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ABSTRACT

Lack of reproducibility in gene expression stud-
ies is a serious issue being actively addressed by
the biomedical research community. Besides estab-
lished factors such as batch effects and incorrect
sample annotations, we recently reported tissue het-
erogeneity, a consequence of unintended profiling of
cells of other origins than the tissue of interest, as
a source of variance. Although tissue heterogeneity
exacerbates irreproducibility, its prevalence in gene
expression data remains unknown. Here, we sys-
tematically analyse 2 667 publicly available gene ex-
pression datasets covering 76 576 samples. Using
two independent data compendia and a reproducible,
open-source software pipeline, we find a prevalence
of tissue heterogeneity in gene expression data that
affects between 1 and 40% of the samples, depending
on the tissue type. We discover both cases of severe
heterogeneity, which may be caused by mistakes in
annotation or sample handling, and cases of mod-
erate heterogeneity, which are likely caused by tis-
sue infiltration or sample contamination. Our analy-
sis establishes tissue heterogeneity as a widespread
phenomenon in publicly available gene expression
datasets, which constitutes an important source of
variance that should not be ignored. Consequently,
we advocate the application of quality-control meth-
ods such as BioQC to detect tissue heterogeneity
prior to mining or analysing gene expression data.

INTRODUCTION

The genome-research community has witnessed the expo-
nential growth of gene expression studies in the last two

decades, first with microarray (1) and nowadays with RNA-
seq datasets (2). Both the huge volume of data and wide
coverage of biological samples in diverse contexts, such as
genetic perturbation, disease progression, pharmaceutical
intervention, etc. make publicly available gene expression
studies an important resource for biomedical research. Sys-
tematic mining of existing data and interrogation of new
data can reveal molecular foundations of pathology and
disease (3), identify novel therapeutic targets (4), enable
preclinical screening tools for drug safety (5,6), highlight
mode-of-action of drug candidates (7), allow data-driven
prioritization of drug screening hits (8), and enrich and
stratify patients as well as predict their response to thera-
peutics (9). In short, gene expression studies are indispens-
able for both disease understanding and drug discovery in
biomedical research.

However, the power of gene expression studies in trans-
lating molecular biology into medicine is impeded by a lack
of reproducibility (10,11). Well-known causes of irrepro-
ducibility include batch effects, lack of annotation, varia-
tion of biological samples, profiling protocols or data anal-
ysis procedures, mistakes in sample handling or annota-
tion, and in rare cases intentional data manipulation. Sev-
eral studies have scrutinized publicly available gene expres-
sion datasets and demonstrated the prevalence of impact by
these factors, especially batch effects (12) and sample mis-
annotation, which is reported to affect at least one-third
of samples even if only the donor sex label is considered
(13). In contrast, the community has yet to assess the preva-
lence of tissue heterogeneity, i.e. the unintended profiling
of cells of other origins than the tissue of interest (14,15).
Tissue heterogeneity can be caused by intrinsic characteris-
tics of the sample to be profiled, such as the tumour mi-
croenvironment or immune cell infiltration into solid or-
gans, or by extrinsic factors such as imperfect dissection or
contamination of samples. Ignoring tissue heterogeneity re-
duces statistical power of data analysis and can, in the worst
case, invalidate the conclusions of a study. In particular in
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oncology, this is a well recognized problem that is com-
monly addressed by estimating tumour purity (16). On the
other hand, cell type heterogeneity can be leveraged as a
source of information in immune cell deconvolution to in-
form about the state of the tumour microenvironment and
to guide immunotherapy (17). Beyond tumour samples,
Nieuwenhuis et al. identified a cluster of pancreas-specific
genes that were expressed in tissues other than pancreas not
only in GTEx but also in other datasets, highlighting that
tissue contamination is an important issue affecting impor-
tant reference datasets commonly used by the community
(15).

While both the causes and consequences of tissue hetero-
geneity have been established, its prevalence in public gene
expression data remains unknown. A systematic analysis of
tissue heterogeneity with respect to cross-tissue contamina-
tion is missing. The outcome of such an analysis would both
benefit retrospective data analysis and integration efforts
as well as inform the design of analysis protocols of gene
expression data generated in the future. To fill this critical
gap, we systematically study two large public gene expres-
sion repositories, Gene Expression Omnibus (GEO) (18)
and ARCHS4 (19), using the previously reported R package
BioQC, and a reproducible, open-source Snakemake (20)
workflow employing a new Python package pygenesig de-
veloped for this study. Focusing on a subset of nine tissues
with rigorously validated gene expression signatures and 2
667 studies that fulfilled a set of stringent filtering criteria,
we find that tissue-heterogeneity is widespread, affecting at
least 5.8% samples. The prevalence varies by tissue type in
both microarray and RNA-seq datasets independently of
the time when the study was deposited in the public domain.
Our results urge all researchers dealing with gene expression
studies to consider tissue heterogeneity as a confounder in
data analysis and to take actions to reduce or avoid its im-
pact on reproducibility.

MATERIALS AND METHODS

Compilation and cross-validation of tissue signatures

BioQC provides 155 sets of tissue-enriched genes (tissue
signatures hereafter) derived from four large-scale tissue
gene expression datasets (14). Even though the authors have
shown that the signatures are biologically meaningful, they
did not validate them using an independent dataset. Since
the reliability of signatures is crucial for this study, we devel-
oped an open-source software package, pygenesig, which fa-
cilitates the creation and validation of tissue signatures. We
applied pygenesig to transcriptomics data from the GTEx
project (21) (v6) which contains 11 984 samples from 32
tissues and validated the resulting signatures on the GNF
Mouse Gene Atlas V3 (22). We identified a set of nine ref-
erence tissue signatures that reliably identify their tissue of
origin, regardless of experimental platform and species af-
ter rigorous validation. The process of signature generation
and validation is outlined in Figure 1C and detailed in Sec-
tion S2 of Supplementary Data.

Gene expression data corpus

We retrieved annotation and gene expression data from
GEO on 7 December 2016 using GEOmetadb (23) and

GEOquery (24). We downloaded consistently processed
RNA-seq gene expression data including annotations as bi-
nary RData objects from the ARCHS4 project website (19)
on 10 February 2020 (version 8.0). Data filtering and qual-
ity control are summarized in Figure 1A,B and described in
detail in Section S3 of Supplementary Data.

Tissue annotations in GEO and ARCHS4 are inconsis-
tent. Therefore, we manually mapped tissue descriptions to
a controlled vocabulary, thereby assigning 120 of the 155
signatures provided by BioQC and the nine reference signa-
tures to their corresponding tissues (Supplementary Table
S1).

Detecting tissue heterogeneity with BioQC in the corpus

BioQC performs a Wilcoxon–Mann–Whitney statistical
test for enrichment of a certain signature on a per-sample
basis. We ran BioQC on all samples from GEO and
ARCHS4 using the 9 reference signatures and 120 sig-
natures provided by BioQC, which yielded 9 878 304
(sample, signature, P-value) pairs. As signatures can be
correlated (e.g. because they describe developmentally or
physiologically related tissues), we exclude correlated sig-
nature pairs so that they do not inflate false-discovery
proportions.

The detection process consists of five steps as illustrated
in Figure 1D and in Section S4 of Supplementary Data.
A given sample s annotated as tissue t is tested for enrich-
ment with the query-signature kquery resulting in a P-value
pquery. Let kref be the reference signature associated with
tissue t and pref the P-value of testing s for enrichment of
kref. Let τ be the false-discovery rate (FDR) threshold. (i)
If the Benjamini–Hochberg (BH)-adjusted pquery ≥ τ,we la-
bel s as not heterogeneous, else continue. (ii) We fit a ro-
bust linear model using rlm from the R package MASS of
|log10(pquery)| against |log10(pref)| for all samples annotated
as t. (iii) If the slope of the linear model is ≥ 0.01, we ex-
clude the pair of signatures from the results. If the slope is
< 0.01 and the FDR-adjusted pquery < τ , we consider the
sample as heterogeneous. Tissue pairs for which signatures
are excluded are marked as such in Figure 2B. (iv) We define
heterogeneity as severe, if additionally the unadjusted pref >
0.05. (v) Finally, we compute the fraction of heterogeneous
samples by dividing the number of samples that have at least
one signature passing the above criteria by the total num-
ber of samples per tissue. Confidence intervals have been
derived by bootstrapping (n=1 000) using the R package
boot.

Documentation and the pipeline

We implemented and documented the analysis using the R
package bookdown (25). The analysis is wrapped into a re-
producible pipeline built on Snakemake (20).

RESULTS

We designed and implemented an analysis workflow to esti-
mate the prevalence of tissue heterogeneity in publicly avail-
able gene expression datasets. We evaluate the enrichment of
120 query signatures from the R package BioQC in a selec-
tion of well annotated gene expression studies in the GEO
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Figure 1. (A and B) Selection of gene expression studies from (A) GEO and (B) ARCHS4. (C) We defined two sets of tissue signatures for the analysis: (i)
we obtained 120 tissue query signatures from the BioQC package and (ii) generated 9 high-quality reference signatures from the GTEx and GNF Mouse
GeneAtlas V3 datasets. (D) Schematic illustration of our approach to detecting heterogeneous samples. Since query signatures may be imperfect and
correlated with the sample’s tissue of origin, we excluded signatures that were correlated with the reference signature (robust linear model slope ≥ 0.01).
We defined a sample as heterogeneous, if a query-signature was detected at an FDR < 0.01. We define a sample as severely heterogeneous if additionally,
the reference signature was not detected at a P-value of 0.05. Abbreviations: CV, controlled vocabulary; FDR: false-discovery rate.

(18) and ARCHS4 (19) repositories (2 667 studies, 76 576
samples, Figure 1A,B). These query signatures are tissue-
sensitive, i.e. they recognize their target tissue with few false
negatives but often not tissue-specific, i.e. they report false
positives due to the expression of the signature genes in
other, physiologically similar tissues. To account for this,
we propose a set of nine reference signatures using GTEx
data (21) and validate them using the GNF MouseAtlas V3
dataset (22) to show that they are robust even across species
(Figure 1C). For each tissue, we exclude all query signatures
that are correlated with the reference signature and consider
a sample heterogeneous if one of the remaining signatures
is detected at an FDR < 0.01 (Figure 1D). We further dis-
tinguish between severe and moderate tissue heterogeneity.
Empirically, we define moderate heterogeneity as samples
that are significantly enriched for a signature that we do not
expect to be present, and severe heterogeneity as samples
in which, in addition, the expected signature of the anno-
tated tissue is not detected. While severe heterogeneity of-
ten suggests mistakes in sample handling and annotation,
moderate heterogeneity suggests contamination or infiltra-
tion with blood or immune cells.

We find moderate tissue heterogeneity in about 5.8% of
all samples and severe heterogeneity in 1.6% of samples.
The proportion of samples affected by moderate hetero-
geneity varies by the organ and tissue being profiled, with
skin (40%) and pancreas (30%) samples affected most fre-
quently and blood samples affected least frequently (1.4%)
(Figure 2A), which intuitively agrees with the complexity of
the respective sampling procedures.

In general, heterogeneity was higher in ARCHS4 than
in GEO, which can likely be attributed to the higher sen-
sitivity of sequencing compared to microarrays. However,
the overall patterns (highest heterogeneity in pancreas and
skin) are comparable between the platforms, suggesting that
the issue of sample heterogeneity is platform-independent.
We further observe that heterogeneity is not equally dis-
tributed across studies. While most studies (84.3% in GEO
and 73.8% in ARCHS4) contain no samples with detected
heterogeneity, a considerable proportion (5.9% GEO, 7.3%
ARCHS4) contains ‘severely heterogeneous’ samples (Sup-
plemental Figure S8). Using a linear model, we conclude
that tissue heterogeneity is not associated with the year of
the study, suggesting that this issue exists since the early
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Figure 2. Tissue heterogeneity in gene expression studies from GEO and ARCHS4. (A) Fraction of heterogeneous samples per tissue. Error bars show 95%
confidence intervals derived by bootstrapping (n=1 000). (B) Confusion matrix of tissues with absolute counts. Reference tissue refers to the annotated
tissue, detected signature to other tissue signatures that were detected in these samples by BioQC. For tiles boxed with dashed lines, one or more query
signatures have been removed due to correlation with the reference signature.
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days of transcriptome profiling and persists (Supplemen-
tary Figure S9).

A closer investigation of the source of tissue heterogene-
ity reveals additional insights (Figure 2B). First, enrichment
of blood signatures in other tissues and organs is one of
the most frequent forms of severe heterogeneity. Multiple
causes are possible: it can be caused by an increased in-
flow and/or decreased outflow of blood which sums as a
net increase of blood volume, or the activation and prolif-
eration of tissue-resident leukocytes, for instance. Besides
heterogeneity related with blood, many instances of tissue
heterogeneity are caused by proximal tissues, which could
be explained by imperfect separation of nearby organs. For
example, the liver and pancreas are proximal organs con-
nected by the common bile duct, which may explain why
many cases of tissue heterogeneity in pancreatic tissue are
caused by liver-specific tissue signatures. Finally, tissue het-
erogeneity involving distal solid tissues also occurs, which
may indicate contamination during sample preparation.
Considering that the latter two aspects represent technical
biases, such samples should be excluded in analysis to in-
crease statistical robustness and to avoid arriving at erro-
neous conclusions.

DISCUSSIONS AND CONCLUSIONS

Due to a lack of annotation, only a small fraction of GEO
microarray datasets (12.9%) could be used for our analy-
sis. In particular a lack of tissue annotation disqualified the
majority (61%) of the datasets. Since BioQC depends on the
ranking of genes within a sample, per-gene normalized ex-
pression profiles in the GEO repository could also not be
evaluated. We find it especially problematic that no stan-
dardized mapping from probe id to gene symbols was avail-
able for many of the remaining samples. The low percent-
age of usable samples begs the question if our findings gen-
eralize to the entire sample population in GEO. However,
many of the trends we observed in GEO (e.g. that skin and
pancreas exhibit the highest level of heterogeneity) are also
found in ARCHS4, which collects data of different samples
acquired with an entirely different technological platform.

We also note that the issue of tissue heterogeneity is spe-
cific to bulk gene expression data and does not affect single-
cell RNA-seq studies, as contaminating cells form an inde-
pendent cluster of cells which can either be ignored or incor-
porated in data analysis. In fact, single-cell RNA-seq offers
the chance to study biological sources of tissue heterogene-
ity at a previously unimaginable depth. However, due to its
lower cost and simpler sampling procedure, the majority of
expression profiles will still be sequenced in bulk in the fore-
seeable future. In addition, many studies strive to use in-
formation derived from bulk-sequenced samples to inform
both experimental design and analysis of single-cell studies.
Hence, identifying samples affected by tissue heterogeneity
will remain an important aspect of data analysis. Standard
methods, such as principal component analysis (PCA) can
identify heterogeneous samples as outliers. Using signature-
based methods such as BioQC has the additional benefit of
explaining the source of variance, and even works with sin-
gle samples, or when all samples are affected.

A limitation of the study is that we focused only on
bulk gene expression datasets based on mRNA profil-
ing using either microarray or Illumina sequencing. High-
throughput gene expression data derived from other modal-
ities, such as third-generation sequencing techniques and
mass spectrometry-based proteomics, usually require many
cells as input and hence may suffer from tissue heterogene-
ity as well. A recent study by Yoo et al. (26), for instance,
reported a community effort to address sample mislabelling
issues in proteogenomic and multi-omics studies, and found
7.5% and 3.5% mislabelled samples in two datasets. To our
best knowledge, tissue heterogeneity has not been addressed
on a large scale by such a community effort. Future studies
are warranted to explore the landscape of tissue heterogene-
ity in data generated from alternative gene-expression pro-
filing techniques.

Detecting and modelling tissue heterogeneity is of partic-
ular importance in systems medicine studies, where tissue-
specific signals can mask disease-specific signals, thus pre-
venting the successful detection of disease mechanisms, pa-
tient stratification, or drug target identification and valida-
tion. Based on the prevalence of tissue heterogeneity in gene
expression data, we advocate the routine use of methods
such as BioQC to assess tissue heterogeneity and to ensure
reproducibility of gene expression studies.

DATA AVAILABILITY

The reference signatures and raw results table including
all accession numbers tested is available from https://doi.
org/10.5281/zenodo.4298774. The source code to repro-
duce the analysis can be found at https://github.com/grst/
bioqc geo. Pygenesig is available from https://github.com/
grst/pygenesig. BioQC is available from R/Bioconductor
and the documentation is available at https://accio.github.
io/BioQC/.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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