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Abstract

Background: Comparative studies of the associations between different infectious diseases and climate variability, such as
the El Niño-Southern Oscillation, are lacking. Diarrheal illnesses, particularly cholera and shigellosis, provide an important
opportunity to apply a comparative approach. Cholera and shigellosis have significant global mortality and morbidity
burden, pronounced differences in transmission pathways and pathogen ecologies, and there is an established climate link
with cholera. In particular, the specific ecology of Vibrio cholerae is often invoked to explain the sensitivity of that disease to
climate.

Methods and Findings: The extensive surveillance data of the International Center for Diarrheal Disease Research,
Bangladesh are used here to revisit the known associations between cholera and climate, and to address their similarity to
previously unexplored patterns for shigellosis. Monthly case data for both the city of Dhaka and a rural area known as
Matlab are analyzed with respect to their association with El Niño and flooding. Linear correlations are examined between
flooding and cumulative cases, as well as for flooding and El Niño. Rank-correlation maps are also computed between
disease cases in the post-monsoon epidemic season and sea surface temperatures in the Pacific. Similar climate associations
are found for both diseases and both locations. Increased cases follow increased monsoon flooding and increased sea
surface temperatures in the preceding winter corresponding to an El Niño event.

Conclusions: The similarity in association patterns suggests a systemic breakdown in population health with changing
environmental conditions, in which climate variability acts primarily through increasing the exposure risk of the human
population. We discuss these results in the context of the on-going debate on the relative importance of the environmental
reservoir vs. secondary transmission, as well as the implications for the use of El Niño as an early indicator of flooding and
enteric disease risk.
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Introduction

Comparative studies of associations between climate variability

and human health across different infectious diseases are largely

lacking. Potential climate influences are typically addressed only

for specific infections and locations for which sufficiently long

retrospective records exist. Such comparison studies, however, are

instrumental in identifying systemic breakdowns in human health

at the population level that do not depend on specific pathogen

ecologies or epidemiology. Similarities in responses to climate

forcing instead signal common mechanisms and, in so doing,

identify key pathways of action for intervention. In addition,

associations between disease risk and slowly varying features of the

climate system allow for the possibility of developing early warning

systems for disease risk in the affected areas.
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Diarrheal illnesses provide one important disease class for the

application of a comparative approach. Cholera, arguably the

paradigmatic water-borne diarrheal disease, is caused by the

bacteria Vibrio cholerae and has been responsible for numerous

pandemics throughout history, including the current era [1].

Infection generally results from ingesting water contaminated with

the bacteria, and left untreated leads to mortality rates as high as

50% [2]. Global mortality rates for cholera are estimated at ,3%

[3]. Mortality for shigellosis, another widely spread diarrheal

illness that is caused by bacteria of the Shigella genus can reach 5–

15% for some strains in areas with poor medical care [4–5]. The

infectious dose for shigellosis is also substantially lower than for

cholera and the disease is responsible for significant mortality and

morbidity in the developing world [6]. Given their global mortality

and morbidity burden, the potentially pronounced differences in

transmission pathways and pathogen ecologies, and the existing

evidence for a role of climate forcing on cholera, cholera and

shigellosis represent excellent candidates for a comparative study

on their associations with climate.

Endemic cholera has been prominent in studies on the influence

of climate variability on diarrheal diseases. In particular, the El

Niño-Southern Oscillation (ENSO), widely recognized as one of

the most significant modes of interannual climate variability, has

been shown to affect the severity of seasonal outbreaks in

Bangladesh [7–12]. Favorable conditions for increased cholera

risk in the fall have been shown to be associated with positive

ENSO (El Niño) events in the preceding winter, thus establishing

ENSO as a potential early-warning indicator for Bangladesh

cholera outbreaks. At the local level increased rainfall and

associated flooding have also been shown to increase fall cholera

cases, and represent the means by which the remote influence of

ENSO in transmitted to Bangladesh [11], [13].

The particular attention paid to cholera is due in no small part

to the extended record of cases available for Bangladesh, advances

on the microbial ecology of Vibrio cholerae, and the recognition

that the pathogen survives outside the human host in aquatic

environments such as estuaries and brackish water [14–16].

Climate conditions favoring the population growth or survival of

the pathogen would exacerbate transmission through environ-

mental aquatic reservoirs. This paradigm has led to an emphasis

on mechanisms that are pathogen specific in mediating the effect

of climate variability. An alternative, although not necessarily

exclusive view, is one in which the vulnerability of the human host

plays a key role and at seasonal and interannual time scales is

modified by anomalous climate conditions such as extreme floods

[17–19].

The relationship between water-borne bacterial diseases in

Bangladesh and the monsoon rains is of particular interest, given

that Bangladesh lies at the confluence of three major rivers

(Ganges/Padma, Brahmaputra, Megna) in an extensive estuarine

region that is considered the hearth of cholera. Bangladesh is also

a low-lying country that experiences some of the highest rainfall

totals in the Indian monsoon region and is inundated to a greater

or lesser degree on an annual basis. While a certain degree of

flooding is necessary to maintain the fertility of the delta system

and associated agriculture, major flooding events have resulted in

serious loss of life and destruction of infrastructure throughout

Bangladesh’s history [20]. Given the evidence linking flooding and

post-monsoon cholera outbreaks [17–18], [22–24], it is of

particular interest to consider what role the severity of annual

flooding might play for shigellosis in that same region and season,

particularly in the context of potential remote forcing by ENSO.

The extensive surveillance program of the International Center

for Diarrheal Diseases Research, Bangladesh (icddr,b) makes it

possible for us to revisit here the known associations between

cholera and climate variability, and to specifically inquire about

the possibility of similar but unknown patterns for shigellosis. In

the results presented below, we show that there are indeed similar

associations between cholera and shigellosis cases in Bangladesh

and flooding, as well as for cholera and shigellosis cases and sea

surface temperatures in the tropical Pacific. These similar

associations have significant implications for the mechanisms

behind the influence of climate on enteric disease outbreaks in

Bangladesh, as well as for the use of ENSO as an early warning

indicator of outbreak risk.

We indeed find a strong similarity of association patterns for

post-monsoon outbreaks, whose implications for the mechanisms

behind the influence of climate forcing we discuss.

Data and Methodology

Ethics Statement
The Diarrheal Disease Surveillance System (DDSS) of icddr,b is

a routine ongoing activity of the Dhaka and Matlab Hospital,

which has been approved by the Research Review Committee

(RRC) and Ethical Review Committee (ERC) of icddr,b. At the

time of enrollment, verbal consent was taken from the adult

patients and caregivers or guardians in case of the children

patients, with the information to be stored in the hospital database

and used for conducting research. This verbal consent was

documented by keeping a check mark in the questionnaire, which

was again shown to the adult patients or the parents/guardians of

children patients. Patients or parents/guardians were assured

about the non-disclosure of information collected from them, and

were also informed about the use of data for improving patient

care activities as well as scientific research and publication without

disclosing the name or identity of the patients. ERC was satisfied

with the voluntary participation, maintenance of the rights of the

participants and confidential handling of personal information by

the hospital physicians and has approved this consent procedure.

Data
Flood Affected Area (FAA), expressed as the percentage of the

total area of Bangladesh inundated, was obtained from the annual

reports of the Bangladesh Flood Forecasting and Warning Center

(FFWC; http://www.ffwc.gov.bd). Values range from 0.2% in

1994 to a remarkable 68% during the severe flooding of 1998.

Although FAA is only available as annual values, flooding in

Bangladesh is dominated by the rainy season (June-September;

JJAS). The reported FAA for each year was taken to be

representative of this period.

The NINO34 index is a standard and widely used measure of

the strength and state of ENSO, the dominant mode of climate

variability on interannual timescales. Values were provided by the

National Oceanic and Atmospheric Administration (NOAA)

Climate Prediction Center. NINO34 is defined as the area-

averaged sea surface temperature (SST) over the region (5uS-5uN,

120uW-170uW) and is presented here as 3-month running mean

anomalies calculated relative to the 1971-2000 base period.

Gridded SST values used to calculate the rank correlation maps

(see below) were taken from the Hadley Centre Sea Ice and Sea

Surface Temperature (HadISST) v1.1 data set [25].

The disease data analyzed in this work was taken from two

surveillance programs overseen by the icddr,b. In one program,

based in icddr,b9s Dhaka Hospital, stool specimens from every

25th patient were tested for cholera and shigellosis from 1979–

1995, and from every 50th patient from 1996 onwards. The second

surveillance program is located in Matlab, Bangladesh, in a rural

Cholera, Shigellosis, and Climate
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area approximately 57 km southeast of the capital of Dhaka. In

contrast to the Dhaka hospital, patients attended to at the Matlab

hospital are mostly those presenting symptoms of severe diarrheal

illness. Stool specimens of all diarrhea patients from the Health

and Demographic Surveillance System (HDSS) area were tested

for shigellosis and cholera. In both locations cases were separated

by causative species and strain, and in the analysis presented here

we focus exclusively on cases due to the dominant form of the each

disease for our period of study, which is 1983–2010. For cholera

this was this El Tor biotype, which replaced the former Classical

biotype in the past decades and is now the dominant strain both in

Bangladesh and around the world. For shigellosis S. flexneri
represent the dominant form of the disease in Bangladesh.

Time series of the monthly cases (Fig. 1a) and the magnitude of

the fall peak (Fig. 1b) for the two diseases in both Matlab and

Dhaka show that, in addition to significant interannual variability

for both diseases and locations, cholera cases exceed those of

shigellosis and that there is a clear downward trend in Dhaka

shigellosis cases for this period.

Methodology
Our focus in this work is on interannual variations in disease

outbreaks, as opposed to longer-term trends, and as such all data

was detrended prior to analysis. As a check on the sensitivity of our

results to the removal of the long-term trends we first analyzed

data detrended using a simple linear regression. We then repeated

the analysis using data detrended via Singular Spectrum Analaysis

(SSA), which allows for a more flexible and nonlinear definition of

the trend [26]. Our results were not sensitive to the choice of

detrending technique (See File S1) and as such results reported

here are based on the simpler linear method.

To quantify the magnitude and geographical extent of the link

between the occurrence of water borne disease cases and potential

environmental drivers, such as SST, we calculate Spearman rank-

correlations between reported cases, flooding, and SST (see also

[11], [27]). We employed rank-correlation, rather than the more

common Pearson’s correlation, because it is a non-parametric

method more suitable for use with the non-normally distributed

flooding and disease data. The rank-correlation, r, is calculated as

r~

n3{
D1zD2

2
{6

Xn

i~1

d2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n3{D1)(n3{D2)

p ð1Þ

in the case where the data includes ties [28], where n is the

number of months, di is the difference in rank for each month, and

D1 and D2 are the sum of the cubes of the sizes of the ties in the

first and second samples, respectively, where the size of a tie is

defined as the number of months with the same value. For n.20

we can test for the significance of the above quantity using the

transformed, normally distributed variable

v~(rz
6

n(n2{1)
)
ffiffiffiffiffiffiffiffiffiffi
n{1
p

ð2Þ

Results and Discussion

Time series of monthly cases (Fig. 1a) and the magnitude of the

fall peak (Fig. 1b) of cholera and shigellosis in Matlab and Dhaka

show that, in addition to the significant interannual variability for

both diseases and locations, there is a downward trend in Dhaka

shigellosis cases for this period that is significant at the 95% level

(as determined by SSA; see File S1 for details). The significance of

the trend is further emphasized by the fact that only for Dhaka

shigellosis do results made using the detrended and raw case data

differ.

As noted in the Introduction, previous studies have identified a

clear statistical association, as well as a physical link, between post-

monsoon cholera cases in Matlab and ENSO events in the

preceding winter. Building on this previous work (e.g., [11–12]),

we calculate the rank correlation between shigellosis cases during

the ‘fall peak’ (August-December; ASOND) and SST at every grid

point for the preceding boreal winter (December-February; DJF).

Calculating the correlation for each grid point, rather than for a

single index defined for a limited and predetermined region, allows

for a fuller description of the association between disease outbreaks

and global SST. Calculating correlation maps for multiple diseases

and locations allows for a richer comparison of their associations

with SST as well.

The correlation map for ASOND cholera in Matlab and DJF

SST (Fig. 2a) produces a pattern that closely resembles the one for

Matlab shigellosis (Fig. 2b), particularly through the tropical

regions. This visual similarity is confirmed by the very high

pattern correlation of 0.88 between the two maps. While there are

minor differences between the patterns for cholera and shigellosis

in the Indian Ocean, the diagnosed relationship with the tropical

Pacific is nearly identical. Moreover, the maps also closely

resemble the pattern of SST anomalies that mark the mature

phase of a warm ENSO event, and both series are significantly

correlated with the NINO34 index (0.42 for cholera, 0.55 for

shigellosis; both p,0.05). This apparent association with El Niño

was explored previously for Matlab cholera [11], in which

experiments with a general circulation model confirmed the

physical significance of the correlation pattern and its correspon-

dence to ENSO. This analysis was essential in establishing that the

patterns identified by the rank-correlation analysis do indeed

represent ENSO, and do not resemble the ENSO pattern merely

by chance. The close resemblance between the correlation

patterns for cholera and shigellosis strongly implies that shigellosis

is responding in a similar manner to the remote forcing from

ENSO.

Applying this same correlation map analysis to Dhaka cholera

(Fig. 3a) and shigellosis (Fig. 3b) cases, we again find strong

similarities in the association patterns for the two diseases. While

the Dhaka cholera map closely resembles the two Matlab maps,

the highest correlations values are shifted towards the central

Pacific for shigellosis. This shift results in a lower correlation

between the two Dhaka patterns (0.72) than we find for Matlab,

and a lower value of the correlation with the NINO34 index (0.54

for cholera, 0.21 for shigellosis; cholera correlation p,,0.01,

shigellosis correlation not significant).

The fact that Dhaka shigellosis shows a statistically significant

correlation with SST across a broad section of the tropical Pacific,

while at the same time showing a relatively low correlation with

the NINO34 index, highlights the advantages of analyzing

correlation patterns rather than focusing on single indices. This

shift in the region of significant correlations between Dhaka

shigellosis and SST also suggests a closer association with the

central, rather than eastern, Pacific component of ENSO. Thus,

despite the dramatic differences in ecology between the two

pathogens and the environments of the two study sites, we find a

clear association between post-monsoon cases and ENSO in the

preceding winter for both diseases and locations.

Cholera, Shigellosis, and Climate
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Earlier work (e.g., [11–12]) advanced the theory that enhanced

local rainfall and subsequent flooding is the mediating factor

between tropical SST anomalies and cholera cases in Bangladesh.

Enhanced local rainfall linked to remote SST anomalies has also

been associated with increased malaria cases in northwest India

[27]. Consistent with this mechanism, we find strong positive

Figure 1. Time series of (a) monthly S. flexneri shigellosis and V. cholerae El Tor cholera cases and (b) cases during the fall peak
(August-December; ASOND) from 1983–2009 for Dhaka and Matlab.
doi:10.1371/journal.pone.0107223.g001
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associations between FAA and both cholera (Fig. 4) and shigellosis

(Fig. 5) cases in both locations. The relationship is particularly

clear for the Dhaka fall peak in cholera cases (Fig. 4a), with no

notable outliers and a rank correlation coefficient of 0.74 (p,,

0.01). In contrast, for the Matlab data the period from 1992–1994

stands out sharply as an outlier, with 2–3 times the number of

cases compared to other years with similar FAA. If this period is

excluded the rank correlation coefficient with FAA is 0.54 (p,

Figure 2. Rank-correlation maps for Matlab (a) fall peak (August-December; ASOND) El Tor cholera and (b) ASOND S. flexneri
shigellosis cases and preceding December-February sea surface temperature (SST). Maps are correlated at a value of 0.88 for the
subregion (35S, 35N).
doi:10.1371/journal.pone.0107223.g002
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0.01; correlation is negligible if 1992–1994 are included). We do

not find similar elevated values for this period in Dhaka. In

addition, while 2007 was a year of heavy flooding and increased

cholera prevalence in Dhaka, cases are relatively low in the Matlab

record.

It is not known whether the inconsistencies in the cholera

records for the two locations reflect sampling differences between

Figure 3. Rank-correlation maps for Dhaka (a) fall peak (August-December; ASOND) El Tor cholera and (b) ASOND S. flexneri
shigellosis cases and preceding December-February sea surface temperature (SST). Maps are correlated at a value of 0.72 for the
subregion (35S, 35N).
doi:10.1371/journal.pone.0107223.g003
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the large, urban environment of Dhaka and the smaller, more

rural environment of Matlab, or if they reflect a degree of

localization in outbreaks. One difference in the sampling

methodology is that in Matlab only patients who come from the

Health and Demographic Surveillance System (HDSS) area are

included in the study, while in Dhaka any patient who arrives at

the hospital is included. It should also be noted that 1992–1994 is

the period in which 0139 Bengal emerged in Bangladesh, and this

may be related to the unusual values from Matlab.

For shigellosis there is somewhat greater scatter at lower levels

of FAA (Fig. 5) than for cholera, perhaps reflecting the fact that

shigellosis requires a much smaller infectious dose than cholera

[6]. Overall the correlation with FAA is comparable to that of

cholera (0.74 and 0.50 for Matlab and Dhaka, respectively, p,,

0.01). Interestingly, the 1992–1994 period is unremarkable for

shigellosis in Matlab but is a partial outlier for Dhaka (note that

correlation between Dhaka shigellosis and NINO34 increases from

0.21 to 0.41 if these years are removed), further suggesting that

enteric disease in Bangladesh during these three years merits

additional investigation.

The above analysis establishes that the annual flood affected

area provides a clear predictor for the number of diarrheal disease

cases in Bangladesh during the fall peak. However, it does so at

very short leads. The fall peak (ASOND) overlaps with the end of

Figure 4. (a) Flood Affected Area (FAA) and linearly detrended fall peak (August-December; ASOND) Matlab El Tor cholera cases.
Rank correlation of 0.56 when 1992–1994 removed. (b) FAA and linearly detrended ASOND Dhaka El Tor cholera incidence. Rank correlation of 0.74.
doi:10.1371/journal.pone.0107223.g004
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the monsoon period (JJAS), providing only limited advanced

warning for public health officials. In order to increase the lead-

time of risk forecasts, we further explore the link between disease

cases and ENSO (Figs. 2 and 3) in light of the association between

disease cases and flooding (Figs. 4 and 5). Years with FAA below

30% are not strongly associated with the value of the NINO34

index (Fig. 6) for any of the three preceding seasons considered

(December-January-February, DJF; March-April-May, MAM;

June-July-August, JJA). FAA values above 30%, however, are

not seen following negative DJF NINO34 values (Fig. 6a). For

MAM (Fig. 6b) and JJA (Fig. 6c), these more severe floods can be

associated with either positive or negative values of the NINO34

index. Hence, ENSO indices for the spring and summer seasons

cannot be used to discriminate between strong and weak flooding

years and thus high and low risk disease seasons.

Summary and Conclusions

Cholera and shigellosis are two prominent diarrheal illnesses

that together are responsible for significant mortality and

morbidity throughout the developing world, including Bangladesh.

The causative organisms, V. cholerae and S. flexneri, differ

significantly in their ecology, transmission pathways, and infectious

doses, among other features. Despite these differences, our analysis

of case data taken from two separate surveillance sites in

Bangladesh demonstrates that interannual variations in the

severity of the fall outbreaks of both diseases are closely and

Figure 5. (a) Flood Affected Area (FAA) and linearly detrended fall peak (August-December; ASOND) Matlab S. flexneri shigellosis
cases. Rank correlation of 0.74. (b) FAA and linearly detrended ASOND Dhaka S. flexneri shigellosis incidence. Rank correlation of 0.50.
doi:10.1371/journal.pone.0107223.g005
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similarly associated with the areal extent of the annual monsoon

floods. Of potentially greater significance, particularly from the

perspective of risk forecasting, we also find that both the monsoon

floods and post-monsoon disease outbreaks are significantly

correlated with ENSO activity in the preceding winter.

This association between winter ENSO and Bangladesh

flooding is consistent with previous work [29], which identified a

linear relationship between flooding and DJF NINO34 values.

However, that study did not address the asymmetry between

positive and negative ENSO events, or the variations in flooding

between positive events. Recent work [30] suggests that the lag of

two seasons between ENSO during DJF and the summer monsoon

flooding is related to the excitation of a coupled air-sea mode of

variability in the Indian Ocean region, which allows the impact of

DJF ENSO anomalies to persist into summer. It is interesting to

note that the magnitude of the flooding is not strongly correlated

with the magnitude of the index, indicating that more than just

ENSO is playing a role.

The striking similarity in the association between cholera and

shigella and climate variability, despite the significant differences

in the ecology of the two pathogens, strongly suggests that the two

diseases share a similar transmission pathway in the post-monsoon

period. Flooding inevitably increases the potential for exposure to

contaminated water, an increase in risk likely to be exacerbated by

the attendant overcrowding and breakdown in sanitary infrastruc-

ture. Flooding also, inevitably, subjects individuals to heightened

stress, which is known to affect immune response and increases

susceptibility to infectious disease [31]. While the relationship

between flooding and El Tor cases in Bangladesh has been noted

before (e.g., [13], [22–23], as has as an increase in shigellosis for

the large flooding events or 1988, 1998 and 2004 [17], this general

association between flooding, cholera, and shigellosis has not been

explored previously.

Figure 6. Flood Affected Area (FAA) versus (a) December-February (DJF) NINO34 index, (b) March-May (MAM) NINO34 index, and
(c) June-August (JJA) NINO34 index.
doi:10.1371/journal.pone.0107223.g006

Cholera, Shigellosis, and Climate

PLOS ONE | www.plosone.org 9 September 2014 | Volume 9 | Issue 9 | e107223



The association between flooding and shigellosis, in conjunction

with the association between flooding and cholera is of particular

interest because it demonstrates that the association between post-

monsoon cholera cases and flooding is not unique. Rather it

suggests that it is the general increase in exposure risk of the

human population that follows flooding, rather than the specific

ecology of any one pathogen, which underlies the impact of

climate variability on diarrheal disease in Bangladesh. In

particular our analysis demonstrates that a long-lived environ-

mental reservoir connected to primary transmission, which is

known to exist for cholera but not for shigellosis, is not a necessary

condition for flooding to drive post-monsoon disease cases in. It

instead suggests that climate variability acts by modulating

secondary transmission, where the latter can involve different

pathways, through water or food or person to person contact, and

is characterized by a dependency on previous levels of infection in

the population [16].

Our findings have focused on the post-monsoon season in part

because of the established role of ENSO during the preceding

winter on cholera during this part of the year, through the

pathway of increased precipitation and flooding. It is worth

mentioning however that the disease exhibits an additional, pre-

monsoon, peak and the overall seasonal pattern is known to vary

regionally, in particular with respect to the relative importance of

the two seasons [22], [24]. Comparisons with other diarrheal

diseases at this regional level would be informative. Similarly,

comparison of spatio-temporal patterns within a large urban

environment such as Dhaka would further elucidate similarities

and differences in epidemiology, especially given the reported

heterogeneity within the city itself in the response to ENSO [18].

Linking cholera and shigellosis to flooding provides a physical

mechanism for environmental influence on the interannual

variability of the two diseases; linking flooding to ENSO provides

a potential mechanism for forecasting risk. Our analysis shows that

the most severe flooding events in Bangladesh follow warm winter

conditions in the central and eastern tropical Pacific; none follow

cold conditions. This relationship allows for an initial prediction of

flooding and disease risk to be made as early as the end of the

boreal winter; the risk of severe flooding and associated disease

outbreaks should be substantially reduced when ENSO is in a

negative state. Understanding why severe flooding follows warm

winter Pacific SST in only a subset of years, as well as why the

relationship is not linear with the magnitude of the SST anomalies

is critical to improving the accuracy of disease risk forecasts, and is

the subject of ongoing research. Likewise, expanding comparative

analysis to include other water-borne and vector-borne infections

should further refine our understanding of the fundamental

processes underlying the connections between climate variability

and disease outbreaks.
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