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Objective. Stromal cells and immune cells have important clinical significance in the microenvironment of colorectal cancer
(CRC). This study is aimed at developing a CRC gene signature on the basis of stromal and immune scores. Methods. A
cohort of CRC patients (n = 433) were adopted from The Cancer Genome Atlas (TCGA) database. Stromal/immune scores
were calculated by the ESTIMATE algorithm. Correlation between prognosis/clinical characteristics and stromal/immune
scores was assessed. Differentially expressed stromal and immune genes were identified. Their potential functions were
annotated by functional enrichment analysis. Cox regression analysis was used to develop an eight-gene risk score model.
Its predictive efficacies for 3 years, 5 years, overall survival (OS), and progression-free survival interval (PFI) were
evaluated using time-dependent receiver operating characteristic (ROC) curves. The correlation between the risk score
and the infiltering levels of six immune cells was analyzed using TIMER. The risk score was validated using an
independent dataset. Results. Immune score was in a significant association with prognosis and clinical characteristics of
CRC. 736 upregulated and two downregulated stromal and immune genes were identified, which were mainly enriched
into immune-related biological processes and pathways. An-eight gene prognostic risk score model was conducted,
consisting of CCL22, CD36, CPA3, CPT1C, KCNE4, NFATC1, RASGRP2, and SLC2A3. High risk score indicated a poor
prognosis of patients. The area under the ROC curves (AUC) s of the model for 3 years, 5 years, OS, and PFI were
0.71, 0.70, 0.73, and 0.66, respectively. Thus, the model possessed well performance for prediction of patients’ prognosis,
which was confirmed by an external dataset. Moreover, the risk score was significantly correlated with immune cell
infiltration. Conclusion. Our study conducted an immune-related prognostic risk score model, which could provide novel
targets for immunotherapy of CRC.

1. Introduction

CRC, as a heterogeneous disease, is a common cause of
cancer-related deaths worldwide [1]. TNM staging is usually
considered to be one of the main tools for CRC prognosis [2].
However, the prognosis varies greatly among CRC patients
with the same TNM stage, suggesting that the current TNM
stage does not well provide complete prognostic information

for CRC patients. Therefore, it is necessary to adopt a new
strategy to increase the predictive efficiency of prognosis
and survival outcomes of CRC patients.

Due to the considerable heterogeneity between CRCs,
determination of the optimal treatment strategy at the indi-
vidual level faces the large challenges. Thus, it is an urgent
need to conduct robust models to identify high-risk CRC
patients and to find novel molecular targets. In the tumor
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microenvironment (TME), stromal and immune cells are
involved in the development of CRC [3, 4]. Increasing evi-
dence suggests that stromal and immune cells possess critical
clinical significance for CRC. It has been reported that stro-
mal cells can contribute to transcriptome and clinical fea-
tures of CRC subtype [5]. Furthermore, stromal gene
expression can more robustly predict the prognosis of CRC
subtypes compared to epithelial tumor cells [6]. In a large
cohort of CRC patients, infiltrating immune cell data could
better predict patients’ survival than histopathological
methods [7]. Growing studies have found that infiltrating
immune cells are involved in chemoresistance [8] and metas-
tasis [9]. Thus, it is essential to further analyze the biological
characteristics of stromal and immune genes and to deter-
mine their prognostic value for CRC patients. However, there
is a lack of stromal and immune scores that can predict CRC
patients’ prognosis based on multiple clinical factors. More-
over, robust prognostic models on the basis of stromal and
immune scores are also lacking.

In this study, we established a reliable prognostic
immune-related risk score for CRC. Our results could offer
novel insights for prediction of CRC patients’ prognosis
and development of individualized immunity therapy
strategies.

2. Materials and Methods

2.1. CRC Datasets. TCGA RNA-seq data (including Counts
and FPKM data) of GDC CRC (including 469 CRC tissue
samples and 41 adjacent normal tissue samples) were down-
loaded from the xenabrowser website (https://xenabrowser
.net/). Among all CRC samples, 433 samples contained
complete clinical information, including gender, age, TNM
stage, tumor grade, microsatellite instability (MSI), and mis-
match repair (MMR). The clinical information of 433 CRC
patients is listed in Table 1. Survival information including
OS status, OS time, progression-free survival (PFS) status,
and PFS time was derived from the pan-cancer on the GDC
website (https://gdc.cancer.gov/about-data/publications/
PanCan-Clinical-2018). Furthermore, mutation data
(including BRAF, KRAS, and TP53) were from CRCMuTect.
An overview of the workflow is shown in Figure 1.

2.2. Estimation of Stromal/Immune Scores. ESTIMATE
algorithm was used to calculate the stromal/immune
scores on the basis of unique expression profiles of stro-
mal/immune cells by the ESTIMATE package in R
(https://bioinformatics.mdanderson.org/estimate/) [10].

2.3. Kaplan-Meier Survival Analysis. According to the opti-
mal cutoff of stromal/immune scores, CRC samples were
classified into high and low stromal/immune score groups.
Kaplan-Meier plot of overall survival between the two groups
was analyzed, and the results were evaluated by log-rank test.

2.4. Correlation between Clinical Characteristics and
Stromal/Immune Scores. To probe into the clinical signifi-
cance of stromal/immune scores, we analyzed the correlation
between clinical characteristics (including pathologic T,

pathologic N, pathologic M, and tumor stage) and stroma-
l/immune scores.

2.5. Differential Expression Analysis. Differential expression
analysis between high and low stromal/immune score groups
was carried out using the edgeR package in R, following
the screening criteria of ∣log2 fold change ðFCÞ ∣ >1 and
FDR ðadjusted p valueÞ < 0:05. Then, up- or downregulated
stromal/immune genes were intersected by the VennDia-
gram package in R, respectively.

2.6. Functional Enrichment Analysis. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses of differentially expressed stro-
mal and immune genes were carried out through the cluster-
Profiler package in R [11]. GO analysis contains three terms,
cellular component (CC), molecular function (MF), and bio-
logical process (BP). p value after adjustment < 0.05 was sig-
nificantly enriched.

2.7. Protein-Protein Interaction (PPI) Analysis. PPI analyses
of differentially expressed stromal and immune genes were
carried out via The Search Tool for the Retrieval of Interact-
ing Genes (STRING, https://string-db.org/; version 11) [12].
Then, the PPI network was visualized through Cytoscape
(version 3.7.2) [13].

2.8. Univariate and Multivariate Cox Regression Analyses.
Univariate cox regression analysis of differentially expressed

Table 1: Clinical characteristics of CRC patients in TCGA datasets
(overall = 433).

Characteristics Groups N (%)

Age (%)
≤60 136 (30.7)

>60 297 (68.6)

Gender (%)
Female 200 (46.2)

Male 233 (53.8)

Status (%)
Died 338 (78.1)

Alive 95 (21.9)

Pathologic T (%)

T1 11 (2.5)

T2 75 (17.3)

T3 296 (68.4)

T4 51 (11.8)

Pathologic N (%)

N0 254 (58.7)

N1 102 (23.6)

N2 77 (17.8)

Pathologic M (%)

M0 320 (75.1)

M1 61 (14.3)

Mx 45 (10.6)

Tumor stage (%)

I 73 (17.3)

II 165 (39.1)

III 123 (29.1)

IV 61 (14.5)
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stromal and immune genes was carried out via the survival
package in R. Genes with p value < 0.05 were screened for
multivariate cox regression analysis. To validate the sensitiv-
ity and accuracy of the risk score for prediction of CRC, an
ROC curve was drawn to evaluate the predictive performance
of the risk core for 3 years, 5 years, OS, and PFI using the
“tdROC” package in R. The results were visualized with the
“ggplot2” package in R. The AUC was then calculated. The
GSE39582 dataset from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov) was used
to validate the prognostic value of the risk score. The dataset
was composed of 566 CRC samples.

2.9. Immune Infiltration Analysis. The tumor-immune infil-
tration cells including B cells, CD4+T cells, CD8+T cells,
macrophages, neutrophils, and dendritic cells were estimated
via the TIMER (https://cistrome.shinyapps.io/timer/) [14].
Spearman’s correlation between the risk score and the infil-
trating levels of immune cells was evaluated through the
psych package in R. Furthermore, we also assessed the corre-
lation between the genes in the risk score andmarker genes of
immune cells. The strength of correlation followed the cri-
teria: 0:7 ≤ ∣ r ∣ ≥1 suggested a high correlation, 0:3 ≤ ∣ r ∣ <
0:7 suggested a moderate correlation, and 0 < ∣ r ∣ <0:3 sug-
gested a weak correlation [15].

3. Results

3.1. Immune Score Is in Significant Association with Prognosis
and Clinical Features of CRC Patients. According to the opti-
mal cutoff of stromal/immune scores, the CRC patients were
divided into two groups. Kaplan-Meier OS analysis results
showed that patients with high stromal score had shorter
OS time than those with low stromal score; however, it was

not statistically significant (Figure 2(a); p value = 0.057). As
depicted in Figure 2(b), we found that patients with low
immune score implied a poor prognosis (p value = 0.0094).
Furthermore, we analyzed the correlation between stroma-
l/immune scores and clinical features. As depicted in the
results, stromal score was not significantly associated with
pathologic T (Figure 3(a); p value = 0.61), pathologic N
(Figure 3(b); p value = 0.28), pathologic M (Figure 3(c);
p value = 0.63), tumor stage (Figure 3(d); p value = 0.68),
and age (Figure 3(e); p value = 0.76). Similarly, we also found
that there was no statistical significance between immune
score and pathologic T (Figure 3(f); p value = 0.88) and path-
ologic N (Figure 3(g); p value = 0.17). As expected, immune
score was in significant association with pathologic M
(Figure 3(h); p value = 0.0045) and tumor stage
(Figure 3(i); p value = 0.0093). However, no significant corre-
lation between immune score and age was found in
Figure 3(j) (p value = 0.29). Furthermore, ESTIMATE scores
were not correlated with pathologic T (Figure 3(k); p value =
0.98), pathologic N (Figure 3(l); p value = 0.73), pathologic M
(Figure 3(m); p value = 0.095), tumor stage (Figure 3(n); p
value = 0.28), and age (Figure 3(o); p value = 0.74). These
findings indicated that immune score was in significant asso-
ciation with CRC patients’ prognosis and clinical features.

3.2. Identification of Differentially Expressed Stromal and
Immune Genes for CRC.We analyzed differentially expressed
genes (DEGs) with ∣log 2FC ∣ >1 and FDR < 0:05 between the
high and low stromal/immune score groups. As volcano
plots, there were 1197 up- and 28 downregulated stromal
genes in the high stromal score group (Figure 4(a)). Further-
more, 899 immune genes were upregulated and eight
immune genes were downregulated in the high immune
score group (Figure 4(b)). Hierarchical clustering analysis
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Differentially expressed
genes (|log2FC|>1 and

FDR <0.05) 

TCGA-CRC
dataset 

An eight-gene
risk score model 

Kaplan-Meier
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Figure 1: An overview of the workflow.

3BioMed Research International

https://www.ncbi.nlm.nih.gov
https://cistrome.shinyapps.io/timer/


p = 0.057

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

84 25 5 1 0

349 111 26 10 5Group = low

Group = high

0 1000 2000 3000 4000
Time

St
ra

ta

Number at risk

Strata
Group = high
Group = low

(a)

p = 0.0094

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

316 95 17 5 2

117 41 14 6 3Group = low

Group = high

0 1000 2000 3000 4000
Time

St
ra

ta

Number at risk

Strata
Group = high
Group = low

(b)

Figure 2: The correlation between stromal/immune scores and CRC patients’ survival outcomes. (a) Stromal score. (b) Immune score. The x
-axis suggests overall survival time and y-axis represents survival probability.
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Figure 3: Continued.
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Figure 3: Continued.

6 BioMed Research International



−1000

1000

0

2000

3000

Tumor_stage_ImmuneScore

Kruskal–Wallis, p = 0.0093

Im
m

un
eS

co
re

I II III IV
Tumor_stage

Tumor_stage
I
II

III
IV

(i)

Age_ImmuneScore

Wilcoxon, p = 0.029

−1000

1000

0

2000

3000

Im
m

un
eS

co
re

L60 H60
Age

Age
L60
H60

(j)

0.50

0.75

1.00

Tu
m

or
Pu

rit
y

T1 T2 T3 T4
Pathologic_T

Pathologic_T
T1
T2

T3
T4

Pathologic_T_TumorPurity

Kruskal–Wallis, p = 0.98

(k)

0.50

0.75

1.00

Tu
m

or
Pu

rit
y

N0 N1 N2
Pathologic_N

Pathologic_N
N0
N1
N3

Pathologic_N_TumorPurity

Kruskal–Wallis, p = 0.73

(l)

Figure 3: Continued.

7BioMed Research International



results showed that both stromal DEGs and immune DEGs
could distinguish high stromal/immune score from low stro-
mal/immune score (Figures 4(c) and 4(d)). 736 genes were

upregulated both in high stromal and immune scores
(Figure 4(e)). Moreover, among eight downregulated
immune genes, two genes were also downregulated in the
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Figure 3: The correlation between stromal/immune/ESTIMATE scores and CRC patients’ clinical features. Stromal score is not associated
with (a) pathologic T (p value = 0.61), (b) pathologic N (p value = 0.28), (c) pathologic M (p value = 0.63), (d) tumor stage (p value =
0.68), and (e) age (p value = 0.76). Immune score is not correlated with (f) pathologic T (p value = 0.88) and (g) pathologic N (p value =
0.17). Immune score significantly associated with (h) pathologic M (p value = 0.0045) and (i) tumor stage (p value = 0.0093). Immune
score is not correlated with (j) age (p value = 0.29). ESTIMATE scores are not correlated with (k) pathologic T (p value = 0.98), (l)
pathologic N (p value = 0.73), (m) pathologic M (p value = 0.095), (n) tumor stage (p value = 0.28), and (o) age (p value = 0.74).
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high stromal score group (Figure 4(f)). We further performed
functional enrichment analysis of these common stromal and
immune genes. These genes were significantly correlated
with inflammatory biological processes like regulation of
inflammatory response and pathways such as cytokine-
cytokine receptor interaction and chemokine signaling
pathway (Figures 5(a)–5(d)). As shown in the PPI net-
work, COL6A2, COL6A1, COL5A2, C1S, and C1R were
the top five genes, which were considered hub genes
(Figure 5(e)).

3.3. Construction of an Eight-Gene Prognostic Signature for
CRC. Among 738 differentially expressed stromal and

immune genes, 23 genes were significantly associated with
CRC patients’ prognosis according to univariate Cox regres-
sion analysis results. Of them, 20 genes were risk factors, and
the remaining three (CCL22, CPA3, and MMP1) were pro-
tective factors (Table 2). These genes were used for multivar-
iate Cox regression analysis. Finally, an eight-gene signature
was constructed for CRC. The risk score was calculated on
the basis of the coefficients and expression values of the eight
genes. All CRC patients were divided into two groups in
accordance with the median value of risk score
(Figure 6(a)). Heat maps depicted the difference in expres-
sion patterns of the eight genes (including CD36, KCNE4,
CPT1C, SLC2A3, RASGRP2, NFATC1, CCL22, and CPA3)
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Figure 5: Functional enrichment and PPI analyses of common stromal and immune DEGs. (a) The top the BP terms of GO enrichment
analysis. (b) The top ten CC terms of GO enrichment analysis. (c) The top ten MF terms of GO enrichment analysis. (d) The top ten
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between the high and low risk scores (Figure 6(b)). As
shown in Figure 6(c), the risk score was capable of pre-
dicting CRC patients’ prognosis. High risk score implied
a poor prognosis (p value < 0.0001). Among the eight
genes, KCNE4 and CCL22 were protective factors of
CRC, while CD36, CPT1C, SLC2A3, RASGRP2, NFATC1,
and CPA3 were risk factors of CRC, as shown in the forest
diagram (Figure 6(d)).We further validated the sensitivity and
accuracy of the model. AUCs of the model for 3 years, 5 years,
OS, and PFI were 0.71, 0.70, 0.73, and 0.66, respectively
(Figures 6(e) and 6(f)). Thus, the risk score model could well
predict CRC patients’ prognosis, with high sensitivity and
accuracy. As shown in the multivariate Cox regression analy-
sis, the model and MMR could become independent factors
for CRC prognosis after adjustment of other clinical character-
istics (Table 3).

3.4. Eight Genes in the Risk Score Model Are Significantly
Associated with CRC Patients’ Prognosis. Box plot depicted
the difference in expression patterns of CCL22
(Figure 7(a)), CD36 (Figure 7(b)), CPA3 (Figure 7(c)),
CPT1C (Figure 7(d)), KCNE4 (Figure 7(e)), NFATC1
(Figure 7(f)), RASGRP2 (Figure 7(g)), and SLC2A3
(Figure 7(h)) between the high risk score and low risk score.
Among them, CCL22 (p value < 2.22e-16), CPA3 (p value <
2.22e-16), CPT1C (p value = 0.00078), KCNE4 (p value =

0.023), NFATC1 (p value = 0.00062), and SLC2A3 (p value
= 0.00081) were differentially expressed between the high
and low risk scores. Furthermore, the expression levels of
these genes between CRC samples and normal samples were
visualized (Figures 8(a)–8(g)). CD36 (p value < 2.22e-16),
CPA3 (p value < 2.22e-16), NFATC1 (p value = 9.1e-08),
and RASGRP2 (p value < 2.22e-16) were highly
expressed and SLC2A3 (p value = 0.0015) was lowly
expressed in tumor samples. As shown in Figures 9(a)–
9(h), low expression of CCL22 (p value = 0.0047) and
CPA3 (p value = 0.035) indicated shorter OS time than
high expression. Moreover, we found that highly expressed
CPT1C (p value = 0.0017), KCNE4 (p value = 0.002), and
SLC2A3 (p value = 0.0048) was significantly correlated with
poor PFS (Figures 9(i)–9(p)).

3.5. The Eight-Gene Model Is in Significant Correlation with
Immune Cell Infiltration. The correlation between the model
and the infiltrating levels of six immune cells was analyzed.
We found that the model was in significant association with
the infiltrating levels of six immune cells, including B cell
(Figure 10(a); R = 0:13, p value = 0.0064) and CD4+T cell
(Figure 10(b); R = 0:21, p value=4.3e-06). However, no sig-
nificant correlation between the model and CD8+T cell was
found in Figure 10(c) (R = 0:045, p value = 0.34). Further-
more, there were distinct correlations between the model
and dendritic cell (Figure 10(d); R = 0:12, p value = 0.0072),
macrophage (Figure 10(e); R = 0:19, p value = 3.3e-05), neu-
trophil (Figure 10(f); R = 0:18, p value = 9.4e-05). We also
found that the expression levels of the eight genes in the
model were significantly correlated with the infiltrating levels
of six immune cells, including CCL22 (Figure 11(a)), CD36
(Figure 11(b)), CPA3 (Figure 11(c)), CPT1C (Figure 11(d)),
KCNE4 (Figure 11(e)), NFATC1 (Figure 11(f)), RASGRP2
(Figure 11(g)), and SLC2A3 (Figure 11(h)). Moreover, the
eight genes were in significant association with markers of
immune cells (Supplementary Table 1). These results
suggested that the model could be in association with
immune cell infiltration.

3.6. Validation of the Risk Score Using an Independent
Dataset. Based on 566 CRC samples from the GSE39582
dataset, the prognostic value of the risk score was validated.
The risk score distribution and survival status of CRC
patients are shown in Figure 12(a). Heat maps showed
the expression differences of CD36, KCNE4, CPT1C,
SLC2A3, RASGRP2, NFATC1, CCL22, and CPA3 between
the high and low risk scores (Figure 12(b)). As expected,
CRC patients with high risk score had a poorer prognosis
than those with low risk score (Figure 12(c)). Among the
eight genes, CD36, NFATC1, and CCL22 were signifi-
cantly associated with prognosis of CRC patients
(Figure 12(d)). AUCs of the model for 3 years and 5 years
were 0.65 and 0.66, respectively (Figure 12(e)), indicating
that the risk score could well predict CRC patients’ prog-
nosis. The expression levels of CCL22 (Figure 13(a)),
CD36 (Figure 13(b)), CPA3 (Figure 13(c)), CPT1C
(Figure 13(d)), KCNE4 (Figure 13(e)), NFATC1
(Figure 13(f)), RASGRP2 (Figure 13(g)), and SLC2A3

Table 2: Univariate Cox regression analysis results of 23
differentially expressed stromal and immune genes.

Variables HR Lower 95% CI Upper 95% CI p value

CD36 1.381 1.046 1.823 0.02284

KCNE4 1.346 1.004 1.805 0.047303

VEGFC 1.39 1.011 1.912 0.042907

PDE1B 2.242 1.361 3.693 0.001518

BGN 1.166 1.003 1.355 0.046135

CPT1C 2.561 1.476 4.446 8.26E-04

GPX3 1.231 1.03 1.471 0.022285

NGFR 1.344 1.014 1.779 0.039388

SERPINE1 1.173 1.01 1.362 0.037066

CHST1 1.448 1.02 2.055 0.038579

FBLN7 2.648 1.003 6.994 0.049317

KCNJ8 1.372 1.003 1.876 0.047805

SLC2A3 1.225 1.007 1.49 0.041957

CD72 1.714 1.127 2.606 0.011724

APLP1 1.631 1.031 2.58 0.036535

SIGLEC1 1.348 1.019 1.783 0.036725

RASGRP2 1.641 1.044 2.579 0.031925

SPHK1 1.218 1.002 1.481 0.048069

NFATC1 1.674 1.157 2.421 0.006228

LRRN2 1.653 1.139 2.398 0.008126

CCL22 0.686 0.51 0.923 0.012756

CPA3 0.81 0.68 0.966 0.019315

MMP1 0.902 0.816 0.996 0.042396
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(Figure 13(h)) between the high risk score and low risk
score were validated based on the 566 CRC samples. Uni-
variate Cox regression analysis results showed that age,
KRAS mutation, pathologic T, pathologic N, pathologic
M, tumor stage, and risk score were notably associated
with CRC patients’ prognosis. After multivariate Cox

regression analysis, we found that age, KRAS mutation,
pathologic M, and risk score could be independent prog-
nostic factors for CRC (Table 4).

3.7. The Eight Genes in the Risk Score Are Distinctly
Correlated with Molecular Markers of CRC Prognosis. In
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Figure 6: Construction of an eight-gene prognostic signature for CRC. (a) Risk score distribution and survival status. (b) Heat maps showing
the expression patterns of the eight genes between high and low risk score. (c) Kaplan-Meier survival analysis of the model. (d) Forest plot of
the eight genes for CRC. (e, f) ROC curve of the model for 3-year, 5-year, OS, and PFI.

Table 3: Univariate and multivariate Cox regression analyses in a TCGA-CRC cohort.

Characteristics
Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Stromal score 1 (1-1) 0.653 NA NA

Immune score 1 (1-1) 0.941 NA NA

Age 1.396 (0.878-2.22) 0.158 NA NA

Gender 1.127 (0.751-1.692) 0.564 NA NA

Tumor stage 3.064 (1.986-4.726) <0.0001 3.320 (0.870-12.640) 0.079

Pathologic T 3.204 (1.398-7.345) 0.006 4.914 (0) 0.996

Pathologic N 2.581 (1.705-3.909) <0.0001 0.920 (0.290-2.890) 0.880

Pathologic M 3.519 (2.312-5.356) <0.0001 1.620 (0.84-3.13) 0.151

MMR 0.181 (0.044-0.751) 0.019 0.070 (0.010-0.500) 0.009

BRAF 1.108 (0.620-1.980) 0.729 NA NA

KRAS 0.912 (0.580-1.434) 0.691 NA NA

TP53 1.461 (0.884-2.417) 0.139 NA NA

MSI 0.907 (0.522-1.575) 0.728 NA NA

Risk score 2.718 (2.063-3.581) <0.0001 2.420 (1.590-3.700) <0.0001
NA: not available.
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Figure 14(a), CCL22 was significantly correlated with BRAF
mutation (p value = 0.014) and KRAS mutation (p value =
0.041). For CD36, there was a distinct correlation between
its expression and KRAS mutation (p value = 0.00034) and
MMR (p value = 0.025) in Figure 14(b). CPA3 (p value =
0.0066; Figure 14(c)) and CPT1C (p value = 0.005;
Figure 14(d)) had higher expression levels in KRAS muta-
tion. As shown in Figure 14(e), KCNE4 expression was in sig-
nificant correlation with BRAF mutation (p value = 0.0014),

KRAS mutation (p value = 0.049), and MSI (p value =
0.05). NFATC1 expression was prominently correlated with
BRAF mutation (p value = 2.2e-11), KRAS mutation (p value
= 0.00051) and MSI (p value = 1.1e-13) in Figure 14(f). In
Figure 14(g), RASGRP2 expression was significantly
decreased in KRAS mutation. For SLC2A3, we found that
there was a distinct correlation between its expression and
BRAF mutation (p value = 0.0011) and MSI (p value =
0.00013) in Figure 14(h).
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Figure 7: Box plots depicting the expression patterns of the eight genes in the risk score model between high and low risk score. (a) CCL22.
(b) CD36. (c) CPA3. (d) CPT1C. (e) KCNE4. (f) NFATC1. (g) RASGRP2. (h) SLC2A3.
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4. Discussion

In TME, stromal and immune cells are involved in the devel-
opment of CRC. In this study; using the ESTIMATE algo-
rithm, stromal and immune scores were calculated. A
significant correlation between the immune score and CRC
patients’ prognosis was observed. Both the stromal score

and immune score were in significant correlation with clin-
ical characteristics of CRC patients. Furthermore, we iden-
tified differentially expressed stromal and immune genes
for CRC. Functional enrichment analysis results suggested
that these genes were positively related with immune-
related pathways like cytokine-cytokine receptor interaction
[16, 17] and chemokine signaling pathway [18, 19].
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Figure 8: Box plots showing the expression patterns of the eight genes in the risk score model between CRC samples and normal samples. (a)
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Figure 9: Kaplan-Meier plot of OS and PFS for the eight genes in the risk score model between high and low risk score. Kaplan-Meier OS
results for (a) CCL22, (b) CD36, (c) CPA3, (d) CPT1C, (e) KCNE4, (f) NFATC1, (g) RASGRP2, and (h) SLC2A3. Kaplan-Meier PFS
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Figure 10: The correlation between the eight-gene risk score and immune cell levels. (a) B cell. (b) CD4+T cell. (c) CD8+T cell. (d) Dendritic
cell. (e) Macrophage. (f) Neutrophil.
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Individual prognosis for CRC patients varies widely.
Individual genes often cannot accurately predict the prog-
nosis of patients with CRC. Genes in most prognostic risk
scores are screened via differential expression analyses
[20–22]. Yet, there are few prognostic models associated
with CRC immune infiltration. Therefore, in this study,
we selected eight differentially expressed stromal and
immune genes related to prognosis for constructing a risk
score model. However, focusing only on CRC-related
immune-related genes may limit its clinical value. For this
reason, through multivariate regression analysis, after
adjustment of the clinical characteristics of CRC, we
assessed the association between the risk score and CRC
prognosis. The results showed that the model may become
an independent prognostic factor for CRC. Our risk score
exhibited well efficiency in predicting CRC patients’ prog-
nosis. Therefore, the risk score model possessed potential
prognostic value, which was confirmed using an indepen-
dent dataset. Among the eight genes in the model, both
in the discovery and independent datasets, CCL22 was a
protective factor of CRC, while CD36 and NFATC1 were
two risk factors of CRC. However, other genes exhibited
inconsistent results in the two datasets. This is partly due
to the heterogeneity of the samples in the two datasets.
Patients in the same pathological stage have different
prognosis. Both in the discovery and independent datasets,
CCL22 and CPA3 were lowly expressed and KCNE4,
NFATC1, and SLC2A3 were highly expressed in the
high-risk samples compared to the low-risk samples. How-
ever, there were inconsistent results about other genes
between the high- and low-risk samples in the two data-
sets, partly due to the heterogeneity of the samples, differ-
ent sequencing platforms, different background correction
and normalization methods and so on. Thus, it is unreli-
able to predict CRC patients’ prognosis by an individual

gene. However, our risk score composed of these genes
may accurately suggest the patient’s prognosis.

As described in a previous study, high CCL22 expression
was found in CRC tissues [23]. Recent study has found that
CCL22 secreted by M2 macrophages could mediate CRC 5-
FU-mediated chemoresistance [24]. Furthermore, it has been
reported that CCL22 was in significant correlation with the
infiltrating levels of different T cell subsets for CRC [25].
Our results showed that CD36 was significantly downregu-
lated in CRC tissues compared to normal tissues, which
was validated in vitro and in vivo [26]. Genome-wide
DNA methylation analysis revealed that hypermethylation
of CD36 could contribute to its low expression [27]. Fang
et al. found that CD36 expression gradually decreased from
adenoma to cancer and CD36 loss implied a poor prognosis
in patients with CRC [28]. NFATC1 was deregulated in
CRC tissues, which was consistent with previous findings
[29]. In vitro, its overexpression significantly promoted
CRC cell invasion and metastasis [30]. Kumar et al. reported
that NFATC1 indicated poor survival outcomes of CRC
patients [31]. High SLC2A3 expression was observed in
CRC tissues and its high expression indicated a poor prog-
nosis, consistently with previous research [32, 33]. Further-
more, downregulated CPA3 and RASGRP2 and upregulated
CPT1C and KCNE4 were found in CRC tissues, which
implied poor prognosis.

As for immune cell infiltration, we found that the eight
genes in the risk score model were moderately correlated
with the infiltering levels of CD4+T cell, dendritic cell, mac-
rophage, and neutrophil. It has been confirmed that TME
affects the efficacy of immunotherapy, and immune cells in
TME possess predictive value for immunotherapy treatment
[34–36]. Increasing genes have been shown to participate in
the regulation of immune cells [37–40]. Therefore, our risk
score model could possess potential value to predict CRC
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Figure 11: The correlation between the eight genes in the risk score model and immune cell levels. (a) CCL22. (b) CD36. (c) CPA3. (d)
CPT1C. (e) KCNE4. (f) NFATC1. (g) RASGRP2. (h) SLC2A3.
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patients’ prognosis, and the eight genes could become
promising immunotherapeutic targets, which deserve fur-
ther study.

Our correlation analysis results confirmed that the eight
genes in the risk score were distinctly correlated with molec-
ular markers of CRC prognosis. However, our study has sev-
eral limitations. First, our retrospective study limited the
application of this risk score. Second, the heterogeneity of

the immune microenvironment would inevitably contribute
to result bias. Therefore, it is necessary to validate our find-
ings in a prospective clinical study.

5. Conclusion

In this study, we conducted an immune-related prognostic
model for CRC on the basis of stromal and immune scores.
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Figure 13: The expression patterns of the eight genes in the risk score model between high and low risk score were validated using an
independent dataset. (a) CCL22. (b) CD36. (c) CPA3. (d) CPT1C. (e) KCNE4. (f) NFATC1. (g) RASGRP2. (h) SLC2A3.
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The model had well predictive efficacy for CRC patients’
prognosis. Our findings could provide novel biomarkers for
predicting the prognosis of CRC patients and developing
individualized immunity therapy strategies.
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Figure 14: The eight genes in the risk score are distinctly correlated with molecular markers of CRC prognosis including BRAF mutation,
KRAS mutation, MMR, MSI, and TP53. (a) CCL22. (b) CD36. (c) CPA3. (d) CPT1C. (e) KCNE4. (f) NFATC1. (g) RASGRP2. (h) SLC2A3.
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ROC: Receiver operating characteristic
OS: Overall survival
PFI: Progression-free survival interval
AUC: Area under the ROC
TME: Tumor microenvironment
FC: Fold change
GO: Gene Ontology
KEGG: Kyoto Encyclopedia of Genes and Genomes
CC: Cellular component
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BP: Biological process
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STRING: The Search Tool for the Retrieval of Interacting

Genes.
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