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Consistent RNA sequencing contamination in GTEX
and other data sets
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A challenge of next generation sequencing is read contamination. We use Genotype-Tissue
Expression (GTEx) datasets and technical metadata along with RNA-seq datasets from other
studies to understand factors that contribute to contamination. Here we report, of 48 ana-
lyzed tissues in GTEx, 26 have variant co-expression clusters of four highly expressed and
pancreas-enriched genes (PRSST, PNLIP, CLPS, and/or CELA3A). Fourteen additional highly
expressed genes from other tissues also indicate contamination. Sample contamination is
strongly associated with a sample being sequenced on the same day as a tissue that natively
expresses those genes. Discrepant SNPs across four contaminating genes validate the con-
tamination. Low-level contamination affects ~40% of samples and leads to numerous eQTL
assignments in inappropriate tissues among these 18 genes. This type of contamination
occurs widely, impacting bulk and single cell (scRNA-seq) data set analysis. In conclusion,
highly expressed, tissue-enriched genes basally contaminate GTEx and other datasets
impacting analyses.
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he rise of next-generation sequencing has allowed for

unparalleled data generation for a variety of nucleic acid

studies including RNA expression. As cost per basepair
decreases, more large-scale transcriptome projects can be per-
formed that will inform on tissue expression patterns in health
and disease! % These data sources are generally publicly available
and have been used by hundreds of researchers for secondary
analyses of high impact>®.

Limitations exist for all —omics technologies, including RNA
sequencing (RNA-Seq). Issues of hybridization biases, library
preparation biases, and computational biases such as positional
fragment bias are known limitations of RNA-Seq experiments’~
9. Another challenge of high-throughput RNA-Seq is con-
tamination, leading to the presence of sequence data within a
data set of one sample that originates from a separate sample.
This contamination can come from many different aspects
of the modern sequencing process, such as human error,
machine or equipment contamination, intrinsic preparation
and sequencing errors, and computational errors, including
errors that can occur based on the multiplexing methods used
(https://www.illumina.com/content/dam/illumina-marketing/
documents/products/whitepapers/index-hopping-white-paper-
770-2017-004.pdf, visited 02/24/2020)1%11, For single cell RNA-
Seq (scRNA-Seq), doublets or multiplets (2+ cells partitioned
together) can cause cross-contamination resulting in expression
hybrids!2. Compared with RNA-Seq, contamination has been
better characterized for DNA sequencing projects!3-15,

The Genotype-Tissue Expression project (GTEx) aims to create
a large publicly available database of tissue-specific expression
quantitative trait loci (eQTL) from over 40 tissuesl. It is an
ongoing project with over 700 individuals and 11,000 tissue
samples. GTEx identifies eQTLs by associating genotypes called
from whole-genome sequencing with gene expression levels
obtained from bulk RNA-Seq. GTEx has made their RNA-Seq,
phenotype, genotype, and technical data available for public
access with permission.

In an analysis of variation in the GTEx RNA-Seq data (V7), we
detect unexpected sources of variation that we hypothesize are
likely contaminating sequence reads found at low, but variable
levels across different tissues. Herein, we describe how we identify
the source of contamination and establish basal rates of con-
tamination in the GTEx bulk RNA-Seq data. We further
demonstrate the universality of highly expressed genes con-
taminating other samples.

Results

Extreme tissue variation identifies gene signature patterns. We
embarked on a project to expand our initial description of the
causes of lung expression variation in GTEx to all tissue sam-
ples!®. We used DESeq2 variance stabilizing transformation
(VST) to normalize read counts from 11,340 samples'®17. Then
we filtered genes in each tissue keeping those with a mean
transformed count >5. The median number of genes above the
expression threshold was 17,729 with the highest and lowest gene
counts being 23,930 and 13,807 in the testis and whole blood,
respectively. As previously described, we correlated and hier-
archically clustered variable genes (more than four variance
across samples) for all tissues with >70 samples (N =48) in the
GTEx data set V7!, Our algorithm identified multiple gene
clusters per tissue, based on their Kendall’s tau correlations
(Fig. 1a). It additionally reported non-clustering, highly variable
genes. Most clusters were the result of biologic and phenotypic
features related to the tissues. For example, a cluster of Y chro-
mosome genes and XIST appeared in 42 of 43 non-sex specific
tissues. However, there was one consistent cluster of 3-4 genes

(PNLIP, PRSS1, CELA3A, and/or CLPS) identified in 26 of the 48
tissues that did not have an intuitive biological explanation. These
genes are highly expressed and pancreas acinar-cell specific!8. To
identify other highly expressed tissue-enriched genes appearing
variably in other samples, we cross-referenced a list of tissue-
enriched proteins generated by the Human Protein Atlas (HPA)
to the GTEx transcripts per million (TPM) data (Table 1)!9:20,
We noted 18 genes from seven tissues including two esophagus
genes KRT13 and KRT4 that are highly expressed in their native
tissue and identified as variable in five or more other unrelated
tissues (Fig. 1a, Supplementary Fig. 1).

As both abundant and tissue-enriched genes were unlikely to
be randomly and lowly expressed in a range of other tissues, we
performed analyses to determine the source of the contamination.

We first questioned if the contamination occurred during
tissue harvesting, hypothesizing that occasionally small fragments
of a tissue could contaminate a separate sample from shared
dissection tools or surfaces. A pancreas gene contamination
cluster was found in transformed fibroblasts, which were grown
over multiple passages and would not retain other cell types over
that time period, challenging this as a source of contamination
(Supplementary Fig. 1).

Sequencing date is the main source of contamination. We then
queried if other technical sources of contamination may be
related. Other GTEx metadata available included nucleic acid
isolation date and sequencing date, which were both interrogated
for associations with this contamination. The normalized score of
four pancreas-enriched genes (PRSSI, CLPS, PNLIP, and
CELA3A) was significantly higher in non-pancreas samples if
they were sequenced on the same day as a pancreas sample
(Wilcox rank sum test, p < 5e-324, Fig. 1b, ¢). We then performed
linear mixed model analyses across non-contaminating tissues to
understand expression levels of genes known to be highly enri-
ched and highly expressed in the pancreas or esophagus, but were
found lowly and variably in other tissues (ex. coronary artery,
liver, tibial nerve). Because the majority of samples were
sequenced on the same day as a pancreas or esophagus—mucosa
sample, for model robustness, we limited our models to only
tissues with >40 samples not sequenced on the same data as a
respective contaminating tissue (Supplementary Data 1 and 2).

After adjusting for tissue type, the pancreas contamination
score (average of normalized expression values for PRSSI, CLPS,
PNLIP, and CELA3A) was on average 0.175 higher if the tissue
was isolated on the same day as a pancreas sample (p = 3.9e-12,
linear regression), but on average 0.863 higher if the tissue was
sequenced on the same day as a pancreas sample (p = 9.5e-237,
linear regression) (Supplementary Data 3).

A similar linear mixed model was used to evaluate the
esophagus contamination score (average of normalized expres-
sion values for two highly expressed esophagus-enriched genes
KRT4 and KRT13). The same model as above showed only
sequencing a tissue on the same day as a esophagus sample to be
significant (p = 5e-260) (Supplementary Data 4).

Despite the significance of sequencing date, some high scores
came from samples that were not sequenced on the same days as
pancreata. Focusing on just one these genes, PRSSI, it was clear
that all of these samples were sequenced within a few days of a
pancreas (Fig. 1d). This additionally implicated the library
preparation process (for which date information is lacking in
GTEx) as a potential source for contamination, as it is temporally
related, but not identical, to sequencing date.

With this understanding of the temporal importance of
sequencing date to gene expression, we then revisited the four
genes making up the pancreas normalized score gene cluster. For
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Fig. 1 Identification and explanation of sequencing contamination. a A correlation heatmap of highly variable subcutaneous adipose tissue genes across
442 subjects. Blue to red scale shows Kendall's tau correlation from —1 to 1. The genes within the contamination cluster and the sex cluster are given.
The meaning of cluster A is unknown. Cluster B may relate to the percentage of smooth muscle cells and cluster C includes acute phase reactants.

b Contamination normalized score values for non-pancreas tissue samples (N =11,366) colored relative to being sequenced on the same day as a pancreas
tissue. The solid black line denotes a Z score of 0. ¢ Violin plot of the same data showing a strong, but not complete correlation of sequencing on a

pancreas day. The solid line in all boxplots represents the median of the data, whereas the lower and upper hinges correspond to the 25th percentile and
75th percentile, respectively. The whiskers represent the interquartile range x 1.5, and any outliers beyond the whiskers are represented as dots. d Ranked
order of all samples either sequenced on the same day as a pancreas sample (black) or on a non-pancreas sequencing day (colors) for PRSST read counts in
log10. Among samples not sequenced on a pancreas day, 91% of samples with >100 reads were sequenced within 4 days of a known sequenced pancreas.
The dashed line represents 100 reads. e Keratin 4 (KRT4) contaminating reads in GTEX-1's fibroblast RNA-Seq appear to have originated from GTEX2
esophagus mucosa tissue. By DNA and RNA of the appropriate tissue source of KRT4, sample GTEX-1is homozygous for the C allele at rs7956809. The
fibroblast sample is 87% G reads, primarily matching sample GTEX2. The read count depth at the SNP in the GTEX-1 esophagus was 85,803 and 204 for

the GTEX-1 fibroblast.

all tissues, median normalized scores were higher on pancreas
sequencing dates, and the division between the 26 tissues with
clustering vs. the 21 without was a result of the high threshold for
VST normalized counts we set for our pipeline (Supplementary
Fig. 2).

Genetic polymorphisms confirm contamination patterns. To
prove that pancreas/esophagus transcripts were contaminating
from other (non-self) samples we identified incongruencies
between a person’s genotype (from DNA data) and the genotype
in matching loci in the pancreas/esophagus contaminated RNA-
Seq samples. We required both the individuals’ DNA genotype
and RNA-Seq files from contaminating tissues, in order to
account for both RNA editing and preferential allele expression.

Based on these sample requirements and limited by available raw
sequencing files, we identified 11 contaminated tissues to evalu-
ate. For each, we obtained and processed their raw RNA-Seq
FASTQ sequences to identify nucleotide variants in both their
contaminated tissues and their matched pancreas or esophagus
tissue (depending on the gene source of contamination). In
addition, we used the GTEXx filtered variant call format (VCF) file
from the individual’s sequenced DNA to further establish their
SNP allele patterns. Across all tissues, 533 SNPs, rare variants,
and private variants, were investigated in pancreas associated
gene coding sequences (PNLIP, CLPS, and CELA3A) and 190 in
esophagus associated gene coding sequences (KRT13, KRT4). As a
comparison group, 287 variants were investigated in two control
gene coding sequences (GAPDH and RAB7A) that have near
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Table 1 Eighteen highly expressed genes that appear to contaminate five or more GTEXx tissues.

Gene Times identified as variable in other  Highest expressed GTEx TPM Tissue* GTEx TPM* Independent
tissues GTEXx tissue study TPM*

PRSS1 43 Pancreas 99,100 Stomach 28.36 0.92

PNLIP 34 Pancreas 33,660 Ovary 3.67 0

CPA1 31 Pancreas 54,500 Testis 8.16 0

GP2 29 Pancreas 14,280 Prostate 18.34 13.5

CELA3A 24 Pancreas 27,130 Stomach 14.1 0.03

KRT13 20 Esophagus 33,960 Vagina 13,140 3961

PGC 19 Stomach 36,720 Lung 83.84 12.42

KRT4 18 Esophagus 22,290 Vagina 1375 15,069

PRL 17 Pituitary 54,500 Testis 5.15 0

LIPF 15 Stomach 29,380 Testis 4.33 0

CLPS 14 Pancreas 51,640 Stomach 5.35 0

CTRB2 9 Pancreas 20,760 Ovary 3.21 0

MYBPCT 6 Skeletal muscle 3587 Prostate 54.5 213

MYH2 6 Skeletal muscle 1064 Colon 0.52 0.02

ZG16B 6 Salivary gland 17,540 Prostate  48.1 187.1

FGA 5 Liver 5717 Stomach 12.43 6.02

HP 5 Liver 12,710 Adipose  140.1 2.7

CKM 5 Skeletal muscle 1,138 Heart 2987 2339

expressed GTEXx tissue.

Independent study samples were taken from RNA-seq experiments of the 2nd highest GTEx tissue and were not co-sequenced with the highest expressed GTEx tissue. *Data from second highest

Table 2 Allelic inconsistencies found in contaminated samples.

Individual Gene SNP Major/minor* Reads* Major allele %* Tissue type** Reads** Major allele %**
GTEX-1 KRTI13 rs903 C/A 101,908 0% Fibroblast cells 252 50%
GTEX-1 KRT4 rs7959052 T/C 74,468 100% Fibroblast cells 203 12%
GTEX-1 KRT4 rs7956809 C/G 85,803 100% Fibroblast cells 204 13%
GTEX-1 KRT4 rs2035879 T/C 72,978 51% Fibroblast cells 164 7%
GTEX-1 KRT4 rs17119475 G/A 71,592 49% Fibroblast cells 226 98%
GTEX-8 CELA3A rs9187 c/T 162,318 73% Tibial nerve 1155 100%
GTEX-8 CELA3A rs12908 G/A 169,394 74% Tibial nerve 1215 100%
GTEX-9 CELA3A rs3820285 C/G 98,896 1% Adipose 5178 48%
GTEX-9 CELA3A rs9187 c/T 105,462 75% Adipose 6082 97%
GTEX-9 CELA3A rs12908 G/A 108,681 75% Adipose 6313 98%
GTEX-10 CLPS rs3748050 T/C 80,019 47% Artery mz 99%

“Enriched tissue.
**Contaminated tissue.

ubiquitous expression across all tissues. Of 1010 variants obtained
from the combined VCF files, 11 had some degree of allelic
heterogeneity (Table 2). No incongruencies were found in the 287
variants of the two control genes.

One SNP site, rs7956809, was particularly informative. SNP
rs7956809 (C/G), located in KRT4, had a relatively low allelic
variation, with only five individuals in the entire GTEx cohort
homozygous for the alternative allele (G). One individual
(arbitrarily GTEX-1) was homozygous C at rs7956809 in both
its DNA (VCEF file) and matched esophagus (RNA-Seq FASTQ
data) (Fig. le). However, the rs7956809 SNP in the GTEX-1
fibroblast sample was 87% G and 13% C. Six esophagus samples
were sequenced on the same day as the GTEX-1 fibroblast
sample. No other esophagus samples were sequenced within
4 days. One of those six samples, GTEX-2, was homozygous G at
rs7956809. The five other samples were homozygous C. This
strongly implicates the GTEX-2 esophagus sample as the
dominant contaminant of the GTEX-1 fibroblast sample.

We further investigated the relationship between the GTEX-1
fibroblast sample and the GTEX-2 esophagus sample finding no
clear connection. The two samples were sequenced on different

machines and in different flow cells. Of some interest, the
sequencing sample adapters (molecular indexes) were similar
(Supplementary Data 5).

The extent of gene contamination in GTEx. After establishing
that contamination exists in GTEx by identification of a temporal
association and validation through polymorphisms, we then
attempted to address the extent of contamination in the GTEx
data set. To characterize this, we investigated the various levels of
pancreas enhanced gene expression in non-pancreatic tissue
(Fig. 2). In the 11,366 non-pancreas samples investigated, ~25%
had 0 reads for each of four pancreas-enriched genes and another
~50% of samples had TPM < 10.

PEER factor normalization is not fully corrective. The GTEx
analysis pipeline uses probabilistic estimation of expression resi-
duals (PEER) factor to correct for possible confounders?!-22, This
method identifies hidden factors that explain much of the
expression variability and can be used to normalize RNA
expression data. We focused on just one tissue, lung, and followed
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Fig. 2 A cumulative distribution plot of 11,366 non-pancreas RNA-seq
samples and their cumulative TPM expression of four pancreas genes.
The right shift in PRSST is consistent with it having the highest pancreas
TPM expression.

the GTEx analysis pipeline to determine the extent to which
PEER factor normalization can identify and correct for this
contamination. Sixty PEER factors were identified, with the top
two capturing a difference between “in hospital” (short post-
mortem interval) and “outside of hospital” (longer postmortem
interval) deaths (Fig. 3a). This relationship is consistent with our
prior report of variation in lung!®. Similar to the global findings
of Fig. 1, PNLIP expression was increased in lung samples
sequenced on the same day as a pancreas. Despite correcting for
35 or even 60 PEER factors, this difference was not fully
accounted for (Fig. 3b). Indeed, of five genes evaluated, only one
gene (KRT4) was fully corrected for by PEER factors (Table 3).
We then explored if this lack of full correction impacted eQTL
analysis in the GTEx program.

Contamination affects GTEx eQTL reporting. Using the GTEx
eQTL browser, we identified 72 tissues reported as having sig-
nificant eQTLs for the 18 genes listed in Table 1. Seven tissues
matched the known dominant expression patterns of the genes.
An additional 34 tissues were deemed possible based on expres-
sion patterns noted by RNA and protein immunohistochemistry
in which expression (in TPM) was above the basal level of all
tissues. However, 31 inappropriate tissues were identified as
harboring eQTLs even though these genes are not natively
expressed in these tissues, appearing only as a result of con-
tamination (Table 4).

Non-GTEx bulk sequencing data sets confirm contamination.
To determine whether highly expressed tissue-enriched con-
tamination is a feature of sequencing in general, we identified two
additional RNA-Seq data sets containing multiple organs/
tissues!%23.24, Neither study sequenced the pituitary, which is the
organ with the highest levels of prolactin (PRL) expression
(Fig. 3c). Both studies performed multiplexed sequencing on
Mlumina 2000 or 3000 sequencers. These data sets demonstrate
the extent of PRL expression contamination across six tissues is
dependent on the amount of PRL expressed in the appropriate
tissues (GTEx pituitary median 54,500 TPM and uterus median
4.01 TPM (Fig. 3d). To additionally characterize the breadth of
contamination in the literature, we identified 10 studies with two
or more organs/cells sequenced together. All 10 had cross-sample
contamination of the type described herein (Supplementary
Data 6). We also analyzed the METSIM study, containing bulk
sequencing of adipose tissue in 434 subjects?”. The data from that

study demonstrates how, in the absence of sequencing at the same
time as a contaminating tissue (ex. stomach, pancreas), con-
taminating reads are minimal and do not correlate. This was the
opposite of what was observed in GTEx adipose tissue (Supple-
mentary Fig. 3).

scRNA-Seq is similarly impacted by contamination. We then
investigated this type of highly expressed gene contamination in
scRNA-Seq. Although doublets are well-characterized, and bar-
code swapping has been reported, other forms of contamination
are not well-described!>2°. Also, owing to the low depth of
sequencing in current scRNA-seq compared with bulk sequen-
cing, the type of contamination concerned herein would not be
expected to generate large numbers of contaminating reads.
However, investigations across two cell types, endothelial cells,
and mesenchymal cells (fibroblasts, activated stellate cells, cancer-
associated fibroblasts), suggested otherwise.

Three different scRNA-Seq data sets (GSE84133, GSE103322,
GSE72056) from normal pancreas, metastatic melanoma, and
head and neck squamous cell carcinoma were used?’-2%, From
the pancreas sample, insulin (INS) represented a highly expressed,
cell type-enriched gene that is exclusive to beta cells (TPM value
of 167,144; transcripts per 10,000 reads (TP10K) =1671). INS
expression was modestly elevated in endothelial cells and
mesenchymal cells from the same data set (GSE84133), but is
absent in endothelial and mesenchymal cells from the other data
sets in which beta cells were not sequenced (Fig. 3e). Contamina-
tion of pancreatic endothelial cells is further supported by a
recent snATAC-seq study that demonstrated closed chromatin at
the INS locus in pancreatic endothelial cells30.

scRNA-seq contamination drives aberrant cell clustering.
Tabula Muris is a single cell transcriptome atlas of 20 mouse
tissues3!. We gathered endothelial cell data from nine tissues and
generated tSNE plots of this data based on the inclusion of either
6 or 10 principal components (PCs) (Supplementary Fig. 4a, b).
With 10 PCs, a subset of pancreatic endothelial cells incorrectly
clustered separately as a result of contaminating pancreatic acinar
genes that drive PCs 8 and 10. HPA staining validated the loca-
lization of these proteins to acinar cells (Supplementary Fig. 4c).

Discussion
The GTEx data set represents an ideal resource to study sequence
contamination. Its 11,000+ samples from 700+ individuals from
a diverse set of tissues with all library preparation and sequencing
performed at one center is unique. During our initial variation
analysis of 48 tissues spanning 10,294 samples, we detected a
variable signal of pancreas genes in 26 of those tissues. From there
we noticed genes that were highly expressed in esophagus, sto-
mach, pituitary, and other tissues also appeared in shared clusters
across unrelated tissues. These highly expressed, tissue-enriched
genes were found at low, variable levels in other organs and
represented some of the most frequent causes of variation
between samples of the same tissue type. Although many of the
genes derive from the pancreas, that is more a feature of their
being so highly expressed rather than a feature of the organ.
We found that contamination is best linked to the date of
sequencing for both pancreas genes and esophagus genes (linear
regression, p =1.3e-14 and p = 6.1e-49, respectively). However,
both owing to contamination being noted in some samples that
are sequenced a few days apart from a possible contaminating
source and the SNP-based evidence, we suspect the majority of
the contamination occurred during library preparation rather
than the sequencing itself. Library preparation dates were not
publicly documented.
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Fig. 3 Impact of PEER factors on contamination and differing contamination outcomes by study. a The top two PEER factors separated in hospital from
out of hospital deaths (N =427). b With no PEER factor correction there is a significant increase in PNLIP expression normalized scores in lung samples if
they were sequenced on the same day as a pancreas (no=96, yes=337; linear regression, p = 4.34e-14). After 35 (p = 1.38e-11) or 60 (p = 3.03e-06) PEER
factor corrections, the difference remained. The solid line in all boxplots represents the median of the data, whereas the lower and upper hinges
correspond to the 25th percentile and 75th percentile, respectively. The whiskers represent the interquartile range x 1.5, and any outliers beyond the
whiskers are represented as dots. ¢ Prolactin (PRL) read counts in pituitary (high), placenta (medium), and uterus (low), where PRL is known to be
expressed across GTEx, HPA, and the RNA Atlas. The numbers in colored boxes indicate sample sizes and the color indicates respective study. d PRL
contamination reads across six tissues from three studies that correlate with levels of likely contamination based on the other sequenced organs. e INS
contamination across three scRNA-Seq data sets. Only in the pancreas data set (GSE84133), where beta cells were also sequenced, does INS appear to be
lowly expressed in endothelial and mesenchymal cells. Cells with expression above the dotted line at 1000 TP10K are likely doublets or multiplets.

Table 3 Significance of same-day sequencing of lung with contaminating tissues on gene expression.

Gene P value before PEER P value after correcting for 35 PEER P value after correcting for 60 PEER Beta estimate after
correction factors factors correction

PNLIP 4.34e-14 1.39e-07 1.94e-05 0.49

PRSS1 6.2%¢-14 5.83e-07 2.63e-05 0.48

CELA3A 591e-14 3.36e-07 2.41e-05 0.49

KRT4 0.0034 0.7 0.5 0.18

KRT13 8.18e-17 0.00048 0.0036 0.37

P values are shown before and after PEER correction.

Although the nucleic acid isolation date was only modestly
associated with contamination, physical contamination can easily
occur at this stage. GTEx RNA isolation was manually done in
batches of 12 tissues, purposefully with a mix of donors and
tissues to minimize batch effects. Samples were individually cut

and placed into cryovials for homogenization, followed by further
manipulations32,

At the stage of library preparation or sequencing where our
data indicate most of the contamination occurred, there are
multiple steps that could be implicated. The library preparation
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Table 4 Distribution of GTEx eQTLs by tissue type in contaminating genes.

testis, whole blood

Genes  Appropriate tissues Possible tissues Inappropriate tissues

PRSST — Small intestine Liver, coronary, skin, lung
PNLIP — — —

CPA1 — — Coronary

GP2 - - Brain

CELA3A  Pancreas Stomach Liver

KRT13 Vagina Lung —

PGC — Lung, pancreas Tibial artery

KRT4 Esophagus Skin, lung Colon, brain, thyroid

PRL — — Gastroesophageal junction, skin, tibial artery
LIPF Stomach — —

CLPS Pancreas — —

CTRB2 Pancreas — Aorta, brain, lung, thyroid
FGA Liver Stomach —

HP — Whole blood, adipose (2), artery (3), lung, tibial nerve, heart Brain, esophagus mucosa
CKM — — Aorta, whole blood

MYBPC1T — Heart, testis, colon, prostate, brain (2) Esophagus (2), lung, thyroid
MYH2 — — Colon, lung

ZG16B — Skin (2), adrenal, fibroblasts, lung, stomach, prostate, spleen, colon, Adipose, esophagus, pituitary

was completed automatically in 96-well plates with a mix of tis-
sues and individuals to prevent batch effects32. Fluidic carryover
could have occurred here. At the sequencing level, a major con-
cern is index contamination where index oligonucleotides used
for multiplexing can ligate to other sample transcripts, thus
contaminating the data after demultiplexing. Index based con-
tamination is machine and lane specific and can even occur at the
creation of the indexes when multiple indexes are purified on the
same high-performance liquid chromatography column33. In
addition, if steps to clean libraries of free adapters/primers are not
properly executed, the remaining indexes can contaminate clus-
ters in the flow cells. Molecular recombination of indexes during
sequencing can also lead to faulty read assignment as multiplex
clusters can become contaminated by other samples that acquire
the indices of the native sample (index hopping). This has been
demonstrated in scRNA-Seq, and seems to occur more often on a
HiSeq 4000 platform?®.

Specific to this study, GTEx samples were run on either HiSeq
2000 or 2500 machines in high output mode using cbot cluster-
ing. The flowcells were not patterned, and therefore not prone to
index-swapping (personal communication, GTEx Help Desk).
GTEx’s use of custom i7 (later Illumina kit-based) dual indices
also reduced the amount of index hopping that can occur3233.

Contamination of scRNA-Seq, may or may not be occurring by
yet an additional mechanism. Ambient RNA, from disrupted
(“broken”) cells may be a major source of contamination, as
recently described4. If true, this would occur before the library
preparation and sequencing steps, would cause only a modest
expression of the gene, and would not be detectable by current
doublet correcting mechanisms!23>. This method of contamina-
tion might have implications for Human Cell Atlas studies, as we
demonstrated it clearly affects cross-tissue comparisons of com-
mon cell types in Tabula Muris®!3.

Using other bulk RNA-Seq data sets with similar sequencing
methods and scRNA-Seq data sets, with different preparation
methods, we validated that it is predominately contamination, not
low-level transcription, which results in non-zero expression
values in inappropriate tissues/cells (Fig. 3d, e, Supplementary
Fig. 3, Supplementary Fig. 4, Supplementary Data 6). These extra
data sets also uncover the generalizability of this highly expressed
transcript contamination regardless of the labs in which they take
place or the methods employed.

So how big is the contamination problem? It depends on
how one uses the data. Fortunately, in the GTEx data, the levels
are overall low with only 2.85% of samples having relatively high
levels of PRSSI (TPM > 100). Thus, for many uses of GTEx data,
this level is irrelevant. However, for experiments that involve
differential expression profiling, these genes will repeatedly
appear due to their variable levels of contamination. We addi-
tionally note that the GTEx standard normalization pipeline
using PEER factors did not entirely eliminate this source of
variation and numerous eQTLs that were identified for the 18
genes described herein were located in incorrect tissues (>40%).
We caution that our results do not suggest that one should design
a study in which sample type (e.g., tissue type or disease state) is
perfectly confounded with library preparation or sequencing date.
In fact, it was only because the GTEx study sequenced samples
from different individuals on the same date that we were able to
definitively show that contamination between samples occurred.

In other scenarios, this basal contamination may be more
worrisome. Many publications have reported rare, but variable
gene expression in their samples claiming their importance or
disease-related behaviors?”. Our findings call these reports into
question. The extent of cross-contamination, where one labora-
tories’ samples are prepped and sequenced at the same time as a
different laboratories” unrelated samples through a university core
sequencing facility or sequencing company is unknown, but likely
frequent38-3%. The xenomiR story, that rice miRNAs are found in
human blood through dietary means*7, was shown to result from
library preparation contamination!#2. For scRNA-Seq, this
contamination falsely implies some gene expression is ubiquitous
across cells, which influences computational heterogeneity ana-
lyses of cell types, beyond the known challenges of other biolo-
gical and technical artifacts3!-3443, Also, our work highlights the
fact that work flows must be considered carefully in very-low
DNA mutation detection analysis in clinical cancer samples as
samples with higher tumor burdens may contaminate samples
with lower tumor burdens and falsely suggest treatment
approaches#4##°. In particular, GTEx data are available in many
outlets, including the UCSC Genome Browser. Variable, low-level
expression of PRSSI, CELA3A, and others may falsely intrigue
researchers, particularly within the reported eQTLs.

We described low-level, variable expression contamination in
the GTEx RNA-Seq data set. This variation was most noticeable
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for 18 highly expressed, tissue-enriched genes and strongly cor-
relates with the library preparation and sequencing of the sam-
ples. Similar contamination was observed in other bulk and
scRNA-Seq data sets, suggesting a universality to this type of
contamination. Evaluating low-level variable gene expression in
RNA sequencing data sets must be performed with precaution
and awareness of potential sample contamination.

Methods
Ethics statement. All human data were publicly available or used with approval of
the GTEx consortium. Consent was obtained by those studies.

Retrieval of GTEx data sets, FASTQ files, and sample data. The gene read
counts of the RNA-Seq GTEx version 7 data set (GTEx_Analysis_2016-01-
15_v7_RNASeQCv1.1.8_gene_reads.gct.gz) were downloaded from the GTEx
Portal (https://gtexportal.org/home/datasets), along with the de-identified sample
annotations (GTEx_v7_Annotations_SampleAttributesDS.txt). The FASTQ files of
the tissue samples and the VCF files of appropriate individuals were downloaded
from dbGaP (phs000424.v7.p2) with the required permissions.

Retrieval of human protein atlas tissue-enriched gene list. We obtained the
HPA tissue-enriched genes by downloading a CSV file from this filtered site
(https://www.proteinatlas.org/search/tissue_specificity_rna:any;Tissue%20enriched
+AND-sort_by:tissue+-specific+score, visited on 6/21/18).

Second highest tissue expr: of ti -enriched g Using the GTEx
portal (v7) we noted the TPM for the second highest expressing tissue with

>60 samples. We then used GEO, SRA Run Selector, and Recount2 (https://
jhubiostatistics.shinyapps.io/recount/) to find data sets where only one tissue was
sequenced, with the exception of the ovary sample, which was obtained from the
Ilumina BodyMap (16 tissue types, absent of pancreas)*®. Owing to our inability to
find salivary gland data we used prostate tissue, the third highest expressing tissue
for ZG16B. Heart (ERP009437), adipose tissue (SRP053101), lung (SRP032833),
prostate (SRP003611), stomach (ERP010889), and colon (SRP029880) TPMs were
acquired through Recount2 and were selected for normal samples. The testis data
were downloaded from GEO (GSE103905). Vagina and ovary FASTQ data were
downloaded from SRA run selector (GSE68229 and GSE30611). FASTQ files were
mapped to the Genome Reference Consortium Human Build 38 (GRCh38) using
the software HISAT2 version 2.1.047. The output SAM files were turned into BAM
files and indexed using samtools version 1.94849. Assembly was completed using
StringTie v1.3.4d and StringTie TPMs were used from the output®%-°L.

Bulk sequencing processing. The acquired raw read counts were segmented into
separate tissue subsets (48 tissues with =70 samples each) and their read counts
were normalized using the VST feature in DESeq2 version 1.22.1 in R version
3.6.117. This method incorporates estimated size factors based on the median-ratio
method, and transformed by the dispersion-mean relationship. We then filtered the
56,202 genes based on their mean expression (mean transformed count >5) to
reduce noise and lessen the inflated effect of low expressing genes on correlations.

Identification of highly variable genes and clusters. All analyses were completed
in R version 3.6.1. In each tissue, a threshold of a >4 variance of VST normalized
read counts was used as our cutoff for highly variable transcripts. These genes were
then clustered using hierarchal clustering on a distance generated by 1—Kendall’s
rank-correlation coefficient. A tau critical value was calculated based on the
number of samples and genes expressed. The correlation-based dendrogram was
cut to produce gene clusters with average within cluster correlation of at least the
tau critical value.

Calculation of normalized expression scores. Normalized expression scores
allow one to summarize the expression of a gene cluster in a sample by the average
normalized score of the genes in that cluster. These normalized scores were cal-
culated by subtracting the mean expression and dividing by the median absolute
deviation of the expression values for each gene across all samples within a given
tissue. The equation is as follows, where x is the VST normalized expression of gene
j in sample i, ¢(i) is the tissue type for sample i, and J is the number of genes in a
given cluster:

Equation 1

I~ %%
P e w
T met(m)=t(0)xy —|

A “pancreas” contamination score was defined as the average normalized score
using the genes PRSS1, CELA3A, PNLIP, and CLPS, across all tissues. An
“esophagus” normalized score was defined as the average normalized score using
genes KRT4 and KRT13 in a given tissue. All normalized scores were calculated

independently for each tissue, to account for tissue-specific between-sample
variation in the expression of these genes.

Linear mixed model analysis for pancreas gene contamination. Linear models
were used to find associations between nucleic acid isolation or sequencing on the
same day as a potential contaminating tissue (source of gene expression). These

analyses were completed in R version 3.6.1 using the Imer function in package Ime4
(v1.1-21). In the linear mixed models we used all available tissues with > 40 samples
not sequenced on the same day as a pancreas sample (15 tissues, N = 6258). For the
model, tissue was used as a covariate along with “pancreas sequencing day” and

“pancreas nucleic acid isolation day” were coded binarily as True/False based on

whether a given non-pancreas sample was sequenced or underwent RNA isolation
on the same day as a pancreas sample. Our model identified an association between
the pancreas contamination score with pancreas sequencing day (T/F; 1/0), pancreas
nucleic acid isolation day (T/F; 1/0), and tissue as covariates, with the subject IDs
included as a random effect. The equation for our model is below where ¢(i) gives
the tissue type of sample i, s(i) is defined as the sequencing day of the sample, and
d(i) is the isolation date of sample i. At last, T is the number of tissue types, u,,; is
the random effect of subject ID for sample i, and ¢; is the error term for said sample:

Equation 2

Y, =By + B (s(0) € {s(m + t0m) = tyuncren) })
B.1(d() € {a(m s tm) = ) }) )

T+1

; BI(t(i) =k — 1) + uy + e

Linear mixed model analysis for esophagus gene contamination. We repeated
the above analysis with the esophagus mucosa, coding shared sequencing day and
shared nucleic acid isolation day similarly. In the linear mixed model we used all
tissues with a sample size >40 samples not sequenced on the same day as the
esophagus mucosa (8 tissues, N = 3917). The model used esophagus nucleic acid
isolation day (T/F; 1/0), esophagus sequencing day (T/F; 1/0), and tissue as cov-
ariates along with subject IDs as a random effect on the esophagus
contamination score.

Base pair incongruency analysis. Base pair incongruency analysis required a
contaminated tissue expression FASTQ, a native tissue expression FASTQ, and the
individual’s VCF file. FASTQ files were mapped to the Genome Reference Con-
sortium Human Build 37 (hgl9) using the software HISAT2 version 2.1.047. The
output SAM files were turned into BAM files and indexed using samtools version
1.94849, Preliminary analysis and development of figures were generated using the
Integrative Genome Viewer version 2.4.13°%%3. Protein coding SNPs, rare variants,
and personal variants (collectively referred to as variants in this paper), were
manually selected using IGV as a reference. Using the tool bam-readcount version
0.8.0 in combination with a Python 3.6.2 script, a list of RNA-Seq and genomic
incongruencies were generated for the acquired sample BAM files.

PEER factor analysis. We obtained the GTEx RNA-Seq data set from lung (N =
427). The data underwent trimmed mean of m-values (TMM) normalization and
filtering out of lowly expressed genes (< 0.1 TPM for 80% or more of the samples)
before running PEER to identify potential confounders?!. Following GTEX’s pipe-
line (https://gtexportal.org/home/documentationPage#staticTextAnalysisMethods
visited 02/24/2020), we then performed an inverse-normal transformation on the
expression values for each gene in order to reduce the effect of outliers?2. Nor-
malized scores for each gene are based on TMM-normalization, inverse-normal
transformation, and scaling/centering at zero using the base R scale function. A
linear regression was performed, with either raw inverse-normalized expression
values or expression normalized scores (after correcting for PEER factors) as the
outcomes and same-day pancreas (/esophagus) sequencing status as the predictor.
Beta estimates represent how many standard deviations greater the mean expression
of a gene is when samples are sequenced on the same day as a contaminating tissue,
even when accounting for variance explained by 60 PEER factors.

Cross-referencing eQTLs with contamination findings. We obtained and tallied
eQTL reports for the 18 genes in Table 1 from the GTEx eQTL browser (https://
gtexportal.org visited on 26 March 2019). eQTLs were identified by tissue asso-
ciation and conservatively placed in one of three categories: appropriate expression,
possible expression, and inappropriate expression. The appropriateness of
expression in any tissue was based on the evaluation of TPM levels in the tissue and
immunohistochemistry staining patterns as noted in the HPA>4,

Acquiring HPA, RNA Atlas RNA-Seq, and METSIM Data. Using the R package
recount version 1.8.2, we downloaded HPA RNA-Seq data, accession
ERP00361319. The RNA Atlas was acquired by downloading their raw RNA-seq
counts from Gene Expression Omnibus (GSE120795)23. The HPA RNA-Seq was
performed across 27 tissues and the RNA Atlas was across 20 tissues. We filtered
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samples down to the shared tissues of liver, lung, pancreas, prostate, skin, and
stomach as well as the potential sources of PRL contamination of pituitary,
placenta, and uterus. Only sun exposed skin was used for GTEx analysis. TPM
RNA-seq data from the METSIM study was downloaded through the GEO
(GSE135134)25,

Acquiring and normalizing scRNA-Seq data. We identified three publications
with human scRNA-Seq data sets that all contained endothelial and mesenchymal
cells27-29, All three sets had median read counts/cell >100,000. The processed read
counts from the three studies were obtained from the Gene Expression Omnibus
(GEO) (GSE84133; GSE103322; GSE72056). For each study we used the supplied
cell type information to identify endothelial and mesenchymal-type cells.
Mesenchymal cells were labeled as “activated stellate” (GSE84133), “fibroblast”
(GSE103322), and “cancer-associated fibroblast” (GSE72056). The GSE103322 and
GSE72056 read data were generated using Smart-Seq2 on a NextSeq 500 instru-
ment®>. Raw FASTQ data sets were normalized using RSEM to calculate E;;j=
logo(TPM;j/10 + 1), where TPM;; refers to transcript-per-million for gene 7 in
sample j°°. This was done to create TP10K values to account for single cell read
depth and the addition of 1 was to limit the effect of 0s in downstream analysis®”.
GSE84133 was generated using the inDrop method and sequenced on a HiSeq 2500
instrument®”. Human islets were isolated using a modified Ricordi method, which
includes collagenase, mechanical agitation, pumping, and centrifugation®. To
make single cells, the islets were then centrifuged twice at 250 rpm and treated with
TrypLE Express before mechanical dispersion with a P100 pipette, followed by
centrifugation at 500 rpm. The two cancer sample libraries (GSE103322,
GSE72056) were generated using Smart-Seq2 and sequenced on a NextSeq 500
instrument®®. Read counts were scaled using TP10K to equalize expression level
counts to the other two studies. The calculation of the percent contamination of
endothelial cells by INS was the ratio of average normalized INS read counts per
endothelial cell divided by the normalized average read count in beta cells and
excluding the nine cells with >1000 TP10K.

We obtained the Tabula Muris read data from https://figshare.com/articles/
Robject_files_for_tissues_processed_by_Seurat/5821263 (visited on 8/8/ 19)31. We
used the R package Seurat (v3.1.1) and selected endothelial cells from nine organs/
tissues (brain, fat, heart, kidney, limb muscle, liver, lung, pancreas, trachea) based
on the annotation of the seurat object in the metadata slot cell_ontology_class
labeled “endothelial cell”®. tSNE plots were generated based on the top 6 or top 10
PCs. The average number of PCs used by Tabula Muris per tissue/organ to create
tSNE maps was 12 and the median was 10. Images of protein expression of
contaminating pancreas genes were obtained from the HPA%.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

No new sequencing data were created for this study. Sequencing data used in this study is
available through dbGap (https://www.ncbi.nlm.nih.gov/gap/): GTEx (performed with
phs000424.v7.p2; now phs000424.v8.p2); GEO (https://www.ncbi.nlm.nih.gov/gds):
Vagina FASTQ (GSE68229), Ovary FASTQ (GSE30611), Testis RNA-seq (GSE103905),
RNAAtlas (GSE120795), METSIM Study (GSE135134), Endothelial/Mesenchymal Single
Cell Studies (GSE84133, GSE103322, GSE72056); recount2 (https://lcolladotor.github.io/
project/recount2/): Heart RNA-seq (ERP009437), Adipose RNA-seq (SRP053101), Lung
RNA-seq (SRP032833), Prostate RNA-seq (SRP003611), Stomach RNA-seq
(ERP010889), Colon RNA-seq (SRP029880), HPA RNA-seq (ERP003613); or Tabula
Muris (https:/figshare.com/articles/Robject_files_for_tissues_processed_by_Seurat/
5821263) (GSE109774). All data are available from the corresponding author upon
reasonable request.

Code availability

Code for all analyses is deposited at GitHub (https://github.com/mhalushka/
gtex_contamination_code). Computational analyses were done using public R packages
except when specifically noted otherwise.
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