenPro)	 a	
sample	of	one-	second	sound	snips	without	bird	vocalizations	from	
each	 recordings.	 To	 do	 so,	we	 selected	 a	 random	 second	within	
each	 minute	 and	 manually	 moved	 forward	 in	 the	 recording	 (by	
auditory	 review	 and	 examination	of	 spectrograms)	 to	 locate	 the	
next	one-	second	 interval	 that	did	not	contain	bird	vocalizations,	
allowing	us	to	sample	the	background	throughout	the	recording.	
Sometimes,	 there	were	no	one-	second	 intervals	within	 the	next	
minute	without	bird	vocalizations.	In	those	cases,	we	moved	for-
ward	to	the	following	minute.	From	42	10-	minute	sound	files,	we	
obtained	293	one-	second	snips	 (available	as	WAV	files	at	Symes	
et	 al.,	 2021):	 that	 is,	 2–	10	 samples	 per	 recording	 of	 one	 second	
without	bird	vocalizations	(mean	=	7	per	recording).	For	each	snip,	
we	 used	MATLAB	 to	 access	 the	 vector	 of	 raw	 acoustic	 sample	
values	and	calculated	the	root	mean	square	(RMS)	of	sound	pres-
sure	within	 each	 second	 (one	 snip)	 as	 the	 standard	 deviation	 of	
the	 raw	 sample	 values	 (n =	 44,100	 records	 in	 one	 second).	 The	
resulting	data	approximated	a	log-	normal	distribution,	so	we	used	
log10(RMS)	for	subsequent	calculations.	Our	second	statistical	ap-
proach	was	 an	 automated	 estimator	 of	 ambient	 sound	 pressure	
(Aautomated)	that	we	were	able	to	apply	to	all	410	10-	min	recordings.	
The	 algorithm	 (implemented	 in	 MATLAB)	 calculated	 probability	
density	functions	for	total	sound	pressure	per	second	[log10(RMS)]	
in	each	minute	of	the	recording	(with	a	sliding	frame	that	advanced	
by	0.1	s	per	step	–		yielding	580	1-	s	sound	snips	per	minute).	We	
took	the	10th	percentile	of	the	vectors	of	580	snips	as	an	opera-
tional	metric	of	relative	quiet	in	that	minute	and	then	calculated	an	
average	for	the	recording	of	these	ten	estimates	of	a	quiet	second	
(one	 estimate	 from	 each	minute	within	 the	 recording).	MATLAB	
code	for	 these	analyses	 is	available	at	https://github.com/MattA	
yres1	25/Estim	ator-	for-	ambie	nt-	sound	-	pressure.

We	analyzed	Aautomated	by	ANOVA	(JMP	Pro	15.0,	SAS	Institute	
2019)	 to	estimate	 the	relative	contributions	 (percent	 total	 random	
variance)	 from	 dates,	 recorders,	 and	minutes	 to	 the	 amplitude	 of	
background	sound.	The	data	frame	included	one	value	of	Aautomated 
for	each	minute	of	410	10-	minute	 recordings	 (n =	 4100	measure-
ments).	The	ANOVA	model	included	year	(2016	and	2018),	locations	
within	year,	and	occasions	within	year.	Locations	and	occasions	were	
treated	as	random	effects.

We	calculated	correlations	across	dates	among	all	pairs	of	envi-
ronmental	factors	(temperature,	wind,	ambient	sound,	etc.)	and	be-
tween	environmental	factors	and	bird	vocalization	rates.

2.5.3  |  Community	patterns	in	vocalization	activity

Passive	acoustic	monitoring	is	well-	suited	for	revealing	how	species	
are	associated	with	different	habitats.	Often,	habitat	affinity	is	de-
scribed	at	a	coarse	scale	(e.g.,	old	growth	forest,	marshlands),	with	
conservation	 decisions	 following	 comparably	 broad	 classes.	 But	

there	 can	be	 substantial	 heterogeneity	within	 recognized	habitats	
due	 to,	 for	 example,	 diverse	 plant	 communities,	 topography,	 and	
proximity	to	water.	Understanding	where	species	spend	time	within	
preferred	habitat	 types	 can	help	 to	 identify	 and	protect	 the	most	
valuable	areas	within	critical	habitats.

We	evaluated	patterns	 in	vocalization	rates	across	 two	habitat	
types	using	our	site	comparison	dataset,	collected	in	2016.	We	em-
ployed	an	ANOVA	that	included	forest	type	(mature	and	mid-	aged),	
watershed	(Jeffers	Brook	and	Hubbard	Brook),	forest	type	×	water-
shed,	and	date	as	fixed	effects.	To	avoid	concerns	regarding	spatial	
independence	of	recorders	(Hurlbert,	1984),	the	data	frame	for	the	
ANOVA	was	the	average	on	each	sample	day	of	the	2–	3	recorders	
within	each	forest	type	×	watershed.	Vocalizations	per	10	min	were	
square-	root	transformed	prior	to	analysis,	which	satisfied	assump-
tions	of	homoscedasticity.	Visual	examination	revealed	no	temporal	
autocorrelation	to	residuals.

Repeated	 sampling	 across	19	dates	 in	2018	permitted	 the	 con-
struction	of	species	accumulation	curves	to	evaluate	the	complete-
ness	of	species	detections	at	each	sampling	location	(see	Approach	7).

2.5.4  |  Timing	of	vocal	activity

In	 mid-		 to	 high-	latitude	 systems,	 the	 annual	 timing	 of	 breed-
ing	 events	 by	 birds	 can	 vary	 from	 year	 to	 year.	 For	 example,	 at	
Hubbard	 Brook,	 the	 annual	 variation	 in	 the	 initiation	 of	 first	
clutches	by	Black-	throated	Blue	Warblers	varied	by	20	days	across	
25	 years	 (Lany	 et	 al.,	 2016).	 The	 annual	 timing	 of	 vocal	 activity	
would	also	be	expected	to	vary	among	years,	but	data	are	limited	
(Buxton	et	al.,	2016;	Furnas	&	McGrann,	2018).	The	phenology	of	
vocalization	activity	could	be	informative	with	respect	to	behav-
ior,	reproduction,	and	climatic	patterns,	and	other	environmental	
conditions.	For	example,	the	number	of	days	of	singing	per	season	
could	be	 relatively	constant	 from	year-	to-	year	or	might	vary	de-
pending	on	environmental	 conditions	 that	 influence	 the	number	
and	timing	of	clutches.

To	evaluate	phenological	patterns,	we	plotted	vocalization	rates	
for	each	species	by	date	across	the	breeding	season.

2.5.5  |  Correlations	within	species	in	
vocalization	activity

Within	 a	 season,	 there	 can	 be	 shifts	 in	 vocalization	 patterns	 due	
to	breeding	cycle,	but	there	can	also	be	daily	variation	around	the	
trend.	 Daily	 vocalization	 activity	 can	 depend	 upon	 the	 weather	
(Bruni	 et	 al.,	 2014;	 Gottlander,	 1987),	 the	 social	 environment	
(Fitzsimmons	et	al.,	2008;	Foote	et	al.,	2011),	the	presence	of	preda-
tors,	or	other	factors	(Fitzsimmons	et	al.,	2008;	Foote	et	al.,	2011;	
Stehelin	&	Lein,	2014;	Valcu	&	Kempenaers,	2010;	Xia	et	al.,	2014).	
Weather	tends	to	co-	vary	over	relatively	large	spatial	scales,	whereas	
social	environments	and	predators	tend	to	be	more	local.	Therefore,	
we	 propose	 and	 test	 the	 hypothesis	 that	 weather	 will	 generate	

https://github.com/MattAyres125/Estimator-for-ambient-sound-pressure
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spatial	 correlations	 in	 day-	to-	day	 vocalization	 activity	 at	 the	 scale	
of	tens	of	kilometers,	whereas	social	interactions	and	predators	pre-
dict	correlations	at	the	scale	of	hundreds	of	meters.	We	tested	these	
predictions	with	analyses	of	spatial	correlations	in	day-	to-	day	vocali-
zation	rates.	We	used	different	analytical	approaches	for	2016	and	
2018	because	the	spacing	of	the	recorders	and	research	questions	
were	different.

With	the	data	from	2016,	we	tested	for	species-	specific	correla-
tions	in	vocalization	activity	between	the	two	stand	ages	within	each	
forest	type	(recorders	separated	by	~150	m)	and	between	the	two	
watersheds	(separated	by	~16	km).	For	each	of	the	20	measurement	
dates,	we	calculated	the	mean	of	square	root	transformed	vocaliza-
tion	 rates	 for	 the	 2–	3	 recorders	 in	 each	 age	 stand	 in	 each	water-
shed	(which	largely	normalized	the	distributions)	and	calculated	the	
Pearson	correlation	coefficient	of	calling	 rates	across	days	 for	 the	
two	sets	of	recorders	in	each	watershed	(separated	by	~150	m).	We	
then	averaged	the	two	stands	within	each	watershed	for	each	mea-
surement	date	and	calculated	the	Pearson	correlation	coefficient	for	
vocalization	rates	across	days	between	the	two	watersheds	 (sepa-
rated	by	~16	km).	We	estimated	standard	errors	for	the	correlation	
coefficients	as:

where r =	 correlation	 coefficient	 and	n =	 sample	 size	 (Neter	 et	 al.,	
1985).

With	the	data	from	2018,	where	we	had	a	range	of	inter-	recorder	
distances,	we	were	able	to	calculate	continuous	spline	correlograms	
with	95%	confidence	 intervals	 using	 the	R	package	ncf	 (Bjornstad	
&	Bjornstad,	2020).	For	these	correlograms,	we	added	data	points	
representing	the	Pearson	correlation	coefficients	vs.	distance	for	all	
pairs	of	recorders;	these	data	points	were	not	independent	because	
10	recorders	yielded	45	pairs.	While	these	points	did	not	influence	
the	correlograms	or	the	confidence	intervals	produced	by	ncf,	they	
were	plotted	to	facilitate	data	visualization.	We	omitted	two	dates	
with	 heavy	 rain	 and	 very	 low	 vocalizations	 (Figure	 4)	 leaving	 19	
dates.

2.5.6  |  Correlations	among	species	in	
vocalization	activity

The	majority	of	 species	were	detected	 throughout	 the	window	of	
dates	that	we	sampled,	indicating	that	we	were	sampling	within	the	
season	 of	 active	 calling,	 and	 not	 capturing	 arrivals	 or	 departures.	
Besides	patterns	within	species,	there	could	be	correlations	among	
species	 in	day-	to-	day	vocalization	 activity.	Vocalizations	would	be	
positively	correlated	among	species	 if	 they	have	similar	 responses	
to	abiotic	factors	or	predators	(Nolen	&	Lucas,	2009).	Alternatively,	
vocalizations	could	be	negatively	correlated	if	species	have	opposite	
reactions	to	abiotic	factors	such	as	heat	or	rain	(e.g.,	rain	may	have	

more	impact	on	bird	species	that	use	vocalizations	that	are	short	or	
structurally	complex;	Bruni	et	al.,	2014).

We	used	a	randomization	test	to	evaluate	interspecific	correla-
tions	in	day-	to-	day	vocalization	activity	in	the	2018	spatial	dataset.	
We	 first	 calculated	 the	 mean	 of	 root-	transformed	 vocalizations	
per	 species	 on	 a	 given	 date	 and	 calculated	 the	 correlation	matrix	
(Pearson's	 R)	 among	 all	 species	 pairs	 across	 19	 dates	 (excluding	
the	 two	 dates	with	 heavy	 rain).	 To	 generate	 the	 null	 distribution,	
we	 again	 calculated	 correlations	 between	 all	 species	 pairs,	 first	
randomizing	 the	 call	 counts	 of	 both	 species	with	 respect	 to	 date.	
This	randomization	was	repeated	1000	times	for	each	species	pair	
to	generate	a	distribution	of	correlation	coefficients.	We	then	com-
pared	 the	 correlation	 coefficients	 of	 the	 actual	 data	 to	 the	 distri-
bution	of	coefficients	from	the	date-	randomized	data	to	search	for	
pairs	of	species	that	were	more	or	less	correlated	than	would	be	ex-
pected	by	chance.

To	explore	for	natural	groupings	among	species	 in	vocalization	
behavior,	we	also	used	a	principal	components	analysis	to	evaluate	
the	correlation	matrix	of	interspecies	vocalization	rates	(square	root-	
transformed	rates;	rows	as	dates	and	columns	as	species).	We	then	
tested	for	correlations	between	the	resulting	principal	components	
and	environmental	variables.

2.5.7  |  Species	accumulation	and	optimization	of	
bioacoustic	sampling	schemes

We	 analyzed	 our	 2018	 data	 using	 EstimateS	 9.1.0	 Biodiversity	
Estimation	Software	(Colwell,	2013)	to	(1)	estimate	species	accumu-
lation	curves	for	each	individual	recorder	and	for	the	aggregate	of	10	
recorders,	and	(2)	estimate	total	species	richness	represented	in	the	
aggregate	of	10	recorders.	Species	accumulation	curves	described	
the	expected	number	of	species	in	t	pooled	samples	(equation	17	in	
Colwell,	2013).	 In	addition	 to	being	a	description	of	 the	vocalizing	
community,	 the	 relationship	between	number	of	 species	detected	
and	sampling	effort	is	fundamental	to	optimizing	the	design	of	bio-
acoustic	studies.

We	 then	 evaluated	 how	 estimates	 of	 species	 richness	 would	
be	affected	by	alternative	possible	sampling	schemes	that	vary	the	
number	of	locations	and	dates	analyzed.	Our	2018	data	included	10	
locations	×	19	occasions,	or	190	annotated	10-	min	 sound	 record-
ings.	With	the	same	analysis	effort,	the	theoretically	possible	sam-
pling	strategies	would	include	one	location	with	190	occasions,	two	
locations	with	95	occasions,	etc.	To	estimate	the	expected	species	
richness	with	all	possible	strategies,	we	created	a	simulated	data	set	
from	our	data	(Appendix	S2)	that	included	190	sampling	occasions	
for	each	of	10	sampling	locations.	From	this	extended	data	set,	we	
drew	replicated	(n =	1000)	random	samples	for	each	possible	com-
bination	of	locations	and	occasions	(from	one	location	on	one	occa-
sion)	 to	10	 locations	on	190	occasions.	We	calculated	the	average	
species	richness	(from	1000	replicated	random	draws)	for	each	com-
bination	of	number	of	locations	and	occasions.

SE =

(

1− r2

n−2

)0.5
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3  |  RESULTS

3.1  |  Species lists and descriptions of vocal 
variation

Our	sample	of	410	10-	min	sound	recordings	included	129,866	vocal-
izations	from	44	bird	species	and	two	mammal	species	(Table	1).	The	
total	number	of	vocalizations	per	10-	min	recording	ranged	from	3	to	
1567	with	a	median	of	303	and	standard	deviation	of	208.	The	total	
number	of	species	detected	per	10-	min	recording	ranged	from	1	to	
12	species	with	a	median	of	5.	In	2016,	Red-	eyed	Vireos	accounted	
for	64.2%	of	the	vocalizations,	and	the	10	most	prevalent	species	ac-
counted	for	98.2%	of	the	vocalizations	(Table	1).	In	the	2018	dataset,	
Red-	eyed	Vireos	accounted	for	50.2%	of	the	vocalizations,	with	the	
10	most	prevalent	species	accounting	for	90.4%	of	the	vocalizations	
(Table	1).	The	full	set	of	annotations	are	provided	 in	 (Symes	et	al.,	
2021)	as	the	number	of	vocalizations	by	each	of	46	species	in	each	
of	410	10-	min	recordings.

Vocalizations	were	relatively	stereotypical	within	species	(Figure	
S2),	including	in	duration,	frequency,	and	pattern	(Table	2).	The	lon-
gest	vocalizations	were	produced	by	Winter	Wrens	(mean	=	6.2	s).	
The	remaining	species	had	vocalizations	ranging	from	0.6	s	(Red-	eyed	
Vireo)	 to	2.7	 s	 (Ovenbird;	Seiurus aurocapilla).	The	peak	 frequency	
of	 vocalizations	 ranged	 from	 2.9	 to	 5.5	 kHz	 (Swainson's	 Thrush	
(Catharus ustulatus)	and	American	Redstart	 (Setophaga ruticilla),	 re-
spectively).	The	relatively	long	song	of	the	Winter	Wren	meant	that	
their	vocalizations	usually	overlapped	with	other	species	and	so	we	
were	unable	to	quantify	peak	frequency	for	this	species.	While	the	
highest	 and	 lowest	 frequency	 species	 in	 the	 community	 had	 little	
frequency	overlap,	all	of	the	common	species	used	frequencies	that	
overlapped	with	at	least	some	of	the	other	common	species.

There	were	no	cases	where	a	species	was	added	or	lost	in	a	blind	
second	annotation	and	there	was	high	repeatability	in	the	counts	of	
vocalizations	per	species	per	recordings	(r2 = 0.92 to 0.99; n =	13,	
depending	on	the	species;	Figure	S3).	The	modest	differences	be-
tween	 replicate	 counts	 from	 the	 same	 sound	 recordings	 resulted	

from	low	amplitude	vocalizations	that	were	on	the	edge	of	detect-
ability	and	were	counted	in	one	sample	but	not	the	other.

3.2  |  How vocalization rates are impacted by 
abiotic factors

Air	 temperatures	 during	 our	 acoustic	 sampling	 ranged	 from	 7	 to	
20°C	(mean	±	SD	= 15 ±	4°C;	Table	S3).	Two	of	41	sampling	days	
had	 substantial	 rainfall	 during	 the	 hour	 of	 the	 recording	 (2.6	 and	
3.5	mm/h	on	04	June	and	28	June	2018),	and	one	day	had	trace	pre-
cipitation	(23	May	2018).	Conditions	were	generally	calm	at	the	time	
of	our	recordings	(windspeed	<1	km/h	on	63%	of	days),	but	10%	of	
the	days	had	average	wind	speeds	>2	km/h	(Table	S3).	Solar	radia-
tion	 (chiefly	sun	vs.	clouds)	and	barometric	pressure	were	variable	
among	 sampling	 occasions.	Although	 there	were	 only	 three	 of	 41	
sampling	occasions	during	which	precipitation	was	recorded	at	the	
nearby	weather	station,	 recordings	from	many	days	 included	drip-
ping	 sounds	 (Table	2	and	Figure	S1),	 apparently	 the	 result	of	 con-
densation	in	the	canopy.	Such	dripping	was	more	pronounced	when	
temperatures	approached	the	dewpoint	and	when	there	was	wind.	
The	sound	pressure	in	randomly	chosen	seconds	when	no	birds	were	
vocalizing	varied	among	sampling	occasions	and	was	well	correlated	
with	automated	quantification	of	ambient	sound	pressure	(Figure	2).	
The	divergence	between	the	metrics	at	high	sound	pressure	levels	
likely	reflects	the	fact	when	focal	seconds	were	chosen,	we	selected	
only	quiet	seconds	(up	to	10,	but	often	fewer).	The	automated	analy-
sis	 identified	 the	quietest	 10th	percentile,	which	may	 still	 contain	
some	acoustic	events	when	recordings	had	substantial	acoustic	ac-
tivity.	The	automated	quantification	could	be	performed	for	all	410	
recordings.	Ambient	sound	pressure	was	highly	variable	among	days,	
with	much	 less	variation	among	sampling	 locations	or	among	min-
utes	within	sampling	occasions;	85%	of	the	random	variance	in	back-
ground	 sound	pressure	was	 among	days	 versus	 only	 4%	 and	11%	
among	locations	on	a	day	and	among	minutes	within	10-	minute	re-
cordings,	respectively.	The	two	rain	days	in	2018	had	17-		to	29-	fold	

Species Code na

Duration (s)
Peak frequency 
(kHz)

Mean SD Mean SD

American	Redstart AMRE 22,	7 1.16 0.30 5.46 1.17

Black-	throated	Blue	
Warbler

BTBW 22,	13 1.53 0.29 4.45 0.13

Black-	throated	Green	
Warbler

BTNW 18,	10 1.46 0.22 4.93 0.57

Hermit	Thrush HETH 20,	11 1.39 0.38 3.63 0.68

Ovenbird OVEN 20,	8 2.67 0.53 4.24 0.22

Red-	eyed	Vireo REVI 24,	22 0.61 0.13 3.37 0.41

Swainson's	Thrush SWTH 9,	2 1.19 0.28 2.93 0.49

Winter	Wren WIWR 22,	0 6.15 1.25

aNumber	of	randomly	selected	vocalizations	used	to	estimate	(duration,	peak	frequency).

TA B L E  2 Attributes	of	vocalizations	
of	eight	common	species	of	breeding	
songbirds	at	Hubbard	Brook.	See	Table	1	
for	full	species	names
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more	background	sound	pressure	than	the	quietest	day;	the	other	
19	days	differed	by	no	more	than	4-	fold	in	background	sound	pres-
sure	(Figure	S4).

The	number	of	bird	vocalizations	from	all	species	that	was	de-
tected	 per	 recorder	 per	 10-	min	 sampling	 occasion	was	 negatively	
correlated	 in	both	years	with	a	 set	of	 intercorrelated	variables	 re-
lated	 to	 ambient	 sound:	 wind	 speed,	 wind	 sounds,	 and	 dripping	
sounds	 (Tables	3	 and	4).	Overall	 vocalization	 activity	 per	 day	was	
negatively	related	in	both	years	to	wind	speed	and	ambient	sound	
(Table	5).	There	was	a	weaker	positive	association	with	barometric	
pressure	 (significant	 in	2016	but	not	2018).	For	the	most	common	
species,	vocalization	activity	and	date	were	often	correlated,	but	this	
direction	was	not	consistent	between	years	for	all	common	species	
except	 Ovenbirds	 (Table	 5).	 There	 were	 some	 additional	 correla-
tions	between	vocalization	activity	and	environmental	variables,	but	
other	than	relations	with	wind	speed	and	ambient	sound	they	were	
infrequent	and	inconsistent	(Table	5).

3.3  |  Community patterns in vocalization activity

Most	bird	species	occurred	in	recordings	from	both	Hubbard	Brook	
and	Jeffers	Brook,	but	some	species	were	detected	primarily	at	one	
location	 (Figure	3,	Table	S4).	The	elevation	of	Jeffers	Brook	 is	ap-
proximately	100	m	 lower	 than	Hubbard	Brook,	but	 the	sites	were	
otherwise	similar	in	vegetation	and	land	use	history.	Despite	this	ap-
parent	ecological	similarity,	American	Redstarts	and	Black-	throated	
Blue	Warblers	were	regularly	detected	at	Hubbard	Brook	and	almost	
never	detected	at	Jeffers	Brook,	while	American	Robins	(Turdus mi-
gratorius)	were	detected	almost	exclusively	at	Jeffers	Brook.

There	were	clear	associations	between	species	and	forest	age,	
with	Ovenbirds	and	Winter	Wrens	detected	at	higher	rates	 in	ma-
ture	 forests,	 while	 American	 Redstarts	were	more	 commonly	 de-
tected	in	middle-	aged	forest	(Figure	3,	Table	S4).

3.4  |  Timing of vocalization activity

Data	 from	 2016	 and	 2018	were	 recorded	 in	 different	 nearby	 loca-
tions.	In	both	years,	most	of	the	bird	species	were	conspicuously	vocal	
throughout	our	sampling	window	of	6–	8	weeks,	but	species-	specific	
vocalization	rates	frequently	varied	by	two-	fold	or	more	among	morn-
ings	separated	by	just	a	few	days	(Figure	4).	In	2016,	fluctuations	in	daily	
vocalization	 rates	 activity	were	quite	 concordant	 between	Hubbard	
Brook	 and	 Jeffers	 Brook	 in	 2016	 (left-	hand	 column	 in	 Figure	 4).	 In	
2018,	the	earlier	recordings	captured	comparatively	high	activity	from	
Black-	throated	 Blue	 warblers,	 Black-	throated	 Green	 Warblers,	 and	
Ovenbirds,	and	comparatively	low	activity	from	Red-	eyed	Vireos.

3.5  |  Correlations within species in 
vocalization activity

To	 further	 evaluate	 intraspecific	 spatial	 correlation	 in	 vocal	 ac-
tivity,	 we	 tested	 for	 correlated	 vocalization	 dynamics	 both	 be-
tween	habitats	(forest	age)	within	a	site	and	between	watersheds	
(Figure	5).	For	some	species	(Red-	eyed	Vireo,	Ovenbird,	and	per-
haps	 Black-	throated	 Blue	Warbler),	 daily	 vocal	 activity	was	 cor-
related	across	recording	sites,	even	when	the	sites	were	separated	
by	more	than	10	km.	The	correlations	for	Ovenbirds	were	particu-
larly	high	(r	≈	.80).	Recording	sites	separated	by	only	about	150	m	
were	 generally	 no	 more	 similar	 than	 those	 separated	 by	 about	
16	 km.	 However,	 the	 daily	 vocalization	 rates	 of	 Black-	throated	
Green	 Warblers	 (Figure	 5,	 upper	 right)	 were	 more	 correlated	
among	nearby	sites	than	distant	sites.

The	 data	 from	 2018	 permitted	 evaluation	 of	 spatial	 correla-
tions	 in	 daily	 vocalization	 rate	 at	 the	 finer	 scale	 of	 200–	1500	m.	
Examination	of	georeferenced	animations	of	daily	vocalization	rates	
across	the	study	area	(Appendix	S1)	suggested	modest	spatial	cor-
relation	that	depended	on	the	species.	Further	resolution	was	per-
mitted	by	spatial	correlograms	(Figure	6).	Similar	to	the	2016	data,	
there	was	evidence	of	spatial	correlations	in	vocalization	rates,	with	
Ovenbirds	again	showing	particularly	strongly	correlated	dynamics.	
However,	with	the	possible	exception	of	Red-	eyed	Vireos,	there	was	
little	evidence	for	elevated	correlations	among	nearby	locations.

3.6  |  Correlations among species in 
vocalization activity

Many	species	pairs	had	correlated	peaks	and	troughs	in	daily	vocali-
zation	rates	 (Table	6).	The	66	pairwise	correlations	were	dispropor-
tionately	positive	(45	correlations	were	positive,	10	were	significant;	

F I G U R E  2 Comparison	of	estimates	of	ambient	sound	pressure	
from	(1)	manually	identified	seconds	with	no	bird	vocalizations	
(y-	axis)	to	(2)	automated	analysis	of	ambient	sound	pressure	(x-	axis).	
Dashes	represent	the	line	of	equality.	Units	are	log10(RMS)
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21	 correlations	 were	 negative,	 none	 significant).	 The	 overall	 mean	
correlation	was	 r =	 .14	with	 a	SD	= 0.29. There were two clusters 
of	 covarying	 species,	 and	 these	 tended	 to	be	negatively	 correlated	
with	each	other	(note	the	positive	correlations	in	the	upper	left	and	
lower	 right	 of	 Table	 6,	 and	 the	 negative	 correlations	 in	 the	 center	
left	of	the	matrix).	A	principal	components	analysis	of	the	call	rate	of	
12	species	across	19	dates	explained	52%	of	the	variation	with	two	
axes	(Table	S5).	One	cluster	of	species,	loading	positively	on	PC1	in-
cluded	Black-	throated	Green	Warbler,	Black-	throated	Blue	Warbler,	
Ovenbird,	Black-	and-	white	Warbler	(Mniotilta varia),	and	Blue-	headed	
Vireo	 (Vireo solitarius).	The	 second	cluster	of	 species,	 loading	nega-
tively	on	PC1,	and	more	strongly	on	PC2,	 included	Red-	eyed	Vireo,	
red	squirrel,	Black-	capped	Chickadee,	Red-	breasted	Nuthatch	 (Sitta 
canadensis),	and	Swainson's	Thrush	(Figure	7).	When	compared	with	
environmental	variables,	the	first	principal	component	was	positively	
correlated	with	date,	while	the	second	principal	component	was	nega-
tively	correlated	with	ambient	sound	pressure	(Table	4,	bottom	rows).

3.7  |  Species accumulation and optimization of 
bioacoustic sampling schemes

The	average	number	of	species	detected	in	one	10-	minute	sample	at	
one	recording	location	was	5–	6	species	(α-	diversity,	Figure	8).	The	
number	of	new	detections	at	an	average	location	increased	to	about	
13	species	with	7	days	of	sampling	(β-		diversity,	Figure	8).	The	ex-
pected	total	number	of	species	detections	increased	from	about	20	
to	25	species	if	19	ten-	min	samples	were	drawn	from	10	locations	vs.	
all	from	the	same	location	(γ-	diversity	in	Figure	8).

As	anticipated,	more	species	were	detected	when	we	sampled	
additional	 days	 and	 included	 additional	 recording	 sites	within	 the	
habitat	matrix	 (Figures	 S4	 and	 S5).	However,	 adding	 locations	 re-
sulted	 in	more	 species	 per	 unit	 of	 analysis	 effort	 than	 did	 adding	
more	days	(Figure	8).	In	our	study	system,	the	expected	species	de-
tection	curve	saturates	at	30	species	when	sampling	in	one	location	
and	at	41	species	when	the	same	total	sampling	time	was	distributed	
across	ten	locations	(Figure	8).

4  |  DISCUSSION

Our	 examination	 of	 bird	 vocalization	 patterns	 from	multiple	 sites,	
years,	 and	 recording	units	generated	knowledge	of	 the	 study	 sys-
tem,	 as	well	 as	 insights	 regarding	methods.	The	 species	 lists	 from	
acoustic	 data	 (Table	 1)	 were	 largely	 congruent	 with	 decades	 of	
observer-	based	field	studies	(see	Holmes	&	Likens,	2016).	For	exam-
ple,	the	five	species	responsible	for	79–	89%	of	all	recorded	vocaliza-
tions	are	the	most	abundant	breeding	birds	in	this	location	and	the	
rest	of	our	species	list	(Table	1)	nearly	completes	the	well-	refined	list	
of	 breeding	 birds	 in	Hubbard	Brook	 Experimental	 Forest	 (Holmes	
&	 Sherry,	 2001;	 Holmes	 et	 al.,	 1986).	 However,	 several	 species	
known	 to	 occur	 in	 the	 forest	were	 absent	 from	 the	 acoustic	 data	
including	Common	Ravens	(Corvus corax),	several	hawks	(all	species	TA
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with	large	home	ranges	and	low	vocalization	rates),	Chimney	Swifts	
(Chaetura pelagica,	 which	 forage	 above	 the	 canopy	 and	 have	 low	
amplitude	calls),	Ruffed	Grouse	(Bonasa umbellus)	and	Barred	Owls	
(Strix varia;	 a	 species	with	primarily	nocturnal	 calling	 that	was	not	
captured	by	dawn	recordings).	Longer	duration	recordings	may	en-
hance	 the	 representation	of	species	 that	are	active	at	other	 times	
of	day.	Unexpected	detections	in	our	recordings	included	an	Alder	
Flycatcher	(Empidonax alnorum;	an	apparent	itinerant	that	was	only	
detected	 at	 one	 location	on	one	day)	 and	 a	Common	Loon	 (Gavia 

immer;	 likely	 a	 flyover).	 In	 cases	 with	 published	 call	 descriptions,	
there	was	 strong	alignment	between	 the	 calls	measured	here	 and	
previously	published	measurements	(Rivers	&	Kroodsma,	2000).

4.1  |  Environmental variables and ambient sound

We	 evaluated	 multiple	 environmental	 variables	 for	 their	 relations	
with	vocalization	activity.	The	literature	includes	numerous	reports	of	

TA B L E  5 Correlations	between	vocalization	rates	of	individual	songbird	species	and	environmental	variables	(N =	20	dates	for	2016,	
N =	19	dates	for	2018).	Vocalization	rates	are	the	average	for	each	date	of	square-	root	transformed	rates	for	all	recorders	at	Hubbard	Brook	
(5	in	2016	and	10	in	2018).	Analyses	for	2018	exclude	two	rainy	dates.	See	Tables	3	and	4	for	correlations	among	environmental	variables

Species Year

Pearson correlation coefficients

Julian 
date Temper- ature Wind speed Solar radiation

Relative 
humidity

Barometric 
pressure

Change in 
pressure Ambient sound

All 2016 −0.45 0.09 −0.64 0.38 −0.13 0.46 0.00 −0.61

All 2018 0.10 0.28 −0.61 0.18 0.06 0.25 0.08 −0.58

REVI 2016 −0.50 −0.01 −0.49 0.68 −0.30 0.38 −0.20 −0.36

REVI 2018 0.39 0.52 −0.30 0.16 0.12 0.15 0.13 −0.35

BTBW 2016 0.37 0.64 −0.66 −0.19 0.29 0.55 −0.17 −0.70

BTBW 2018 −0.37 −0.05 −0.30 0.02 0.17 0.04 −0.09 −0.13

BTNW 2016 0.59 0.44 −0.21 −0.26 0.52 0.11 −0.04 −0.30

BTNW 2018 −0.65 −0.21 −0.31 0.34 −0.23 −0.03 −0.07 −0.42

OVEN 2016 −0.57 −0.07 −0.19 0.33 −0.37 0.16 −0.01 −0.37

OVEN 2018 −0.51 −0.04 −0.49 0.19 −0.06 0.17 0.12 −0.36

HETH 2016 0.13 0.01 −0.34 −0.14 0.05 −0.04 0.40 −0.29

HETH 2018 0.25 −0.03 −0.38 −0.05 0.15 0.05 0.20 −0.23

AMRE 2016 −0.65 −0.23 −0.31 0.39 −0.39 0.43 0.11 −0.28

RBNU 2018 0.60 0.18 −0.14 0.06 −0.18 0.32 0.01 −0.27

BHVI 2018 −0.19 −0.16 −0.31 −0.04 −0.28 0.18 −0.07 −0.46

SWTH 2018 0.70 0.32 −0.08 −0.03 −0.01 0.37 0.35 −0.16

YRWA 2018 −0.05 0.13 −0.38 0.11 −0.13 0.04 −0.08 −0.45

Note: Bold-	face	indicates	statistical	significance	(uncorrected	for	multiple	comparisons).	Critical	values	for	p <	.05,	p <	.01,	and	p <	.001	≈	correlation	
coefficients	of	.45,	.57,	and	.69.

F I G U R E  3 Vocalization	rate	of	eight	
species	of	songbirds	in	the	Hubbard	
Brook	and	Jeffers	Brook	watersheds,	
NH,	in	2016.	Means	and	SEs	are	from	
20	dates	×	2–	3	recorders	each	in	
mature	forest	and	mid-	aged	forest	in	
the	two	forested	watersheds	(Figure	1,	
Table	1).	Corresponding	ANOVAs	are	
in	Table	S2.	REVI	=	Red-	eyed	Vireo,	
BTBW	=	Black-	throated	Blue	Warbler,	
BTNW	=	Black-	throated	Green	Warbler,	
OVEN	=	Ovenbird,	HETH	=	Hermit	
Thrush,	AMRE	=	American	Redstart,	
WIWR	=	Winter	Wren,	and	
SWTH	=	Swainson's	Thrush.	Note	
different	scales	on	vertical	axes
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such	relationships.	For	example,	sunlight	(Miller,	2006;	Thomas	et	al.,	
2002),	moonlight	(York	et	al.,	2014),	temperature	(Garson	&	Hunter,	
1979;	Gottlander,	 1987;	 Thomas,	 1999),	 and	 atmospheric	 pressure	
(Prevost,	2016)	can	affect	signaling	activity.	Wind	and	rain	can	inter-
act	to	affect	vocalization	activity	in	a	variety	of	bird	species,	ranging	
from	King	Penguins	to	Grasshopper	Sparrows	(Lengagne	et	al.,	1999;	
Lenske	&	La,	2014;	Prevost,	2016).	In	our	studies,	the	only	environ-
mental	variable	with	notable	effects	was	background	sound,	which	
was	primarily	due	to	the	sound	of	water	dripping	from	the	canopy.

Establishing	statistical	criteria	for	identifying	recordings	with	high	
ambient	sound	(“noise”	from	the	perspective	of	animal	vocalizations)	
provides	an	objective	way	to	filter	recordings	for	analysis	and	identify	
how	species	respond	to	background	noise.	The	automated	approach	
to	 assessing	 ambient	 sound	 provided	 results	 that	 were	 highly	 cor-
related	with	the	manual	approach	(Figure	2)	and	can	readily	be	applied	
to	large	numbers	of	sound	recordings.	In	our	study	system,	some	bird	
species	showed	greater	declines	in	vocalization	when	ambient	sound	
was	relatively	high	(Table	4,	Figure	7).	High	ambient	sound	can	reduce	
the	 number	 of	 detected	 vocalizations	 by	 changing	 behavior	 or	 by	
changing	the	detectability	of	vocalizations.	In	our	study,	we	detected	
fewer	vocalization	during	rain,	even	though	we	excluded	recordings	
with	the	most	intense	background	sound.	The	fact	that	light	rain	days	
included	fewer	vocalizations	that	rain-	free	days	likely	reflect	the	fact	

species	are	reducing	their	calling	activity	rather	than	calling	and	failing	
to	be	detected.	However,	changes	in	vocalization	rate	and	changes	in	
detectability	could	both	contribute	to	the	observed	relationship	be-
tween	background	 sound	and	vocalization	 rate.	 Indeed,	 the	detect-
ability	and	vocalization	rate	may	be	correlated	if	species	that	are	less	
detectible	 to	 receivers	 (and	 recorders)	are	also	 less	 likely	 less	 to	at-
tempt	vocalization	with	high	background	sound.	Further	study	would	
be	needed	to	test	whether	species	with	low	calling	rates	under	high	
ambient	sound	share	similar	acoustic	signals,	such	as	lower	frequency,	
lower	amplitude,	or	narrower	bandwidth	(Snell-	Rood,	2012).	Ambient	
sound	could	also	 influence	the	nature	of	vocalizations.	For	example	
Mountain	 Chickadees	 (Poecile gambeli)	 in	 Colorado	 tended	 to	 sing	
more	and	call	less	in	noisier	environments	(LaZerte	et	al.,	2017).

4.2  |  Variation in signaling activity across 
space and time

In	 the	 third	 approach,	we	 compared	vocal	 activity	 in	 two	water-
sheds	with	similar	forest	composition	and	land	use	history.	Despite	
the	 proximity	 and	 similarity	 of	 these	 sites,	 several	 bird	 species	
were	common	in	one	site	and	rare	or	absent	in	the	other	(Figure	3).	
These	findings	underscore	the	value	of	replicating	locations	within	

F I G U R E  4 Vocalization	rate	of	four	nesting	songbird	species	at	Hubbard	Brook	and	Jeffers	Brook	during	two	breeding	seasons.	Data	
are	based	on	10-	min	recordings	made	about	1	h	after	sunrise	(06:20	–		06:30	EDT)	through	each	season.	N =	5,	6,	or	10	recorders	(Hubbard	
Brook	2016,	Jeffers	Brook	2016,	Hubbard	Brook	2018,	respectively).	REVI	=	Red-	eyed	Vireos,	BTBW	=	Black-	throated	Blue	Warblers,	
BTNW	=	Black-	throated	Green	Warblers,	and	OVEN	=	Ovenbird.	Two	dates	in	2018	with	heavy	rain	during	the	recording	time	are	indicated	
with	arrows	on	the	x-	axes.	Note	that	measurements	started	later	and	ran	later	in	2016	than	in	2018

F I G U R E  5 Intraspecific	correlations	in	vocalization	rates	of	six	common	bird	species	at	two	distances	(150	m	and	16	km;	n =	20	dates	
in	2016).	Y-	axis	is	the	average	Pearson	correlation	coefficient	for	the	corresponding	species	and	distance.	The	two	points	in	each	panel	
at	150	m	show	the	average	correlation	coefficient	from	Hubbard	Brook	and	Jeffers	Brook.	The	one	point	at	16	km	shows	the	correlation	
coefficient	for	Hubbard	Brook	versus	Jeffers	Brook



16 of 22  |     SYMES Et al.

a	habitat	and	not	assuming	that	a	single	forest	site	is	representa-
tive	of	similar	nearby	habitats.

Signaling	 is	risky,	time	consuming,	and	metabolically	costly	 (Falk	
et	al.,	2015;	Godin	&	McDonough,	2003;	Prestwich	&	Walker,	1981;	

Symes	et	 al.,	 2015;	Taigen	&	Wells,	 1985).	Although	 the	 character-
istics	 of	 the	 individual	 signals	 have	been	well-	studied,	much	 less	 is	
known	about	how	singing	activity	varies	from	day-	to-	day	or	season-	to	
season.	Additional	sampling	would	be	required	to	test	for	the	stabil-
ity	 in	our	study	system	of	seasonal	 timing	across	years	 (Method	4).	
Most	of	the	species	that	we	studied	displayed	conspicuous	peaks	and	
troughs	in	day-	to-	day	vocalization	rates	(at	one	hour	post-	dawn)	that	
were	only	weakly	explained	by	abiotic	factors	(Table	3).	This	suggests	
a	prominent	role	for	behavioral	ecology	in	understanding	the	pattern-
ing	of	bird	vocalization	rates.	Possible	predictors	include	the	timing	of	
territory	establishment,	nest-	building,	egg-	laying,	 incubation,	hatch-
ing,	 and	 fledging.	 The	 behavior	 of	 birds	 on	 neighboring	 territories	
could	also	be	a	 factor	 (Sillett	et	al.,	2004).	Better	understanding	of	
the	 relationship	 between	 reproductive	 behavior	 and	 signaling	 rate	
can	 inform	acoustic	 sampling	strategies	and	expand	 interpretations	
of	 acoustic	 data	 from	 times	 and	 places	when	observer-	based	 sam-
pling	is	constrained,	such	as	on	military	ranges	or	during	the	Covid-	19	
pandemic.	At	 longer	time	scales,	advances	in	the	analysis	and	inter-
pretation	of	acoustic	data	can	expand	studies	of	seasonal	and	inter-
annual	phenology,	particularly	to	times	of	year	when	it	is	difficult	for	
researchers	to	access	sites	due	to	environmental	conditions	or	com-
peting	professional	demands	(Marra	et	al.,	2015).	Recording	devices	
that	are	timed	to	automatically	start	before	breeding	activity	begins	
will	make	it	more	feasible	to	determine	when	migratory	birds	arrive	
and	can	spare	field	biologists	the	sometimes	frustrating	work	of	sam-
pling	to	determine	that	the	season	has	not	yet	begun.

4.3  |  Intraspecific synchrony in signaling

By	combining	data	 from	multiple	 recording	units,	 large	synchronous	
acoustic	 datasets	 open	 a	 frontier	 of	 opportunities	 for	 studying	 be-
havior	 across	 landscapes	 (Valcu	 &	 Kempenaers,	 2010).	While	 pres-
ence/absence	 data	 are	 ecologically	 informative	 (Wood	 et	 al.,	 2021),	
counts	of	 individual	 vocalizations	 can	provide	additional	 insight	 into	
behavior.	We	employed	statistical	approaches	from	population	ecol-
ogy	(e.g.,	spline	correlograms)	that	were	developed	to	test	for	corre-
lated	dynamics	in	abundance	and	are	readily	extended	to	vocalization	
activity	 (Method	5).	 In	our	study	system,	the	daily	vocalization	rates	
of	some	common	species	rose	and	fell	synchronously	between	sites	
separated	by	15	km	(Figure	5),	but	not	necessarily	more	so	at	200	m	
than	at	1500	m	(Figure	6).	Weather	only	explained	a	modest	fraction	of	
the	spatiotemporal	correlations.	Other	hypotheses	include	food	avail-
ability,	concordant	endogenous	rhythms	in	reproduction,	or	neighbor	
effects	on	behavior	that	extend	a	surprisingly	long	way.	Playback	ex-
periments	could	be	a	powerful	tool	for	testing	hypotheses	drawn	from	
behavioral	ecology	(Greenfield,	1988).

4.4  |  Interspecific synchrony in signaling

Our	 analyses	 of	 interspecific	 correlations	 (Approach	 6)	 suggested	
the	existence	of	functional	groups	of	species	based	on	vocalization	

F I G U R E  6 Intraspecific	correlations	in	vocalization	rates	of	
four	songbird	species	as	a	function	of	distance	between	recording	
locations	(n =	19	dates	×	10	locations	in	Hubbard	Brook	in	2018).	
Smooth	lines	indicate	the	nonparametric	autocorrelation	functions	
with	95%	confidence	intervals	(Bjornstad	&	Falk,	2001).	Points	
represent	all	pairs	of	recording	locations
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activity.	 Such	 structure	 creates	 opportunity	 for	 testing	 general	
theory	 related	 to	 acoustic	 partitioning,	 phylogenetic	 conservation	
of	behavior,	convergent	evolution,	and	information	transfer	among	
species	 (Tobias	 et	 al.,	 2014).	 In	 our	 system,	 the	 species	 in	 cluster	
1	tended	to	become	 less	vocal	as	 the	breeding	season	progressed	
(Black-	throated	 Green	 Warblers,	 Black-	throated	 Blue	 Warblers,	
Black	 and	 White	 Warblers,	 Ovenbirds	 and	 Blue-	headed	 Vireos),	
whereas	the	species	in	cluster	2	tended	to	be	less	vocal	on	days	with	
higher	ambient	 sound	 (Red-	eyed	Vireos,	Black-	capped	Chickadees	
(Poecilia atricapillus),	 Red-	breasted	 Nuthatches,	 Swainson's	 and	
Hermit	Thrushes	(Catharus guttatus),	and	red	squirrels)	(Figure	7).	A	
priori,	we	would	not	have	recognized	these	as	different	functional	
groups	 within	 our	 study	 system.	 Cluster	 1	 included	 species	 both	
with	multiple	clutches	per	year	(e.g.,	Black-	throated	Blue	Warblers)	
and	with	 single	 clutches	 (Ovenbirds).	 The	 two	 vireo	 species	were	

split	between	clusters.	The	ability	to	identify	and	predict	member-
ship	 in	vocalization	guilds	would	contribute	 to	basic	knowledge	of	
avian	ecology,	 inform	sampling	strategies,	and	provide	traction	for	
predicting	susceptibility	to	anthropogenic	noise	or	changes	in	leaf-	
out	date.

4.5  |  Synthesis and conclusions

There	is	a	natural	match	between	data	from	passive	acoustic	moni-
toring	and	the	classical	concepts	from	community	ecology	of	α-	,	β-	,	
and	γ-	diversity	(Figure	8).	These	diversity	metrics	provide	a	frame-
work	for	comparing	communities	of	birds	and	other	vocalizing	an-
imals,	 such	 as	 assessing	 how	 similar	 acoustic	 data	 from	 a	 tropical	
rainforest	would	compare	with	respect	to	α-	,	β-	,	and	γ-	diversity	to	
similar	acoustic	data	from	migrant	songbird	communities	 in	north-	
temperate	forests.	Such	comparisons	could	address	general	ecologi-
cal	 theory,	 contribute	 to	 biodiversity	 assessments,	 and	 contribute	
to	optimization	of	sampling	strategies.	For	example,	the	benefits	for	
biodiversity	assessments	of	adding	days	vs.	locations	from	acoustic	
sampling	will	depend	on	the	relative	strength	of	β-		and	γ-	diversity	
(Figure	9).	Presumably,	β-	diversity	will	be	related	to	the	strength	of	
seasonality	 and	 the	 concordance	between	co-	occurring	 species	 in	
the	timing	of	their	breeding.	High	γ-	diversity	suggests	that	conser-
vation	 efforts	 should	 consider	 relatively	 large	 management	 units,	
perhaps	 partly	 because	 of	 ecologically	 important	 variation	 within	
what	appear	to	be	uniform	habitat	types.	The	extrapolation	of	spe-
cies	 accumulation	 curves	 (rarefaction)	 provides	 a	 tool	 for	 judging	
when	 the	 species	 composition	 of	 a	 community	 is	 well	 known	 vs.	
under-	described	(Wood	et	al.,	2021).

Passive	 acoustic	 monitoring	 in	 well-	studied	 sites	 such	 as	 the	
Hubbard	 Brook	 Experimental	 Forest	 allows	 for	 the	 synthesis	 and	
comparison	of	information	that	can	be	obtained	from	direct	obser-
vations	and	passive	recording.	These	comparisons	will	have	value	for	
studies	of	avian	communities	 in	other	ecosystems	that	 lack	such	a	

TA B L E  6 Pairwise	correlations	in	average	vocalization	activity	between	bird	species	at	Hubbard	Brook	in	2018	(N =	19	days).	Entries	are	
Pearson	correlation	coefficients.	Asterisks	correspond	to	approximate	significance	levels	from	randomization	tests	[p <	.05	(*)	or	p < .01 
(**)].	Positive	correlations	are	indicated	with	blue,	negative	with	red.	See	Table	1	for	complete	species	names

BTBW BTNW OVEN BAWW BHVI YRWA REVI HETH SWTH RBNU BCCH

BTNW 0.53*

OVEN 0.61** 0.72**

BAWW 0.67** 0.57* 0.28

BHVI 0.53* 0.56* 0.41 0.48

YRWA 0.34 0.42 0.35 0.27 0.12

REVI 0.04 −0.16 0.12 −0.22 −0.24 0.36

HETH −0.17 −0.36 −0.02 −0.22 −0.18 −0.23 0.47*

SWTH 0.06 −0.35 −0.22 −0.13 −0.22 0.17 0.46* 0.04

RBNU −0.09 −0.34 −0.35 −0.15 0.27 −0.13 0.27 0.19 0.49

BCCH 0.12 0.11 0.18 −0.12 0.14 −0.06 0.29 0.34 0.02 0.34

RESQ −0.14 0.06 0.11 −0.27 0.08 0.41 0.41 0.35 0.19 0.28 0.47

F I G U R E  7 Principal	components	analysis	of	variation	among	
days	in	the	vocalization	rate	of	12	songbird	species	at	Hubbard	
Brook.	Species	codes	follow	Table	2
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strong	foundation	from	observer-	based	ecological	research.	Having	
a	 family	of	 technical	approaches	for	bioacoustic	data	will	 leverage	
the	growing	power	of	automated	data	extraction,	but	remain	criti-
cally	 intertwined	with	 observer-	based	 field	 biology.	Acoustic	 data	
can	reveal	trends,	interactions,	and	seasonal	patterns	in	sound	pres-
sure,	but	direct	observations	and	experiments	will	remain	crucial	for	
asking	questions,	 interpreting	data,	testing	hypotheses,	and	devel-
oping	general	 theory.	The	combination	of	direct	observations	and	
passive	 recordings	 offers	 general	 opportunities	 for	 understanding	
birds	and	other	acoustically	active	organisms.

The	approaches	described	in	this	paper	provide	tools	for	employ-
ing	acoustic	data	to	address	basic	and	applied	questions	regarding	the	
nature	of	biological	communities.	Passive	acoustic	monitoring	opens	
sampling	strategies	that	have	historically	been	difficult	for	human	ob-
servers,	including	collecting	replicated	synchronous	data	at	many	sam-
ple	locations.	Over	time,	archived	recordings	will	continue	to	provide	a	
source	of	data	that	can	be	mined	with	increasingly	sophisticated	detec-
tion	algorithms	and	statistical	analyses.	Expanded	capacity	for	record-
ing	and	analysis	 is	 fueling	growth	 in	occupancy	analysis	and	density	
estimation	(Furnas	&	Callas,	2015;	Prevost,	2016;	Sebastián-	González	

F I G U R E  8 Relationship	between	
total	number	of	bird	species	detected	
via	passive	acoustic	monitoring	and	
the	number	of	recorder	days	that	were	
analyzed,	as	measured	at	Hubbard	Brook.	
The	blue	curve	indicates	the	average	
species	accumulation	for	a	single	location.	
The	black	curve	indicates	the	species	
accumulation	for	an	equal	number	of	
samples	randomly	drawn	from	any	of	the	
10	locations

F I G U R E  9 Total	number	of	bird	species	detected	with	simulated	bioacoustic	sampling	from	different	numbers	of	locations	and	sampling	
occasions.	The	boundary	of	the	yellow	and	blue	indicates	possible	combinations	with	analyses	of	190	total	sound	files,	as	in	our	study;	
our	sampling	design	is	(10	locations	×	19	occasions)	is	indicated	at	the	far	end	of	the	boundary.	Inset	at	right	shows	top	view	of	same.	The	
surface	and	points	show	averages	of	1000	replicate	samples	drawn	at	random	from	a	simulated	data	set	modeled	after	our	data	(Appendix	
S1).	The	pattern	shows	that	adding	locations	generally	added	to	total	species	detections	more	than	adding	occasions
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et	al.,	2018),	which	are	burgeoning	fields	of	growing	value	to	population	
ecology	and	conservation	biology	(Marques	et	al.,	2013).	Some	of	the	
approaches	described	here	are	directly	related	to	occupancy	analysis	
(especially	approach	#7,	using	rarefaction	analysis	to	quantify	diversity	
and	optimize	bioacoustic	sampling	schemes).	Other	approaches	make	
use	of	 information	 in	vocalization	 rates	 that	goes	beyond	presence-	
absence	data	(especially	approaches	4–	6).	Recent	advances	in	record-
ing	 hardware	 and	 continuing	 advances	 in	 data	 extraction	 software	
are	permitting	unprecedented	access	to	acoustic	data	over	space	and	
time	(Kahl	et	al.,	2021;	Shiu	et	al.,	2020;	Vickers	et	al.,	2019).	It	seems	
likely	that	our	ability	to	collect	acoustic	data	will	continue	to	exceed	
our	capacity	for	analysis	and	interpretation.	This	places	a	premium	on	
being	strategic	 in	 framing	questions,	choosing	hand	annotation	sub-
sets,	and	designing	analyses	to	evaluate	acoustic	data.	The	approaches	
presented	in	this	paper	provide	some	guideposts	for	analyzing,	inter-
preting,	and	applying	the	influx	of	acoustic	data.

Historically,	 soundscape	 analysis	 has	 often	 relied	 on	 assessing	
statistical	signatures	in	data	to	understand	ecological	dynamics	and	
patterns	in	biodiversity	(Gottesman	et	al.,	2020;	Pieretti	et	al.,	2011;	
Sueur	et	al.,	2008,	2014).	Incorporating	detailed	information	about	
species	composition	and	signaling	rate	will	inform	our	interpretation	
of	the	patterns	seen	in	ecoacoustic	data	and	will	enhance	our	ability	
to	understanding	how	the	acoustic	signatures	of	environments	re-
late	to	the	underlying	biological	and	ecological	dynamics.
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