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Abstract
1.	 The interface between field biology and technology is energizing the collection 
of vast quantities of environmental data. Passive acoustic monitoring, the use 
of unattended recording devices to capture environmental sound, is an exam-
ple where technological advances have facilitated an influx of data that rou-
tinely exceeds the capacity for analysis. Computational advances, particularly 
the integration of machine learning approaches, will support data extraction ef-
forts. However, the analysis and interpretation of these data will require parallel 
growth in conceptual and technical approaches for data analysis. Here, we use 
a large hand-annotated dataset to showcase analysis approaches that will be-
come increasingly useful as datasets grow and data extraction can be partially 
automated.

2.	 We propose and demonstrate seven technical approaches for analyzing bio-
acoustic data. These include the following: (1) generating species lists and de-
scriptions of vocal variation, (2) assessing how abiotic factors (e.g., rain and wind) 
impact vocalization rates, (3) testing for differences in community vocalization 
activity across sites and habitat types, (4) quantifying the phenology of vocal 
activity, (5) testing for spatiotemporal correlations in vocalizations within spe-
cies, (6) among species, and (7) using rarefaction analysis to quantify diversity 
and optimize bioacoustic sampling.

3.	 To demonstrate these approaches, we sampled in 2016 and 2018 and used hand 
annotations of 129,866 bird vocalizations from two forests in New Hampshire, 
USA, including sites in the Hubbard Brook Experiment Forest where bioacous-
tic data could be integrated with more than 50 years of observer-based avian 
studies. Acoustic monitoring revealed differences in community patterns in vo-
calization activity between forests of different ages, as well as between nearby 
similar watersheds. Of numerous environmental variables that were evaluated, 
background noise was most clearly related to vocalization rates. The songbird 
community included one cluster of species where vocalization rates declined as 
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1  |  INTRODUC TION

Ecological insights and informed conservation rely on understanding 
when and where organisms occur (Fisher et al., 1943; MacArthur, 
1984). Ecologists and conservation biologists have used many differ-
ent approaches to document the distribution of organisms, ranging 
from detailed observations by skilled field personnel to aerial over-
flights and analysis of trace environmental DNA (Dejong & Emlen, 
1985; Ficetola et al., 2008; Hodgson et al., 2016; Scott et al., 1981). 
Technological advances continue to provide new avenues for mon-
itoring habitats, with acoustic analysis rapidly gaining prominence 
as a powerful method for assessing the distribution and behavior of 
animals (Sugai et al., 2019; Wood et al., 2019).

Passive acoustic monitoring (PAM) is a sampling approach that 
uses unattended audio recorders to sample sounds over large 
swaths of space and time (Sugai et al., 2019). Autonomous recording 
units (ARUs) collect data without the presence of a human observer 
and provide an enduring record of habitat use, behavioral patterns, 
phenology, and changes in sound production by wildlife over time 
(Davis et al., 2017; Desjonquères et al., 2020; Wood et al., 2019a). 
Passive acoustic monitoring also facilitates the detection of species 
that are uncommon, secretive, or occur during seasons, times of 
day, or weather conditions when human observers are less likely to 
sample (Sebastián-González et al., 2018). As autonomous recording 
units become more advanced, affordable, and power efficient, pas-
sive acoustic monitoring offers a complementary and non-invasive 
approach for ecological studies and biodiversity monitoring (Gibb 
et al., 2019; Potamitis, 2014; Sebastián-González et al., 2018; Sugai 
et al., 2019; Xie et al., 2018). Furthermore, automated ARUs allow for 
broader temporal and spatial sampling and minimize the potential for 
in-field observer bias (Sugai et al., 2019).

Currently, passive acoustic monitoring data are often analyzed by 
humans who review spectrograms (visual images of acoustic infor-
mation) and listen to audio recordings to identify species. However, 
manual annotation is time-consuming and limits the amount of data 
that can be processed. The ability to survey many more locations 
for longer periods of time provides crucial data, but also raises new 
challenges and opportunities in data analysis. Advancements in au-
tomation, particularly machine learning approaches, are poised to 
accelerate and scale annotation dramatically (Kahl et al., 2018; Shiu 
et al., 2020; Vickers et al., 2019). Advances in data extraction capac-
ity must therefore be met by parallel advancements in methodologi-
cal frameworks and statistical analysis (Gasc et al., 2017; Gibb et al., 
2019; Sebastián-González et al., 2018; Wood et al., 2021).

Much work has been done on the marine soundscape, with a 
long and robust history of using acoustics to study marine mammals 
(Lin et al., 2016; Marques et al., 2009, 2011; Matthews et al., 2014; 
Rice et al., 2019). However, the application of passive acoustic mon-
itoring to terrestrial systems is more recent (Sebastián-González 
et al., 2018; Sugai et al., 2019), with studies utilizing passive acous-
tic monitoring becoming more widespread in the mid-2000s (Sugai 
et al., 2019). Although some of the approaches that we consider 
may be relevant to marine work, our focus here is on soundscape 
approaches for terrestrial animals that vocalize frequently, such as 
birds, anurans, and some mammals. Compared to other terrestrial 
organisms, birds are one of the best-known and best-studied taxo-
nomic groups, with vocalizations that are used in diverse contexts, 
including territoriality and resource defense, attraction of mates, 
and alerting other birds to the presence of a predator (Webster & 
Podos, 2018).

We develop and present methods for the refinement and analy-
sis of acoustic data obtained from passive acoustic monitoring. We 

ambient noise increased and another cluster where vocalization rates declined 
over the nesting season. In some common species, the number of vocalizations 
produced per day was correlated at scales of up to 15 km. Rarefaction analyses 
showed that adding sampling sites increased species detections more than add-
ing sampling days.

4.	 Although our analyses used hand-annotated data, the methods will extend read-
ily to large-scale automated detection of vocalization events. Such data are likely 
to become increasingly available as autonomous recording units become more 
advanced, affordable, and power efficient. Passive acoustic monitoring with 
human or automated identification at the species level offers growing potential 
to complement observer-based studies of avian ecology.

K E Y W O R D S
bioacoustics, biodiversity assessment, birdsong, Hubbard Brook Experimental Forest, passive 
acoustic monitoring, rarefaction
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begin with methods that are currently used with small manually gen-
erated datasets but are suitable for expansion to much larger data-
sets. We then present analytical approaches that are only feasible 
with large samples in space and time. These approaches include: 
(1) the generation of species lists (Lellouch et al., 2014; Luther, 2009) 
and descriptions of vocal variation in traits such as duration and 
frequency (e.g., Duan et al., 2011; Planqué & Slabbekoorn, 2008; 
Potamitis, 2014; Towsey et al., 2012; Xie et al., 2018), providing an 
account of the species detected in a given area and time period. If 
vocalization rates are measured on a fine-grained scale (e.g., min-
utes, hours, or days), it becomes possible to estimate, (2) how vo-
calization rates are impacted by abiotic factors such as precipitation 
(Bruni et al., 2014; Hasan, 2010; Keast, 1994; Lengagne & Slater, 
2002), wind (Hasan, 2010; Lengagne et al., 1999), and temperature 
(Bruni et al., 2014; Gottlander, 1987; Keast, 1994; Thomas, 1999). 
Passive acoustic data can also be combined with information about 
habitat type and land-use history to produce (3) community patterns 
in vocalization activity across sites (Depraetere et al., 2012; Gasc 
et al., 2013; Rodriguez et al., 2014). Detailed data on vocalizations 
over time also make it possible to quantify the (4) timing of vocal 
activity, such as changes in acoustic signaling across hours to days 
(Gasc et al., 2013; Rodriguez et al., 2014; Towsey et al., 2012) or 
months to years (Towsey et al., 2014). This approach can be used 
directly to answer research questions, such as whether a warming 
climate shifts activity dates (Llusia et al., 2013), or to control for the 
impact of phenology and diurnal patterns on other analyses and 
comparisons. Large-scale synchronized recording can also provide a 
novel tool for behavioral research (Tobias et al., 2014). By deploying 
passive acoustic recorders that record multiple locations simultane-
ously, it becomes possible to apply statistical tools from population 
ecology to test for (5) spatiotemporal correlations in vocalizations 
within species and (6) among species (e.g., Brumm, 2006; Burt & 
Vehrencamp, 2005; Laiolo et al., 2011; Luther, 2009; Planqué & 
Slabbekoorn, 2008; Tobias et al., 2014). Finally, (7) Species accumu-
lation functions and optimization of bioacoustic sampling schemes 
use rarefaction analyses to describe species richness across scales 

and can aid in planning and designing acoustic sampling schemes 
(Dixon et al., 2020; Marín-Gómez et al., 2020; Naithani et al., 2018). 
To demonstrate these approaches, we used passive acoustic record-
ings of the dawn birdsong chorus, with manual counts of the number 
of vocalizations per species per unit time. These approaches provide 
a package of tools for approaching and interpreting acoustic data 
to test ecological hypotheses and assess biodiversity across space 
and time.

2  |  METHODS

2.1  |  Study sites

Acoustic sampling was conducted in hardwood forests at 500–
800 m elevation in the White Mountains of New Hampshire, USA. 
Study sites (Figure 1, Table S1) were located in the Hubbard Brook 
Experimental Forest and in a similar habitat within the Jeffers 
Brook Forest, approximately 15  km from Hubbard Brook (Table 
S1). Hubbard Brook Experimental Forest was established in 1955 
with a focus on hydrologic and forest science (Holmes & Likens, 
2016), and studies of avian ecology have been running continu-
ously since 1969 (e.g., Holmes, 2011; Holmes et al., 1979; Holmes 
& Sherry, 2001; Holmes & Sturges, 1975; Townsend et al., 2013). 
The forests at both Hubbard Brook and Jeffers Brook consist of 
variably aged second growth northern hardwoods, dominated by 
sugar maple (Acer saccharum), American beech (Fagus grandifolia) 
and yellow birch (Betula alleghaniensis), with occasional white ash 
(Fraxinus americana), white birch (Betula papyrifera), red spruce 
(Picea rubens), and balsam fir (Abies balsamea) (Campbell et al., 
2007). The understory included saplings of the canopy species 
(especially American beech) as well as patches of hobblebush 
(Viburnum lantanoides) and occasional striped maple (Acer pen-
sylvanicum). Both sites contained relatively mature forests (last 
harvested in 1910–1915) and middle-aged stands (clearcut in 
1970–1975) (Goswami et al., 2018). In mid-aged stands compared 

F I G U R E  1 Relative positions of audio recorders within study sites in Jeffers Brook and Hubbard Brook watersheds, NH. Coordinates and 
site characteristics are in Table 1. Base images are from Google Earth
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to mature stands, the diameters of the largest trees were smaller 
(<40 versus up to ~50  cm diameter), but trees per hectare was 
higher with the result that above-ground biomass was similar 
(basal area = 25–35 m2/ha). Bird vocalizations from the two ages 
of forests (hereafter “mature” and “mid-aged,” respectively) were 
sampled at both sites to compare acoustic samples from nearby 
forests of different successional stages.

2.2  |  Data collection and recording hardware

This paper contains two acoustic datasets, one collected in 2016 
and the other in 2018. In 2016, we conducted sampling to com-
pare avian vocalizations in mid-aged and mature forest stands, 
replicated across Hubbard Brook and Jeffers Brook watersheds. 
In 2018, sampling was concentrated in Hubbard Brook forest and 
designed to provide high resolution within one forest area, allow-
ing for more detailed examination of spatial patterning in vocaliza-
tion activity. In both years, recorders were activated each morning 
for a 10-minute period spanning 06:20–06:30 local time (UTC-4). 
Depending on the date, the recordings started at 55–75 min after 
sunrise. The 10-min interval for recording bouts parallels a com-
mon point count duration (Buskirk & McDonald, 1995) and was 
chosen to be long enough to capture most species vocalizing at 
that site on that morning, but short enough that we could still an-
notate many different mornings and compare inter- and intraspe-
cific patterning of vocalizations among days (Tobias et al., 2014). 
For annotation, we chose a sample size of 20 dates per year as 
being both sufficient and manageable. We selected the dates 
within years such that they were distributed throughout the period 
of available recordings, but with longer intervals between dates 
later in the season when there were generally fewer vocalizations. 
Dates for annotation were chosen in advance of examining the 
sound recordings and so were not biased with respect to vocaliza-
tion activity or ambient sound levels.

We used Olympus DS-40 recorders (Olympus, Center Valley, PA, 
USA) deployed in plastic boxes and connected to their original mi-
crophone by a 1-m extender cable. Each microphone was placed at 
a height of 2 m and was suspended below a fabric rain shield 25 cm 
in diameter. The recorders generated MP3 files with a sampling rate 
of 44.1  kHz on the “high-quality” setting, with the manufacturer's 
maximum microphone sensitivity, no frequency filter, and no variable 
control voice actuator. The MP3 files were converted to 16 bit WAV 
files using Switch Plus converter (NCH software, Canberra, Australia) 
so that recordings could be digitally analyzed and manipulated. The 
compressed MP3 format discards some high-frequency information, 
resulting in smaller files, but lower acoustic resolution, particularly 
at frequencies higher than those used by most bird species. These 
missing data are not recovered with the conversion to WAV format.

In 2016, three recorders were in the mature forest and 
two were in mid-aged forest in both the Hubbard and Jeffers 
Brook forests. Within watersheds, recorders were separated by 

TA B L E  1 Total number of songbird vocalizations annotated 
from sound recordings collected in 2016 (200 10-min recordings 
at Hubbard Brook and Jeffers Brook, combined) and 2018 (210 
10-min recordings at Hubbard Brook). Species are sorted by total 
vocalizations recorded

Species common name Code

Total vocalizations

2016 2018

Red-eyed Vireo REVI 46,817 26,998

Black-throated Blue 
Warbler

BTBW 6890 4316

Black-throated Green 
Warbler

BTNW 5399 4096

Ovenbird OVEN 3781 4192

Hermit Thrush HETH 4051 1824

Red-breasted Nuthatch RBNU 32 2804

American Redstart AMRE 2278 233

Blue-headed Vireo BHVI 427 1995

Swainson's Thrush SWTH 880 1313

Red Squirrela RESQ 910

Yellow-rumped Warbler YRWA 48 847

Winter Wren WIWR 514 215

Golden-crowned Kinglet GCKI 511 172

Black-capped Chickadee BCCH 92 561

Yellow-bellied Sapsucker YBSA 299 304

Eastern Wood-Pewee EWPE 0 542

Black-and-white Warbler BAWW 73 459

Scarlet Tanager SCTA 48 338

Blue Jay BLJA 62 296

Magnolia Warbler MAWA 0 328

White-breasted Nuthatch WBNU 0 315

Blackburnian Warbler BLWA 7 307

Dark-eyed Junco DEJU 0 249

Hairy Woodpecker HAWO 68 177

American Robin AMRO 218 18

Pine Siskin PISI 0 220

Brown Creeper BRCR 87 106

Cape May Warbler CMWA 34 159

Rose-breasted Grosbeak RBGR 56 100

Red Crossbill RECR 0 92

Louisiana Waterthrush LOWA 64 0

Purple Finch PUFI 24 39

Downy Woodpecker DOWO 48 1

Veery VEER 0 31

Wood Thrush WOTH 0 26

Eastern Chipmunka EACH 24

Ruby-throated 
Hummingbird

RTHU 21 1

Pileated Woodpecker PIWO 10 11

Alder Flycatcher ALFL 0 18
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50–200 m, minimizing the chances that an individual songbird was 
captured by multiple recording devices. Recorders were activated 
for 10 min each morning from 09 June to 21 July. In 2016, the 
estimated dates of leaf out of canopy trees and median initiation 
of first clutch by a representative locally breeding bird, the Black-
throated Blue Warbler (Setophaga caerulescens), were approxi-
mately 12 May and 31 May, respectively (Lany et al., 2016). We 
analyzed audio data for the following 20 dates in 2016: 09-Jun, 
11-Jun, 15-Jun, 16-Jun, 18-Jun, 20-Jun, 24-Jun, 26-Jun, 28-Jun, 
30-Jun, 01-Jul, 03-Jul, 04-Jul, 06-Jul, 07-Jul, 08-Jul, 14-Jul, 16-Jul, 
19-Jul, and 21-Jul.

In 2018, we sampled vocalizations only within Hubbard Brook 
Experimental Forest. The 10 recorders were distributed across an 
area that has been the focus of long-term studies of breeding song-
birds (Holmes et al., 1986; Holmes, 2011; Rodenhouse & Holmes, 
1992; Townsend et al., 2013). Distances between recorders ranged 
from 176 to 1729 m (Figure 1), allowing us to test for correlations 
in behavior at different distances. Recorders were activated for 
10 min each morning from 20 May to 15 August. The estimated 
dates of leaf-out and median initiation of first clutch by Black-
throated Blue Warblers in 2018 were 10 May and 30 May. We 
analyzed audio data for the following 21 dates in 2018: 13-May, 
15-May, 17-May, 20-May, 23-May, 26-May, 29-May, 01-Jun, 04-
Jun, 07-Jun, 10-Jun, 13-Jun, 16-Jun, 19-Jun, 22-Jun, 25-Jun, 28-Jun, 
01-Jul, 04-Jul, 07-Jul, 10-Jul.

All 410 10-minute recordings (200 from 2016 and 210 from 2018), 
and their associated metadata are available at Symes et al. (2021).

2.3  |  Data selection and annotation

Recordings were annotated with species names by listening to 
sound recordings and looking at spectrograms (visual and audi-
tory review). To review recordings visually we used the spectro-
gram view in the sound analysis software RavenPro (version 1.5.0 
Build 43 for Windows, 2017). The DFT size was 512 samples with 
an overlap of 50%, giving a resolution of ± 256 Hz. The spectro-
gram of each recording was viewed in a standard gamma II color 

scheme with a power threshold floor setting of 56 dB, although 
it should be noted that these recordings are not calibrated and 
this dB value is relative to the arbitrary reference value of the 
Raven software. For recordings with high background noise, the 
floor threshold was gradually raised to diminish noise and high-
light avian acoustic communication. All reviews of the spectro-
grams and sound were conducted by one of us (KDK) who was 
experienced with the vocalizations of this bird community. Noise-
cancelling over-ear headphones were used during review. Bird 
vocalizations, consisting of songs and calls, were identified to 
species. We tallied only vocalizations with a recognizable spec-
trogram that was clearly distinguishable by eye and ear from 
background noise. Two 10-minute samples in 2018 occurred dur-
ing substantial rain and were excluded from further analysis (see 
Approach 2 for additional details on quantifying and addressing 
sound from rain and wind). There were occasional high amplitude 
vocalizations that exceeded the sensitivity scale of the maximum 
amplitude that the recording system could record accurately (a 
phenomenon known as “clipping”), but clipped vocalizations could 
still be identified to species. The sound recordings were reviewed 
in random order to limit effects from listener bias and listener 
learning. The complete species annotations for all 410 10-min re-
cordings are depos in (Symes et al., 2021).

Each 10-min recording was analyzed by counting the number 
of vocalizations (calls and songs) of each species present in the re-
cording. Our objective was to recognize species and quantify their 
vocalization activity, so we did not attempt to distinguish between 
songs and calls, but we tested for the uniformity of vocalizations 
within species.

The duration and structure of bird vocalizations varied among 
species. For example, Red-eyed Vireos (Vireo olivaveus) had a short 
but repeated song that included two elements over only about 
700 ms. Black-throated Blue Warblers had a song with several ele-
ments over about 1.5 s, whereas Winter Wrens (Troglodytes hiemalis) 
had songs of 5–10 s that consisted of a dozen or more elements per 
second. Operationally, we defined a vocalization event as an acous-
tic element separated from others by a pause of more than one sec-
ond. This was partly subjective, so we characterized our operational 
definitions with sample sound recordings, associated spectrograms, 
and statistical analyses of mean duration and dominant frequency. 
Occasional incomplete vocalizations were still scored as one vocal-
ization if they could be identified to species. Vocalizations of two 
mammals, red squirrels (Tamiasciurus hudsonicus) and Eastern chip-
munks (Tamias striatus), were also recorded in the annotations of 
sound recordings from 2018.

2.3.1  |  Repeatability of annotation

At the end of the annotation process, the same observer (KDK) 
blindly re-annotated thirteen randomly selected 10-min record-
ings. This allowed us to assess the consistency of the species lists 
and call counts.

Species common name Code

Total vocalizations

2016 2018

American Goldfinch AMGO 0 14

Cedar Waxwing CEDW 0 13

Blackpoll Warbler BLPW 0 8

Canada Warbler CAWA 0 5

Pine Warbler PIWA 0 4

Common Loon COLO 3 0

Great-crested Flycatcher GCFL 2 0

Northern Parula NOPA 0 2

aOnly enumerated in 2018.

TA B L E  1 (Continued)
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2.4  |  Data distributions, transformations, ​
and analyses

Species-specific vocalization rates (number per 10-min recording) 
had frequency distributions that were skewed toward higher vo-
calization rates (approximated gamma distributions). These distri-
butions were well-normalized with a square root transformation, 
which facilitated statistical analyses. The analyses are summarized 
in Table S2.

2.5  |  Research questions and statistical analyses

2.5.1  |  Species lists and descriptions of 
vocal variation

Determining the list of species present in a site is among the most 
basic uses of annotated data and underlies many management and 
conservation decisions. We used the annotated data to generate 
an overall species list for Hubbard Brook that we could compare to 
decades of field observations from this well-studied bird community 
(Holmes et al., 2021).

We quantified species-specific patterns of vocalizations for the 
songs of the eight most common songbird species and compared 
them to determine how species were differentiated by duration and 
frequency. To select vocalizations for analysis, we isolated and ana-
lyzed a stratified random sample of recordings that consisted of two 
vocalizations per species from each of six recorders on each of two 
dates during 2016. Presumably, each recorder represented different 
individual birds. The two dates for each species × recorder combi-
nation were chosen as those that contained the most vocalizations 
for that species. We then selected two random numbers from 1 to 
n, where n was the number of vocalizations by that species in that 
recording. By manual review, we located those two vocalizations 
within recordings, noted the start and stop times to ± 0.01 s, and 
extracted the short segments of sound (snips) corresponding to the 
selected vocalization. This produced stratified random samples of 
9–22 vocalizations per species (total of 157 snips) that we used to 
compare variation within vs. among species in the duration and char-
acter of vocalizations. We examined all spectrograms by eye to as-
sess variation in vocalization characteristics within and among bird 
species and deposited the snip sound files at Symes et al. (2021). We 
could not readily calculate dominant frequency from these samples 
because most randomly selected bird vocalizations overlapped with 
vocalizations from other birds. Therefore, from the same sound re-
cordings, we also attempted to locate two clean vocalizations per 
species (i.e., vocalizations that did not overlap with vocalizations of 
other birds, or other transient acoustic events such as from thunder, 
rain, or wind). It was not possible in each recording to find two clean 
vocalizations, but we obtained 2–22 clean vocalizations from seven 
species. We used seewave (Sueur et al., 2019) and tuneR (Ligges et al., 
2018) functions in R Version 3.5.2 (R Core Team, 2017) to calculate 
the dominant frequency for each clean vocalization.

2.5.2  |  Relationships among environmental 
variables, vocalization activity, and acoustic detection

Environmental variables such as rain, wind, cloud cover, baro-
metric pressure, and temperature can impact avian physiology 
and behavior, as well as signal transmission and the probability of 
detecting a vocalization on a recording unit (Bruni et al., 2014). 
Understanding the interaction between vocalization and abiotic 
factors inform natural history (Bruni et al., 2014; Lengagne & 
Slater, 2002) and can have value for identifying the habitats and 
sampling windows that will be most valuable for observer-based 
fieldwork.

We analyzed weather data that were collected in Hubbard Brook 
0.2 to 2.4 km from our Hubbard Brook recorders and 16 km from our 
Jeffers Brook recorders. Weather data came from the publicly avail-
able Soil Climate and Analysis Network (SCAN site 2069, elevation 
451 m asl) operated by the Natural Resources Conservation Service 
(NRCS) of the U.S. Department of Agriculture. We extracted data 
from each recording day for air temperature, precipitation, wind di-
rection, wind speed, solar radiation, relative humidity, and dewpoint. 
All measurements were for 06:00 to 07:00 (which included our re-
cording period of 06:20 to 06:30 local time, UTC-4) except for rel-
ative humidity, which was an instantaneous measurement at 07:00. 
Measurements of average daily barometric pressure (and change in 
pressure from previous day) came from the Stagecoach Hill weather 
station in Plymouth, NH (43.74°N, 71.69°W, accessed via https://
www.wunde​rgrou​nd.com/dashb​oard/pws/KNHPL​YMO5 on 29 May 
2020), which was 21 and 35 km, respectively, from the acoustic re-
corders at Hubbard Brook and Jeffers Brook.

Quantification of rain and wind intensity
Rain and wind pose particular challenges for bioacoustics because 
they can affect both the rate of signaling in animals and the detect-
ability of signals. We employed multiple approaches to quantifying 
background sound pressure from rain, wind, and water drops. The 
first approach was to reference hourly data from nearby weather 
stations (see above). A second approach was human review and eval-
uation of acoustic signatures associated with rain and wind (Towsey 
et al., 2012). Sound from water drops was ranked on a five-tier scale 
by listening to the recordings and visualizing spectrograms: absence 
(0), drizzle to light (1), moderate and constant (2), hard rain (3), and 
very hard rain (4) (Figure S1). Wind, which tended to be audible 
but with a broadband spectral contribution below the visualization 
threshold, was ranked on a three-tier auditory scale: absence (0), 
soft (1), or hard (2).

We also employed two statistical assessments of ambient 
sound pressure as recorded in the wave files: Amanual and Aautomated. 
Amplitude-calibrated equipment is currently rare in terrestrial 
PAM. Our equipment was not amplitude calibrated and conse-
quently, the measurements are proportional to sound pressure 
levels but cannot be represented as absolute values. Our calcu-
lations assumed that microphone sensitivity was approximately 
equal across recorders and across the duration of the recording 

https://www.wunderground.com/dashboard/pws/KNHPLYMO5
https://www.wunderground.com/dashboard/pws/KNHPLYMO5
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season (verified by recording the same tone series using all record-
ers at the beginning and end of the seasons). For the calculation of 
Amanual, we randomly selected 42 audio recordings from 2016 and 
manually identified (using the spectrogram view in RavenPro) a 
sample of one-second sound snips without bird vocalizations from 
each recordings. To do so, we selected a random second within 
each minute and manually moved forward in the recording (by 
auditory review and examination of spectrograms) to locate the 
next one-second interval that did not contain bird vocalizations, 
allowing us to sample the background throughout the recording. 
Sometimes, there were no one-second intervals within the next 
minute without bird vocalizations. In those cases, we moved for-
ward to the following minute. From 42 10-minute sound files, we 
obtained 293 one-second snips (available as WAV files at Symes 
et al., 2021): that is, 2–10  samples per recording of one second 
without bird vocalizations (mean = 7 per recording). For each snip, 
we used MATLAB to access the vector of raw acoustic sample 
values and calculated the root mean square (RMS) of sound pres-
sure within each second (one snip) as the standard deviation of 
the raw sample values (n  =  44,100 records in one second). The 
resulting data approximated a log-normal distribution, so we used 
log10(RMS) for subsequent calculations. Our second statistical ap-
proach was an automated estimator of ambient sound pressure 
(Aautomated) that we were able to apply to all 410 10-min recordings. 
The algorithm (implemented in MATLAB) calculated probability 
density functions for total sound pressure per second [log10(RMS)] 
in each minute of the recording (with a sliding frame that advanced 
by 0.1 s per step – yielding 580 1-s sound snips per minute). We 
took the 10th percentile of the vectors of 580 snips as an opera-
tional metric of relative quiet in that minute and then calculated an 
average for the recording of these ten estimates of a quiet second 
(one estimate from each minute within the recording). MATLAB 
code for these analyses is available at https://github.com/MattA​
yres1​25/Estim​ator-for-ambie​nt-sound​-pressure.

We analyzed Aautomated by ANOVA (JMP Pro 15.0, SAS Institute 
2019) to estimate the relative contributions (percent total random 
variance) from dates, recorders, and minutes to the amplitude of 
background sound. The data frame included one value of Aautomated 
for each minute of 410 10-minute recordings (n =  4100 measure-
ments). The ANOVA model included year (2016 and 2018), locations 
within year, and occasions within year. Locations and occasions were 
treated as random effects.

We calculated correlations across dates among all pairs of envi-
ronmental factors (temperature, wind, ambient sound, etc.) and be-
tween environmental factors and bird vocalization rates.

2.5.3  |  Community patterns in vocalization activity

Passive acoustic monitoring is well-suited for revealing how species 
are associated with different habitats. Often, habitat affinity is de-
scribed at a coarse scale (e.g., old growth forest, marshlands), with 
conservation decisions following comparably broad classes. But 

there can be substantial heterogeneity within recognized habitats 
due to, for example, diverse plant communities, topography, and 
proximity to water. Understanding where species spend time within 
preferred habitat types can help to identify and protect the most 
valuable areas within critical habitats.

We evaluated patterns in vocalization rates across two habitat 
types using our site comparison dataset, collected in 2016. We em-
ployed an ANOVA that included forest type (mature and mid-aged), 
watershed (Jeffers Brook and Hubbard Brook), forest type × water-
shed, and date as fixed effects. To avoid concerns regarding spatial 
independence of recorders (Hurlbert, 1984), the data frame for the 
ANOVA was the average on each sample day of the 2–3 recorders 
within each forest type × watershed. Vocalizations per 10 min were 
square-root transformed prior to analysis, which satisfied assump-
tions of homoscedasticity. Visual examination revealed no temporal 
autocorrelation to residuals.

Repeated sampling across 19 dates in 2018 permitted the con-
struction of species accumulation curves to evaluate the complete-
ness of species detections at each sampling location (see Approach 7).

2.5.4  |  Timing of vocal activity

In mid-  to high-latitude systems, the annual timing of breed-
ing events by birds can vary from year to year. For example, at 
Hubbard Brook, the annual variation in the initiation of first 
clutches by Black-throated Blue Warblers varied by 20 days across 
25  years (Lany et al., 2016). The annual timing of vocal activity 
would also be expected to vary among years, but data are limited 
(Buxton et al., 2016; Furnas & McGrann, 2018). The phenology of 
vocalization activity could be informative with respect to behav-
ior, reproduction, and climatic patterns, and other environmental 
conditions. For example, the number of days of singing per season 
could be relatively constant from year-to-year or might vary de-
pending on environmental conditions that influence the number 
and timing of clutches.

To evaluate phenological patterns, we plotted vocalization rates 
for each species by date across the breeding season.

2.5.5  |  Correlations within species in 
vocalization activity

Within a season, there can be shifts in vocalization patterns due 
to breeding cycle, but there can also be daily variation around the 
trend. Daily vocalization activity can depend upon the weather 
(Bruni  et al.,  2014; Gottlander, 1987), the social environment 
(Fitzsimmons et al., 2008; Foote et al., 2011), the presence of preda-
tors, or other factors (Fitzsimmons et al., 2008; Foote et al., 2011; 
Stehelin & Lein, 2014; Valcu & Kempenaers, 2010; Xia et al., 2014). 
Weather tends to co-vary over relatively large spatial scales, whereas 
social environments and predators tend to be more local. Therefore, 
we propose and test the hypothesis that weather will generate 

https://github.com/MattAyres125/Estimator-for-ambient-sound-pressure
https://github.com/MattAyres125/Estimator-for-ambient-sound-pressure
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spatial correlations in day-to-day vocalization activity at the scale 
of tens of kilometers, whereas social interactions and predators pre-
dict correlations at the scale of hundreds of meters. We tested these 
predictions with analyses of spatial correlations in day-to-day vocali-
zation rates. We used different analytical approaches for 2016 and 
2018 because the spacing of the recorders and research questions 
were different.

With the data from 2016, we tested for species-specific correla-
tions in vocalization activity between the two stand ages within each 
forest type (recorders separated by ~150 m) and between the two 
watersheds (separated by ~16 km). For each of the 20 measurement 
dates, we calculated the mean of square root transformed vocaliza-
tion rates for the 2–3 recorders in each age stand in each water-
shed (which largely normalized the distributions) and calculated the 
Pearson correlation coefficient of calling rates across days for the 
two sets of recorders in each watershed (separated by ~150 m). We 
then averaged the two stands within each watershed for each mea-
surement date and calculated the Pearson correlation coefficient for 
vocalization rates across days between the two watersheds (sepa-
rated by ~16 km). We estimated standard errors for the correlation 
coefficients as:

where r  =  correlation coefficient and n  =  sample size (Neter et al., 
1985).

With the data from 2018, where we had a range of inter-recorder 
distances, we were able to calculate continuous spline correlograms 
with 95% confidence intervals using the R package ncf (Bjornstad 
& Bjornstad, 2020). For these correlograms, we added data points 
representing the Pearson correlation coefficients vs. distance for all 
pairs of recorders; these data points were not independent because 
10 recorders yielded 45 pairs. While these points did not influence 
the correlograms or the confidence intervals produced by ncf, they 
were plotted to facilitate data visualization. We omitted two dates 
with heavy rain and very low vocalizations (Figure 4) leaving 19 
dates.

2.5.6  |  Correlations among species in 
vocalization activity

The majority of species were detected throughout the window of 
dates that we sampled, indicating that we were sampling within the 
season of active calling, and not capturing arrivals or departures. 
Besides patterns within species, there could be correlations among 
species in day-to-day vocalization activity. Vocalizations would be 
positively correlated among species if they have similar responses 
to abiotic factors or predators (Nolen & Lucas, 2009). Alternatively, 
vocalizations could be negatively correlated if species have opposite 
reactions to abiotic factors such as heat or rain (e.g., rain may have 

more impact on bird species that use vocalizations that are short or 
structurally complex; Bruni et al., 2014).

We used a randomization test to evaluate interspecific correla-
tions in day-to-day vocalization activity in the 2018 spatial dataset. 
We first calculated the mean of root-transformed vocalizations 
per species on a given date and calculated the correlation matrix 
(Pearson's R) among all species pairs across 19 dates (excluding 
the two dates with heavy rain). To generate the null distribution, 
we again calculated correlations between all species pairs, first 
randomizing the call counts of both species with respect to date. 
This randomization was repeated 1000 times for each species pair 
to generate a distribution of correlation coefficients. We then com-
pared the correlation coefficients of the actual data to the distri-
bution of coefficients from the date-randomized data to search for 
pairs of species that were more or less correlated than would be ex-
pected by chance.

To explore for natural groupings among species in vocalization 
behavior, we also used a principal components analysis to evaluate 
the correlation matrix of interspecies vocalization rates (square root-
transformed rates; rows as dates and columns as species). We then 
tested for correlations between the resulting principal components 
and environmental variables.

2.5.7  |  Species accumulation and optimization of 
bioacoustic sampling schemes

We analyzed our 2018 data using EstimateS 9.1.0 Biodiversity 
Estimation Software (Colwell, 2013) to (1) estimate species accumu-
lation curves for each individual recorder and for the aggregate of 10 
recorders, and (2) estimate total species richness represented in the 
aggregate of 10 recorders. Species accumulation curves described 
the expected number of species in t pooled samples (equation 17 in 
Colwell, 2013). In addition to being a description of the vocalizing 
community, the relationship between number of species detected 
and sampling effort is fundamental to optimizing the design of bio-
acoustic studies.

We then evaluated how estimates of species richness would 
be affected by alternative possible sampling schemes that vary the 
number of locations and dates analyzed. Our 2018 data included 10 
locations × 19 occasions, or 190 annotated 10-min sound record-
ings. With the same analysis effort, the theoretically possible sam-
pling strategies would include one location with 190 occasions, two 
locations with 95 occasions, etc. To estimate the expected species 
richness with all possible strategies, we created a simulated data set 
from our data (Appendix S2) that included 190 sampling occasions 
for each of 10 sampling locations. From this extended data set, we 
drew replicated (n = 1000) random samples for each possible com-
bination of locations and occasions (from one location on one occa-
sion) to 10  locations on 190 occasions. We calculated the average 
species richness (from 1000 replicated random draws) for each com-
bination of number of locations and occasions.

SE =

(

1− r2

n−2

)0.5
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3  |  RESULTS

3.1  |  Species lists and descriptions of vocal 
variation

Our sample of 410 10-min sound recordings included 129,866 vocal-
izations from 44 bird species and two mammal species (Table 1). The 
total number of vocalizations per 10-min recording ranged from 3 to 
1567 with a median of 303 and standard deviation of 208. The total 
number of species detected per 10-min recording ranged from 1 to 
12 species with a median of 5. In 2016, Red-eyed Vireos accounted 
for 64.2% of the vocalizations, and the 10 most prevalent species ac-
counted for 98.2% of the vocalizations (Table 1). In the 2018 dataset, 
Red-eyed Vireos accounted for 50.2% of the vocalizations, with the 
10 most prevalent species accounting for 90.4% of the vocalizations 
(Table 1). The full set of annotations are provided in (Symes et al., 
2021) as the number of vocalizations by each of 46 species in each 
of 410 10-min recordings.

Vocalizations were relatively stereotypical within species (Figure 
S2), including in duration, frequency, and pattern (Table 2). The lon-
gest vocalizations were produced by Winter Wrens (mean = 6.2 s). 
The remaining species had vocalizations ranging from 0.6 s (Red-eyed 
Vireo) to 2.7  s (Ovenbird; Seiurus aurocapilla). The peak frequency 
of vocalizations ranged from 2.9 to 5.5  kHz (Swainson's Thrush 
(Catharus ustulatus) and American Redstart (Setophaga ruticilla), re-
spectively). The relatively long song of the Winter Wren meant that 
their vocalizations usually overlapped with other species and so we 
were unable to quantify peak frequency for this species. While the 
highest and lowest frequency species in the community had little 
frequency overlap, all of the common species used frequencies that 
overlapped with at least some of the other common species.

There were no cases where a species was added or lost in a blind 
second annotation and there was high repeatability in the counts of 
vocalizations per species per recordings (r2 = 0.92 to 0.99; n = 13, 
depending on the species; Figure S3). The modest differences be-
tween replicate counts from the same sound recordings resulted 

from low amplitude vocalizations that were on the edge of detect-
ability and were counted in one sample but not the other.

3.2  |  How vocalization rates are impacted by 
abiotic factors

Air temperatures during our acoustic sampling ranged from 7 to 
20°C (mean ± SD = 15 ± 4°C; Table S3). Two of 41 sampling days 
had substantial rainfall during the hour of the recording (2.6 and 
3.5 mm/h on 04 June and 28 June 2018), and one day had trace pre-
cipitation (23 May 2018). Conditions were generally calm at the time 
of our recordings (windspeed <1 km/h on 63% of days), but 10% of 
the days had average wind speeds >2 km/h (Table S3). Solar radia-
tion (chiefly sun vs. clouds) and barometric pressure were variable 
among sampling occasions. Although there were only three of 41 
sampling occasions during which precipitation was recorded at the 
nearby weather station, recordings from many days included drip-
ping sounds (Table 2 and Figure S1), apparently the result of con-
densation in the canopy. Such dripping was more pronounced when 
temperatures approached the dewpoint and when there was wind. 
The sound pressure in randomly chosen seconds when no birds were 
vocalizing varied among sampling occasions and was well correlated 
with automated quantification of ambient sound pressure (Figure 2). 
The divergence between the metrics at high sound pressure levels 
likely reflects the fact when focal seconds were chosen, we selected 
only quiet seconds (up to 10, but often fewer). The automated analy-
sis identified the quietest 10th percentile, which may still contain 
some acoustic events when recordings had substantial acoustic ac-
tivity. The automated quantification could be performed for all 410 
recordings. Ambient sound pressure was highly variable among days, 
with much less variation among sampling locations or among min-
utes within sampling occasions; 85% of the random variance in back-
ground sound pressure was among days versus only 4% and 11% 
among locations on a day and among minutes within 10-minute re-
cordings, respectively. The two rain days in 2018 had 17- to 29-fold 

Species Code na

Duration (s)
Peak frequency 
(kHz)

Mean SD Mean SD

American Redstart AMRE 22, 7 1.16 0.30 5.46 1.17

Black-throated Blue 
Warbler

BTBW 22, 13 1.53 0.29 4.45 0.13

Black-throated Green 
Warbler

BTNW 18, 10 1.46 0.22 4.93 0.57

Hermit Thrush HETH 20, 11 1.39 0.38 3.63 0.68

Ovenbird OVEN 20, 8 2.67 0.53 4.24 0.22

Red-eyed Vireo REVI 24, 22 0.61 0.13 3.37 0.41

Swainson's Thrush SWTH 9, 2 1.19 0.28 2.93 0.49

Winter Wren WIWR 22, 0 6.15 1.25

aNumber of randomly selected vocalizations used to estimate (duration, peak frequency).

TA B L E  2 Attributes of vocalizations 
of eight common species of breeding 
songbirds at Hubbard Brook. See Table 1 
for full species names
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more background sound pressure than the quietest day; the other 
19 days differed by no more than 4-fold in background sound pres-
sure (Figure S4).

The number of bird vocalizations from all species that was de-
tected per recorder per 10-min sampling occasion was negatively 
correlated in both years with a set of intercorrelated variables re-
lated to ambient sound: wind speed, wind sounds, and dripping 
sounds (Tables 3 and 4). Overall vocalization activity per day was 
negatively related in both years to wind speed and ambient sound 
(Table 5). There was a weaker positive association with barometric 
pressure (significant in 2016 but not 2018). For the most common 
species, vocalization activity and date were often correlated, but this 
direction was not consistent between years for all common species 
except Ovenbirds (Table 5). There were some additional correla-
tions between vocalization activity and environmental variables, but 
other than relations with wind speed and ambient sound they were 
infrequent and inconsistent (Table 5).

3.3  |  Community patterns in vocalization activity

Most bird species occurred in recordings from both Hubbard Brook 
and Jeffers Brook, but some species were detected primarily at one 
location (Figure 3, Table S4). The elevation of Jeffers Brook is ap-
proximately 100 m lower than Hubbard Brook, but the sites were 
otherwise similar in vegetation and land use history. Despite this ap-
parent ecological similarity, American Redstarts and Black-throated 
Blue Warblers were regularly detected at Hubbard Brook and almost 
never detected at Jeffers Brook, while American Robins (Turdus mi-
gratorius) were detected almost exclusively at Jeffers Brook.

There were clear associations between species and forest age, 
with Ovenbirds and Winter Wrens detected at higher rates in ma-
ture forests, while American Redstarts were more commonly de-
tected in middle-aged forest (Figure 3, Table S4).

3.4  |  Timing of vocalization activity

Data from 2016 and 2018 were recorded in different nearby loca-
tions. In both years, most of the bird species were conspicuously vocal 
throughout our sampling window of 6–8 weeks, but species-specific 
vocalization rates frequently varied by two-fold or more among morn-
ings separated by just a few days (Figure 4). In 2016, fluctuations in daily 
vocalization rates activity were quite concordant between Hubbard 
Brook and Jeffers Brook in 2016 (left-hand column in Figure 4). In 
2018, the earlier recordings captured comparatively high activity from 
Black-throated Blue warblers, Black-throated Green Warblers, and 
Ovenbirds, and comparatively low activity from Red-eyed Vireos.

3.5  |  Correlations within species in 
vocalization activity

To further evaluate intraspecific spatial correlation in vocal ac-
tivity, we tested for correlated vocalization dynamics both be-
tween habitats (forest age) within a site and between watersheds 
(Figure 5). For some species (Red-eyed Vireo, Ovenbird, and per-
haps Black-throated Blue Warbler), daily vocal activity was cor-
related across recording sites, even when the sites were separated 
by more than 10 km. The correlations for Ovenbirds were particu-
larly high (r ≈ .80). Recording sites separated by only about 150 m 
were generally no more similar than those separated by about 
16  km. However, the daily vocalization rates of Black-throated 
Green Warblers (Figure 5, upper right) were more correlated 
among nearby sites than distant sites.

The data from 2018 permitted evaluation of spatial correla-
tions in daily vocalization rate at the finer scale of 200–1500 m. 
Examination of georeferenced animations of daily vocalization rates 
across the study area (Appendix S1) suggested modest spatial cor-
relation that depended on the species. Further resolution was per-
mitted by spatial correlograms (Figure 6). Similar to the 2016 data, 
there was evidence of spatial correlations in vocalization rates, with 
Ovenbirds again showing particularly strongly correlated dynamics. 
However, with the possible exception of Red-eyed Vireos, there was 
little evidence for elevated correlations among nearby locations.

3.6  |  Correlations among species in 
vocalization activity

Many species pairs had correlated peaks and troughs in daily vocali-
zation rates (Table 6). The 66 pairwise correlations were dispropor-
tionately positive (45 correlations were positive, 10 were significant; 

F I G U R E  2 Comparison of estimates of ambient sound pressure 
from (1) manually identified seconds with no bird vocalizations 
(y-axis) to (2) automated analysis of ambient sound pressure (x-axis). 
Dashes represent the line of equality. Units are log10(RMS)
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21 correlations were negative, none significant). The overall mean 
correlation was r  =  .14 with a SD =  0.29. There were two clusters 
of covarying species, and these tended to be negatively correlated 
with each other (note the positive correlations in the upper left and 
lower right of Table 6, and the negative correlations in the center 
left of the matrix). A principal components analysis of the call rate of 
12 species across 19 dates explained 52% of the variation with two 
axes (Table S5). One cluster of species, loading positively on PC1 in-
cluded Black-throated Green Warbler, Black-throated Blue Warbler, 
Ovenbird, Black-and-white Warbler (Mniotilta varia), and Blue-headed 
Vireo (Vireo solitarius). The second cluster of species, loading nega-
tively on PC1, and more strongly on PC2, included Red-eyed Vireo, 
red squirrel, Black-capped Chickadee, Red-breasted Nuthatch (Sitta 
canadensis), and Swainson's Thrush (Figure 7). When compared with 
environmental variables, the first principal component was positively 
correlated with date, while the second principal component was nega-
tively correlated with ambient sound pressure (Table 4, bottom rows).

3.7  |  Species accumulation and optimization of 
bioacoustic sampling schemes

The average number of species detected in one 10-minute sample at 
one recording location was 5–6 species (α-diversity, Figure 8). The 
number of new detections at an average location increased to about 
13 species with 7 days of sampling (β- diversity, Figure 8). The ex-
pected total number of species detections increased from about 20 
to 25 species if 19 ten-min samples were drawn from 10 locations vs. 
all from the same location (γ-diversity in Figure 8).

As anticipated, more species were detected when we sampled 
additional days and included additional recording sites within the 
habitat matrix (Figures S4 and S5). However, adding locations re-
sulted in more species per unit of analysis effort than did adding 
more days (Figure 8). In our study system, the expected species de-
tection curve saturates at 30 species when sampling in one location 
and at 41 species when the same total sampling time was distributed 
across ten locations (Figure 8).

4  |  DISCUSSION

Our examination of bird vocalization patterns from multiple sites, 
years, and recording units generated knowledge of the study sys-
tem, as well as insights regarding methods. The species lists from 
acoustic data (Table 1) were largely congruent with decades of 
observer-based field studies (see Holmes & Likens, 2016). For exam-
ple, the five species responsible for 79–89% of all recorded vocaliza-
tions are the most abundant breeding birds in this location and the 
rest of our species list (Table 1) nearly completes the well-refined list 
of breeding birds in Hubbard Brook Experimental Forest (Holmes 
& Sherry, 2001; Holmes et al., 1986). However, several species 
known to occur in the forest were absent from the acoustic data 
including Common Ravens (Corvus corax), several hawks (all species TA
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with large home ranges and low vocalization rates), Chimney Swifts 
(Chaetura pelagica, which forage above the canopy and have low 
amplitude calls), Ruffed Grouse (Bonasa umbellus) and Barred Owls 
(Strix varia; a species with primarily nocturnal calling that was not 
captured by dawn recordings). Longer duration recordings may en-
hance the representation of species that are active at other times 
of day. Unexpected detections in our recordings included an Alder 
Flycatcher (Empidonax alnorum; an apparent itinerant that was only 
detected at one location on one day) and a Common Loon (Gavia 

immer; likely a flyover). In cases with published call descriptions, 
there was strong alignment between the calls measured here and 
previously published measurements (Rivers & Kroodsma, 2000).

4.1  |  Environmental variables and ambient sound

We evaluated multiple environmental variables for their relations 
with vocalization activity. The literature includes numerous reports of 

TA B L E  5 Correlations between vocalization rates of individual songbird species and environmental variables (N = 20 dates for 2016, 
N = 19 dates for 2018). Vocalization rates are the average for each date of square-root transformed rates for all recorders at Hubbard Brook 
(5 in 2016 and 10 in 2018). Analyses for 2018 exclude two rainy dates. See Tables 3 and 4 for correlations among environmental variables

Species Year

Pearson correlation coefficients

Julian 
date Temper-ature Wind speed Solar radiation

Relative 
humidity

Barometric 
pressure

Change in 
pressure Ambient sound

All 2016 −0.45 0.09 −0.64 0.38 −0.13 0.46 0.00 −0.61

All 2018 0.10 0.28 −0.61 0.18 0.06 0.25 0.08 −0.58

REVI 2016 −0.50 −0.01 −0.49 0.68 −0.30 0.38 −0.20 −0.36

REVI 2018 0.39 0.52 −0.30 0.16 0.12 0.15 0.13 −0.35

BTBW 2016 0.37 0.64 −0.66 −0.19 0.29 0.55 −0.17 −0.70

BTBW 2018 −0.37 −0.05 −0.30 0.02 0.17 0.04 −0.09 −0.13

BTNW 2016 0.59 0.44 −0.21 −0.26 0.52 0.11 −0.04 −0.30

BTNW 2018 −0.65 −0.21 −0.31 0.34 −0.23 −0.03 −0.07 −0.42

OVEN 2016 −0.57 −0.07 −0.19 0.33 −0.37 0.16 −0.01 −0.37

OVEN 2018 −0.51 −0.04 −0.49 0.19 −0.06 0.17 0.12 −0.36

HETH 2016 0.13 0.01 −0.34 −0.14 0.05 −0.04 0.40 −0.29

HETH 2018 0.25 −0.03 −0.38 −0.05 0.15 0.05 0.20 −0.23

AMRE 2016 −0.65 −0.23 −0.31 0.39 −0.39 0.43 0.11 −0.28

RBNU 2018 0.60 0.18 −0.14 0.06 −0.18 0.32 0.01 −0.27

BHVI 2018 −0.19 −0.16 −0.31 −0.04 −0.28 0.18 −0.07 −0.46

SWTH 2018 0.70 0.32 −0.08 −0.03 −0.01 0.37 0.35 −0.16

YRWA 2018 −0.05 0.13 −0.38 0.11 −0.13 0.04 −0.08 −0.45

Note: Bold-face indicates statistical significance (uncorrected for multiple comparisons). Critical values for p < .05, p < .01, and p < .001 ≈ correlation 
coefficients of .45, .57, and .69.

F I G U R E  3 Vocalization rate of eight 
species of songbirds in the Hubbard 
Brook and Jeffers Brook watersheds, 
NH, in 2016. Means and SEs are from 
20 dates × 2–3 recorders each in 
mature forest and mid-aged forest in 
the two forested watersheds (Figure 1, 
Table 1). Corresponding ANOVAs are 
in Table S2. REVI = Red-eyed Vireo, 
BTBW = Black-throated Blue Warbler, 
BTNW = Black-throated Green Warbler, 
OVEN = Ovenbird, HETH = Hermit 
Thrush, AMRE = American Redstart, 
WIWR = Winter Wren, and 
SWTH = Swainson's Thrush. Note 
different scales on vertical axes
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such relationships. For example, sunlight (Miller, 2006; Thomas et al., 
2002), moonlight (York et al., 2014), temperature (Garson & Hunter, 
1979; Gottlander, 1987; Thomas, 1999), and atmospheric pressure 
(Prevost, 2016) can affect signaling activity. Wind and rain can inter-
act to affect vocalization activity in a variety of bird species, ranging 
from King Penguins to Grasshopper Sparrows (Lengagne et al., 1999; 
Lenske & La, 2014; Prevost, 2016). In our studies, the only environ-
mental variable with notable effects was background sound, which 
was primarily due to the sound of water dripping from the canopy.

Establishing statistical criteria for identifying recordings with high 
ambient sound (“noise” from the perspective of animal vocalizations) 
provides an objective way to filter recordings for analysis and identify 
how species respond to background noise. The automated approach 
to assessing ambient sound provided results that were highly cor-
related with the manual approach (Figure 2) and can readily be applied 
to large numbers of sound recordings. In our study system, some bird 
species showed greater declines in vocalization when ambient sound 
was relatively high (Table 4, Figure 7). High ambient sound can reduce 
the number of detected vocalizations by changing behavior or by 
changing the detectability of vocalizations. In our study, we detected 
fewer vocalization during rain, even though we excluded recordings 
with the most intense background sound. The fact that light rain days 
included fewer vocalizations that rain-free days likely reflect the fact 

species are reducing their calling activity rather than calling and failing 
to be detected. However, changes in vocalization rate and changes in 
detectability could both contribute to the observed relationship be-
tween background sound and vocalization rate. Indeed, the detect-
ability and vocalization rate may be correlated if species that are less 
detectible to receivers (and recorders) are also less likely less to at-
tempt vocalization with high background sound. Further study would 
be needed to test whether species with low calling rates under high 
ambient sound share similar acoustic signals, such as lower frequency, 
lower amplitude, or narrower bandwidth (Snell-Rood, 2012). Ambient 
sound could also influence the nature of vocalizations. For example 
Mountain Chickadees (Poecile gambeli) in Colorado tended to sing 
more and call less in noisier environments (LaZerte et al., 2017).

4.2  |  Variation in signaling activity across 
space and time

In the third approach, we compared vocal activity in two water-
sheds with similar forest composition and land use history. Despite 
the proximity and similarity of these sites, several bird species 
were common in one site and rare or absent in the other (Figure 3). 
These findings underscore the value of replicating locations within 

F I G U R E  4 Vocalization rate of four nesting songbird species at Hubbard Brook and Jeffers Brook during two breeding seasons. Data 
are based on 10-min recordings made about 1 h after sunrise (06:20 – 06:30 EDT) through each season. N = 5, 6, or 10 recorders (Hubbard 
Brook 2016, Jeffers Brook 2016, Hubbard Brook 2018, respectively). REVI = Red-eyed Vireos, BTBW = Black-throated Blue Warblers, 
BTNW = Black-throated Green Warblers, and OVEN = Ovenbird. Two dates in 2018 with heavy rain during the recording time are indicated 
with arrows on the x-axes. Note that measurements started later and ran later in 2016 than in 2018

F I G U R E  5 Intraspecific correlations in vocalization rates of six common bird species at two distances (150 m and 16 km; n = 20 dates 
in 2016). Y-axis is the average Pearson correlation coefficient for the corresponding species and distance. The two points in each panel 
at 150 m show the average correlation coefficient from Hubbard Brook and Jeffers Brook. The one point at 16 km shows the correlation 
coefficient for Hubbard Brook versus Jeffers Brook
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a habitat and not assuming that a single forest site is representa-
tive of similar nearby habitats.

Signaling is risky, time consuming, and metabolically costly (Falk 
et al., 2015; Godin & McDonough, 2003; Prestwich & Walker, 1981; 

Symes et al., 2015; Taigen & Wells, 1985). Although the character-
istics of the individual signals have been well-studied, much less is 
known about how singing activity varies from day-to-day or season-to 
season. Additional sampling would be required to test for the stabil-
ity in our study system of seasonal timing across years (Method 4). 
Most of the species that we studied displayed conspicuous peaks and 
troughs in day-to-day vocalization rates (at one hour post-dawn) that 
were only weakly explained by abiotic factors (Table 3). This suggests 
a prominent role for behavioral ecology in understanding the pattern-
ing of bird vocalization rates. Possible predictors include the timing of 
territory establishment, nest-building, egg-laying, incubation, hatch-
ing, and fledging. The behavior of birds on neighboring territories 
could also be a factor (Sillett et al., 2004). Better understanding of 
the relationship between reproductive behavior and signaling rate 
can inform acoustic sampling strategies and expand interpretations 
of acoustic data from times and places when observer-based sam-
pling is constrained, such as on military ranges or during the Covid-19 
pandemic. At longer time scales, advances in the analysis and inter-
pretation of acoustic data can expand studies of seasonal and inter-
annual phenology, particularly to times of year when it is difficult for 
researchers to access sites due to environmental conditions or com-
peting professional demands (Marra et al., 2015). Recording devices 
that are timed to automatically start before breeding activity begins 
will make it more feasible to determine when migratory birds arrive 
and can spare field biologists the sometimes frustrating work of sam-
pling to determine that the season has not yet begun.

4.3  |  Intraspecific synchrony in signaling

By combining data from multiple recording units, large synchronous 
acoustic datasets open a frontier of opportunities for studying be-
havior across landscapes (Valcu & Kempenaers, 2010). While pres-
ence/absence data are ecologically informative (Wood et al., 2021), 
counts of individual vocalizations can provide additional insight into 
behavior. We employed statistical approaches from population ecol-
ogy (e.g., spline correlograms) that were developed to test for corre-
lated dynamics in abundance and are readily extended to vocalization 
activity (Method 5). In our study system, the daily vocalization rates 
of some common species rose and fell synchronously between sites 
separated by 15 km (Figure 5), but not necessarily more so at 200 m 
than at 1500 m (Figure 6). Weather only explained a modest fraction of 
the spatiotemporal correlations. Other hypotheses include food avail-
ability, concordant endogenous rhythms in reproduction, or neighbor 
effects on behavior that extend a surprisingly long way. Playback ex-
periments could be a powerful tool for testing hypotheses drawn from 
behavioral ecology (Greenfield, 1988).

4.4  |  Interspecific synchrony in signaling

Our analyses of interspecific correlations (Approach 6) suggested 
the existence of functional groups of species based on vocalization 

F I G U R E  6 Intraspecific correlations in vocalization rates of 
four songbird species as a function of distance between recording 
locations (n = 19 dates × 10 locations in Hubbard Brook in 2018). 
Smooth lines indicate the nonparametric autocorrelation functions 
with 95% confidence intervals (Bjornstad & Falk, 2001). Points 
represent all pairs of recording locations
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activity. Such structure creates opportunity for testing general 
theory related to acoustic partitioning, phylogenetic conservation 
of behavior, convergent evolution, and information transfer among 
species (Tobias et al., 2014). In our system, the species in cluster 
1 tended to become less vocal as the breeding season progressed 
(Black-throated Green Warblers, Black-throated Blue Warblers, 
Black and White Warblers, Ovenbirds and Blue-headed Vireos), 
whereas the species in cluster 2 tended to be less vocal on days with 
higher ambient sound (Red-eyed Vireos, Black-capped Chickadees 
(Poecilia atricapillus), Red-breasted Nuthatches, Swainson's and 
Hermit Thrushes (Catharus guttatus), and red squirrels) (Figure 7). A 
priori, we would not have recognized these as different functional 
groups within our study system. Cluster 1 included species both 
with multiple clutches per year (e.g., Black-throated Blue Warblers) 
and with single clutches (Ovenbirds). The two vireo species were 

split between clusters. The ability to identify and predict member-
ship in vocalization guilds would contribute to basic knowledge of 
avian ecology, inform sampling strategies, and provide traction for 
predicting susceptibility to anthropogenic noise or changes in leaf-
out date.

4.5  |  Synthesis and conclusions

There is a natural match between data from passive acoustic moni-
toring and the classical concepts from community ecology of α-, β-, 
and γ-diversity (Figure 8). These diversity metrics provide a frame-
work for comparing communities of birds and other vocalizing an-
imals, such as assessing how similar acoustic data from a tropical 
rainforest would compare with respect to α-, β-, and γ-diversity to 
similar acoustic data from migrant songbird communities in north-
temperate forests. Such comparisons could address general ecologi-
cal theory, contribute to biodiversity assessments, and contribute 
to optimization of sampling strategies. For example, the benefits for 
biodiversity assessments of adding days vs. locations from acoustic 
sampling will depend on the relative strength of β- and γ-diversity 
(Figure 9). Presumably, β-diversity will be related to the strength of 
seasonality and the concordance between co-occurring species in 
the timing of their breeding. High γ-diversity suggests that conser-
vation efforts should consider relatively large management units, 
perhaps partly because of ecologically important variation within 
what appear to be uniform habitat types. The extrapolation of spe-
cies accumulation curves (rarefaction) provides a tool for judging 
when the species composition of a community is well known vs. 
under-described (Wood et al., 2021).

Passive acoustic monitoring in well-studied sites such as the 
Hubbard Brook Experimental Forest allows for the synthesis and 
comparison of information that can be obtained from direct obser-
vations and passive recording. These comparisons will have value for 
studies of avian communities in other ecosystems that lack such a 

TA B L E  6 Pairwise correlations in average vocalization activity between bird species at Hubbard Brook in 2018 (N = 19 days). Entries are 
Pearson correlation coefficients. Asterisks correspond to approximate significance levels from randomization tests [p < .05 (*) or p < .01 
(**)]. Positive correlations are indicated with blue, negative with red. See Table 1 for complete species names

BTBW BTNW OVEN BAWW BHVI YRWA REVI HETH SWTH RBNU BCCH

BTNW 0.53*

OVEN 0.61** 0.72**

BAWW 0.67** 0.57* 0.28

BHVI 0.53* 0.56* 0.41 0.48

YRWA 0.34 0.42 0.35 0.27 0.12

REVI 0.04 −0.16 0.12 −0.22 −0.24 0.36

HETH −0.17 −0.36 −0.02 −0.22 −0.18 −0.23 0.47*

SWTH 0.06 −0.35 −0.22 −0.13 −0.22 0.17 0.46* 0.04

RBNU −0.09 −0.34 −0.35 −0.15 0.27 −0.13 0.27 0.19 0.49

BCCH 0.12 0.11 0.18 −0.12 0.14 −0.06 0.29 0.34 0.02 0.34

RESQ −0.14 0.06 0.11 −0.27 0.08 0.41 0.41 0.35 0.19 0.28 0.47

F I G U R E  7 Principal components analysis of variation among 
days in the vocalization rate of 12 songbird species at Hubbard 
Brook. Species codes follow Table 2



18 of 22  |     SYMES et al.

strong foundation from observer-based ecological research. Having 
a family of technical approaches for bioacoustic data will leverage 
the growing power of automated data extraction, but remain criti-
cally intertwined with observer-based field biology. Acoustic data 
can reveal trends, interactions, and seasonal patterns in sound pres-
sure, but direct observations and experiments will remain crucial for 
asking questions, interpreting data, testing hypotheses, and devel-
oping general theory. The combination of direct observations and 
passive recordings offers general opportunities for understanding 
birds and other acoustically active organisms.

The approaches described in this paper provide tools for employ-
ing acoustic data to address basic and applied questions regarding the 
nature of biological communities. Passive acoustic monitoring opens 
sampling strategies that have historically been difficult for human ob-
servers, including collecting replicated synchronous data at many sam-
ple locations. Over time, archived recordings will continue to provide a 
source of data that can be mined with increasingly sophisticated detec-
tion algorithms and statistical analyses. Expanded capacity for record-
ing and analysis is fueling growth in occupancy analysis and density 
estimation (Furnas & Callas, 2015; Prevost, 2016; Sebastián-González 

F I G U R E  8 Relationship between 
total number of bird species detected 
via passive acoustic monitoring and 
the number of recorder days that were 
analyzed, as measured at Hubbard Brook. 
The blue curve indicates the average 
species accumulation for a single location. 
The black curve indicates the species 
accumulation for an equal number of 
samples randomly drawn from any of the 
10 locations

F I G U R E  9 Total number of bird species detected with simulated bioacoustic sampling from different numbers of locations and sampling 
occasions. The boundary of the yellow and blue indicates possible combinations with analyses of 190 total sound files, as in our study; 
our sampling design is (10 locations × 19 occasions) is indicated at the far end of the boundary. Inset at right shows top view of same. The 
surface and points show averages of 1000 replicate samples drawn at random from a simulated data set modeled after our data (Appendix 
S1). The pattern shows that adding locations generally added to total species detections more than adding occasions
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et al., 2018), which are burgeoning fields of growing value to population 
ecology and conservation biology (Marques et al., 2013). Some of the 
approaches described here are directly related to occupancy analysis 
(especially approach #7, using rarefaction analysis to quantify diversity 
and optimize bioacoustic sampling schemes). Other approaches make 
use of information in vocalization rates that goes beyond presence-
absence data (especially approaches 4–6). Recent advances in record-
ing hardware and continuing advances in data extraction software 
are permitting unprecedented access to acoustic data over space and 
time (Kahl et al., 2021; Shiu et al., 2020; Vickers et al., 2019). It seems 
likely that our ability to collect acoustic data will continue to exceed 
our capacity for analysis and interpretation. This places a premium on 
being strategic in framing questions, choosing hand annotation sub-
sets, and designing analyses to evaluate acoustic data. The approaches 
presented in this paper provide some guideposts for analyzing, inter-
preting, and applying the influx of acoustic data.

Historically, soundscape analysis has often relied on assessing 
statistical signatures in data to understand ecological dynamics and 
patterns in biodiversity (Gottesman et al., 2020; Pieretti et al., 2011; 
Sueur et al., 2008, 2014). Incorporating detailed information about 
species composition and signaling rate will inform our interpretation 
of the patterns seen in ecoacoustic data and will enhance our ability 
to understanding how the acoustic signatures of environments re-
late to the underlying biological and ecological dynamics.
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