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Background: The globally increasing resistance due to extended-spectrum beta-lactamase producing
Enterobacteriaceae is a major concern. The objective of this work was to develop a murine model to study
the gut bacteria parameters during complex antibiotics like cefotaxime and ceftriaxone treatment and to
compare the fecal carriage of ESBL-producing Enterobacteriaceae.
Methods: SWISS mice were treated either with ceftriaxone or with cefotaxime or with NaCl 0.9% as a con-
trol group from day 1 to day 5. We performed a gavage at day 4 with a Klebsiella pneumonia CTX-M9. We
collected stools and performed pharmacological measurements, cultures and 16S rRNA gene amplifica-
tion and sequencing during the 12 days of the stool collection.
Results: Mice treated with ceftriaxone were more colonized than mice treated with cefotaxime after gav-
age (p-value = 0.008; Kruskal-Wallis test). Ceftriaxone and cefotaxime were both excreted in large quan-
tity in gut lumen but they drove architecture of the gut microbiota in different trajectories. Highest levels
of colonization were associated with particular microbiota composition using principal coordinate anal-
ysis (PCoA) which were more often achieved in ceftriaxone-treated mice and which were preceded by
highest fecal antibiotics concentrations in both cefotaxime or ceftriaxone groups. Using LEfSe, we found
that twelve taxa were significantly different between cefotaxime and ceftriaxone-treated mice. Using
SplinectomeR, we found that relative abundances of Klebsiella were significantly higher in CRO than in
CTX-treated mice (p-value = 0.01).
Conclusion: Ceftriaxone selects a particular microbial community and its substitution for cefotaxime
could prevent the selection of extended-spectrum beta-lactamase producing Enterobacteriaceae.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The increasing global resistance of Enterobacteriaceae to beta-
lactams is a major public health concern for the years to come
and led the World Health Organization to classify the resistance
of Enterobacteriaceae to third-generation cephalosporins (3GC) as
a critical priority for research and development of new antibiotics
in February 2017 [1]. The majority of 3GC-resistant Enterobacteri-
aceae produces extended-spectrum beta-lactamase (ESBL) which
increases morbidity and mortality, length of stay and health costs
[2,3].

The microbiota would be composed of 800 to 1000 species com-
prising more than 7000 different strains [4]. Within this population
of 1012 to 1013 individuals, bacteria are carrying genes for antibi-
otic resistance. Antibiotics conduct to a partial destruction of the
gut bacteria (mainly anaerobic) susceptible to the given agent, thus
leaving room and access to the necessary resources for organisms
resistant to this treatment [5]. Knowing that gut microbiota is a
reservoir for ESBL-producing Enterobacteriaceae, their multiplica-
tion can lead to excretion in the external environment and
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inter-individual transmission [6,7]. These germs may be responsi-
ble for infections that will be difficult to treat [8]. One of the pos-
sibilities to limit the emergence of resistant mutants is to choose
the antibiotics that have the lowest impact on the microbiota but
knowledge that could drive this choice are still scarce.

Studies show that use of 3GC and exposure to 3GC favors ESBL-
mediated resistance in Enterobacteriaceae [9–11]. Although they
have similar antibacterial spectrum, ceftriaxone (CRO) and cefo-
taxime (CTX) may have different impact on ESBL-mediated resis-
tance. Specifically, it is advocated that CRO has more impact on
the gut microbiota than CTX, due to higher biliary elimination than
CTX [12]. In a large multicentric study involving 701 health care
facilities, use of CRO is positively associated with 3GC-resistant
E. coli, whereas CTX use is not [13]. However, use of both 3GC is
associated with 3GC-resistant Klebsiella. pneumonia (Kp) in the
same study, and with 3GC-resistant E. cloacae in another one
[12,13]. The impact of replacing CRO by CTX on resistance to 3GC
is reported in 2 hospital-level studies. In one center, it is associated
with a slower growth of high-level cephalosporinase mediated
resistance, mainly in E. cloacae, but has no impact on ESBL-
mediated resistance [14]. More recently, Tan et al. show that
switching from CRO to CTX is associated with a decreased inci-
dence of hospital-acquired infection caused by ESBL-producing
Enterobacteriaceae [15]. Lately, Burdet et al. do not found different
effects on the microbiota in healthy volunteers treated 3 days with
CRO or CTX [16]. Hence, the ecological advantage of CTX on CRO
remains debated, and no experimental study has compared the
effects of CRO and CTX on the fecal microbiota.

The main objective of this experimental work was to develop a
murine model to study the gut bacteria parameters during com-
plex antibiotics like CTX and CRO treatment and to compare the
fecal carriage of ESBL-producing Enterobacteriaceae.
2. Materials and methods

2.1. Animals

SWISS non-consanguineous albino mice provided by the JAN-
VIER laboratory (Le Genest-Saint-Isle, France) were used. These
are robust and non-aggressive animals often used for pharmaco-
logical modeling and already used to study the carriage of
multidrug-resistant Enterobacteriaceae [17]. We used females aged
6 weeks and weighing between 25 and 30 g, guaranteed without
pathogens. The mice were housed at the Animal Research Center
of the Institute of Health Research 2, University of Nantes, in a con-
trolled environment (day/night cycle of 12 h, extinction 7:30 pm)
with a controlled sterile diet. After a review of the literature on
multidrug-resistant bacteria implantation in murine models, the
number of mice per treatment group was set at 15 [18–21]. In
addition, mice were isolated in individual cages to prevent cross-
contamination by coprophagia. Drinking water and food were pro-
vided ad libitum. Study was approved by the French Ministry of
Higher Education and Research (APAFIS 8528, Site agreement
A44279, ethics committee 006).
2.2. Antibiotics

Compared with CTX structure, CRO has a basic 2-(2–42,4–42)-
2-(Z)-methoxyimino-acetyl side chain which led to a very long
elimination half-life of 8 h in human, high beta-lactamase stability
and extremely high chemotherapeutic efficacy against a broad
spectrum of Gram-positive and Gram-negative pathogens. There-
fore, in human, due to its extended half-life, CRO is used one or
twice daily while CTX is used 3-time daily or in continuous infu-
sion. Reconstitution of CRO and CTX was performed in physiologi-
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cal saline (NaCl 0.9%) to obtain initial concentrations of 100 g/L.
Mice were randomized in three groups: Group 1 received CRO
250 mg/kg twice daily subcutaneously from day 1 to day 5, group
2 received CTX 500 mg/kg three times daily from day 1 to day 5
and the control group received NaCl 0.9% three times daily from
day 1 to day 5. Taking into account the very short half-life of these
molecules in mice and the concentrations usually found in
humans, it was decided to use high dosages corresponding to 5
times the recommended dosage in humans when treating severe
infections such as bacterial meningitis or infectious endocarditis
[22–24]. Indeed, we carried out a preliminary pharmacokinetic
study to choose the optimal dosage to be adopted based on the
plasma and fecal concentrations usually found in patients treated
for infections. Maximum plasma concentration and mean plasma
half-life of CTX (after 250 mg/kg, n = 5) in our mice were
207 mg/L and 24 min, respectively and maximum plasma concen-
tration and mean plasma half-life of CRO (after 500 mg/kg, n = 1)
were 264 mg/L and 78 min, respectively. Plasma concentrations
were similar to those usually observed in human and concentra-
tions of CRO and CTX in the feces were they similar to those
observed by previously published studies (279 mg/g and 167 mg/g
respectively) [17,25,26]. We therefore chose to administer
500 mg/kg three times a day for CTX and 250 mg/kg twice a day
for CRO. All subcutaneous injections were 200 lL.

2.3. Bacterial strain and gavage

The strain used for gavage was a clinical isolate of Kp, carrying
the beta-lactamase CTX-M9 (MIC of CTX: 512 mg/L, MIC of CRO:
2046 mg/L). The plasmids harboring most blaCTX-M are transferable
among bacterial cells, especially in the gut [27]. Inocula of 105 CFU
were prepared immediately before gavage using a spectropho-
tometer. Gavage was done at day 4 of the antibiotic treatment.

Three runs of 5 mice in each group (CRO, CTX and NaCl) were
performed.

2.4. Stool collection and culture

Stool sampling was performed at day 1, 4, 6, 8, 10 and 12. On
the day of sampling, each mouse was placed in a clean cage for
1 h to collect his stool and was returned to his ‘‘accommodation”
cage. Stools were immediately frozen at �80 �C.

Each stool was weighed and then crushed (Ultraturrax Tube
Drive�, IKATM, Germany) with 10 lL saline per milligram of stool.
Serial dilutions were performed in the fresh state, then manual
inoculations of 100 lL on chromogenic media with mixture of
antibiotics, including cefpodoxime (ChromID ESBL, BioMérieuxTM,
Marcy L’Etoile, France) were carried out before incubation at
37 �C of 24 h.

The detection threshold was 2 log10 CFU/g stool. At least one
colony per culture medium was identified using mass spectrome-
try (MALDI TOF, Vitek MS�, BiomérieuxTM, Marcy L’Etoile, France)
to confirm genus and species.

2.5. 16S rRNA gene amplification and sequencing

Fecal samples were kept frozen at �80 �C until they were pro-
cessed. After fecal DNA isolation using the PowerSoil� DNA Isola-
tion Kit (MoBio Laboratories, Carlsbad, CA fecal DNA kit)
including an enzymatically cell lysis step, amplicons spanning
the variable region 4 of bacterial 16S rRNA gene were generated
and sequenced using Illumina Mi-seq platform at the University
of Minnesota Genomic Center, Twin Cities, MN [28]. The 16S rRNA
gene sequencing data from the Illumina runs were trimmed and
filtered using SHI7 [29]. We then performed operational taxonomic
units (OTUs) assignment using ‘NINJA-OPS’ against the Greengenes
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13.8 database as a reference, by clustering the sequences with a
threshold of 97% pairwise identity [30,31]. Next, we used Quantita-
tive Insights Into Microbial Ecology (QIIME) 1.9.1 for diversity
analyses [32]. We presented beta diversity, based on Unweighted
UniFrac distances, a b-diversity measure that uses phylogenetic
information to compare samples, with principal coordinate analy-
sis (PCoA), using the plugin beta_diversity_through_plots.py and a
sampling depth of 17,236 [33]. We applied the PERMANOVA
method on the previously obtained dissimilarity matrices. PERMA-
NOVA was performed using 1000 permutations. We computed
alpha diversity metrics using non-phylogeny metrics (Observed
OTUs, Chao1 index, Shannon index) with the plugin alpha_rarefac-
tion.py and a sampling depth of 17236. We also performed Ran-
dom Forest (RF) classification with 500 trees and ten-fold cross-
validation using the plugin supervised_learning.py and the OTU
table [34]. To study longitudinal variation in our samples, we used
SplinectomeR, that applied smoothing splines to summarize data
for straightforward hypothesis testing in longitudinal studies [35].

To compare samples collected in CRO and CTX mice, we used
the LEfSe tool on the OTU table collapsed at genus level. LEfSe (Lin-
ear discriminant analysis Effect Size) determines the features
(here, taxa collapsed at genus level) most likely to explain differ-
ences between classes by coupling standard tests for statistical sig-
nificance with additional tests encoding biological consistency and
effect relevance [36]. To identify significant associations between
microbial and phenotypic variables, we applied a linear multivari-
ate regression model specifically adapted to microbiome data:
MaAsLin, Multivariate microbial Association by Linear models
[37]. MaAsLin constructs boosted, additive general linear models
to associate metadata and transformed microbial taxonomic or
functional relative abundances. Since microbial community pro-
files are typically high dimensional, boosting is used for feature
selection over potential covariates to identify those most associ-
ated with each microbial feature. Selected metadata are then used
in a general linear model with metadata as predictors and arcsin-
square root transformed microbial relative abundances from the
OTU table collapsed at genus level as the responses. The dataset
generated and analyzed during the current study is available in
the NCBI repository under the accession number PRJNA701545
(http://www.ncbi.nlm.nih.gov/bioproject/701545). The OTU table,
collapsed at genus level is also provided as Table S1. Compositional
biplot that simultaneously displays the sample clustering and
phyla of the gut microbiomes of the fecal samples collected from
CTX- and CRO-treated mice are represented in Fig. S1.
2.6. Pharmacokinetics

Stools collected were weighed, diluted in 0.9% NaCl
(10 mg/100 lL) and homogenized by grinding in ball tubes and
sonication. The ground material obtained was centrifuged (5 min,
13,000g, +4 �C).

For the CTX and desacetyl-CTX assay, 125 lL of the supernatant
was mixed with 125 lL of a methanol/ZnSO4 3 M solution (80/20 v/
v) and 250 lL of an acetonitrile solution containing the deuterated
internal standard (13C2, 2H3-CTX). After centrifugation of the mix-
ture (10 min, 13,000 g, +4 �C), 2 lL of the supernatant were
injected into the chromatographic system (H-Class� Acquity UPLC
system, WatersTM, St Quentin en Yvelines, France). The system con-
sisted of a Kinetex 2.6 lm C18 column in a thermostatically con-
trolled oven at 50 �C, mobile phases with a binary gradient
[(acetonitrile/formic acid 0.1% v/v) and (ultrapure water/formic
acid 0.1% v/v)] at a flow rate of 0.8 mL/min and a mass spectrom-
eter monitoring of the m/z ratios (456,460,414) for respectively
CTX, 13C2, 2H3-CTX, and desacetyl-CTX for 4 min after each
injection.
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For the CRO assay, 250 lL of the supernatant was mixed with
250 lL of acetonitrile solution containing the deuterated internal
standard (13C, 2H3-CRO). After centrifugation (5 min, 13,000g,
+4 �C) of the mixture, 300 lL of the supernatant were mixed with
2 mL of dichloromethane. After centrifugation, 2 lL of the super-
natant was injected into the H-Class� Acquity UPLC system. The
chromatographic system consisted in a Kinetex 2.6 lm C18 column
in a furnace thermostatically controlled at 50 �C, mobile phases
with a binary gradient (acetonitrile and a 1 mM aqueous ammo-
nium acetate solution) at a flow rate of 0.8 mL/min and a mass
spectrometer monitoring of the m/z ratios (555,559) for the CRO
and 13C, 2H3-CRO respectively for 4 min after each injection. For
both methods, reproducibility and inaccuracy were less than 15%,
the limit of quantification was 10 lg/g stool for CRO, CTX and
desacetyl-CTX.

2.7. Quantification and statistical analysis

Statistical analyzes were performed using RStudio� (https://
www.r-project.org/) and GraphPad Prism� 6.0 (GraphPad Software
Inc. TM, La Jolla CA, USA). Areas under the curve (AUC) were calcu-
lated by trapezoidal method. Negative culture were fixed at 2
log10 CFU/g stool.

The Kruskal-Wallis test was used for unpaired data. The post
hoc multiple comparison tests were performed using the Dunn
method. Non-parametric Mann-Whitney tests were performed
between the two-by-two groups with Bonferroni correction. All
tests were defined with alpha risk determined a priori as signifi-
cant if � 0.05.
3. Results

3.1. CRO induced higher ESBL-Kp colonization than CTX

Results of growth culture are shown in Fig. 1A. The absence of
pre-existing 3GC-resistant strains prior to gavage by ESBL-
producing Kp is demonstrated by the negativity of stool cultures
on the day of gavage. CRO-induced ESBL-producing Kp colonization
was consistently higher than CTX-induced colonization from day 4
to day 12 (p-value = 0.008, Mann-Whitney test) (Fig. 1B).

3.2. CRO and CTX are both excreted in gut lumen

Detectable fecal concentrations for CRO were observed and
were maintained until 10 days after the end of treatment
(Fig. 1C). Detectable concentrations for CTX and its active metabo-
lite desacetyl-CTX were observed until 10 days after stopping
treatment (Fig. 1D). Fecal exposures to antibiotics were assessed
using the area under the curve (AUC) of fecal concentrations over
time. AUC of CTX and desacetyl-CTX were 1015 lg.g�1.day and
3962 lg.g�1.day respectively. AUC of CRO was 1859 lg.g�1.day.

3.3. CRO and CTX drive the architecture of the gut microbiota in
different trajectories

At baseline (i.e., before antibiotic treatment was started), we did
not find any significant difference between CTX, CRO-treated mice
and control mice, in terms of alpha diversity (ANOVA, Shannon
index: p-value = 0.556, observed OTUs: p-value = 0.143). Overall,
we found a significant decrease in alpha diversity between
antibiotic-treated mice and control mice (ANOVA, Shannon index:
p-value = 0.001, observed OTUs: p-value = 0.001, chao1 index: p-
value = 0.001). However, we did not find significant difference in
alpha diversity between CTX and CRO-treated mice (ANOVA, Shan-
non index: p-value = 0.665, observed OTUs: p-value = 0.530,
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Fig. 1. Gut colonization by Klebsiella pneumoniae, transit modifications and fecal concentrations of CRO and CTX. (A) Quantification of fecal excretion of ESBL-producing Kp
over time according to treatment administered (n = 15 per group). The bars represent the mean and the range. (B) Quantification of fecal excretion of ESBL-producing Kp over
time according to treatment administered (n = 15 per group). Lines correspond to loess-smoothed conditional means and shading to SE. (C) Area under the curve (AUC) of
ESBL-producing Kp excretion of control, CTX and CRO groups. A statistically significant difference in colonization between CRO and CTX was observed from day 4 to day 12 (p-
value = 0.0078, Mann-Whitney test) and is symbolized by an asterisk. (D) CRO fecal concentrations. (E) CTX (squares) and desacetyl-CTX (stars) fecal concentrations. Values
were indicated as mean ± SEM (n = 10 per group). Detection threshold was 10 lg/g.
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chao1 index: p-value = 0.855, Fig. S2). Importantly, alpha diversity
decreased significantly with time in both CTX and CRO-treated
mice (p-value = 0.01), but this decrease was not different between
CTX-treated mice and CRO-treated mice (p-value = 0.50).

Using Unweighted UniFrac distances, at baseline (i.e., before
antibiotic treatment was started), we did not find any significant
difference between we did not find any significant difference
between CTX, CRO-treated mice and control mice (PERMANOVA,
r2 = 0.068, p-value = 0.492, Fig. S3A). Overall, we found that both
CTX and CRO significantly alter the overall architecture of the gut
microbiota when compared to control mice (PERMANOVA,
r2 = 0.128, p-value = 0.001, principal component 1: ANOVA, p-
value < 0.001, principal component 2: ANOVA, p-value < 0.001).
Moreover, CRO and CTX drove the architecture of the gut micro-
biota in 2 different trajectories (PERMANOVA, r2 = 0.142, p-
value = 0.001, principal component 1: ANOVA, p-value = 0.358,
principal component 2: ANOVA, p-value = 0.002, Fig. S3A).

We observed that the time after the antibiotic treatment had a
strong impact on the beta-diversity with higher Principal Coordi-
nate (PC) 1 and PC2 scores observed at day 12 (Fig. 2A). Before
treatment and until day 4, CRO- and CTX-treated mice were similar
and differences appeared at day 8 and increased at day 12. A more
important inter-individual variability was observed in CTX-treated
1426
than in CRO-treated mice at day 12. Beta-diversity trajectories by
mouse are represented in Fig. S3B. Supervised learning using Ran-
dom Forests, a machine learning method using OTUs as predictive
features, accurately assigned samples to their source population
(CTX or CRO-treated mice) based on taxonomic profiles at the
OTU level (83.3% accuracy, 3 times better than the baseline error
rate for random guessing). Thus, based on microbiome data only,
we were able to predict if a mouse received CRO or CTX treatment.

Using LEfSe on the OTU table collapsed at the genus level [36],
we found that 12 taxa were significantly different between CTX
and CRO-treated mice. Specifically, CRO-treated mice were associ-
ated with a significant gain in Lactobacillus, Klebsiella, unclassified
Enterobacteriaceae, and Parabacteroides when compared to CTX-
treated mice, that were, conversely, associated with increase in
Enterococcus, unclassified Carnobacteriaceae, unclassified Planococ-
caceae, Granulicatella, unclassified Lactobacillales, unclassified Ente-
rococcaceae, Vagococcus and Anaeoplasma (Fig. 2B). The most
significant differentiating taxa between CTX and CRO-treated mice
are represented in Fig. S4A and B. Significantly different taxa
between CRO and control mice and CTX and control mice respec-
tively are described in Fig. S4C and 5D. Comparison of antibiotic
treated mice (all collected samples in CTX and CRO-treated mice)
and control mice (all collected samples) is represented un Table S3.



Fig. 2. CRO and CTX alter the overall architecture of gut microbiota and induce taxonomic changes. (A) Beta diversity comparisons of the gut microbiomes of the fecal
samples collected from CTX- and CRO-treated mice. Beta diversity is represented by ellipse clustering according to the day after the start of antibiotic treatment. (B) Summary
of the taxa that differentiate CTX from CRO-treated mice using Linear discriminant analysis Effect Size analysis (LEfSe). At genus level, 12 taxa were significantly different CTX
from CRO-treated mice (absolute LDA log 10 score >2). (C) Longitudinal changes in Enterococcus compared between CTX and CRO-treated mice, using SplinectomeR with
permuted spline test. (Left) Enterococcus relative abundance over time distinguishes CTX (group spline in blue) and CRO-treated mice (group spline in red; 999 permutations,
p-value = 0.01). Permuted splines represented in grey. The permuted splines lie predominantly between the two observed curves, supporting the conclusion that this
difference is larger than expected by chance. (Right) The plot output of the sliding spliner function shows the p-value at each specified interval derived from the distribution
of points from individuals’ smoothed splines Dotted line indicates p-value = 0.05. (D) Longitudinal changes in Klebsiella compared between CTX and CRO-treated mice, using
SplinectomeR with permuted spline test. (Left) Klebsiella relative abundance over time distinguishes CTX (group spline in blue) and CRO-treated mice (group spline in red;
999 permutations, p-value = 0.01). Permuted splines represented in grey. The permuted splines lie predominantly between the two observed curves, supporting the
conclusion that this difference is larger than expected by chance (Right) The plot output of the sliding spliner function shows the p-value at each specified interval derived
from the distribution of points from individuals’ smoothed splines. Dotted line indicates p-value = 0.05. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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To confirm these changes, we used SplinectomeR that enables
group comparisons in longitudinal microbiome studies. First, we
plotted the longitudinal changes in the three groups of mice,
antibiotic-treated mice (CRO or CTX) and control mice. We found
that in control mice, gut microbiota composition was relatively
stable along time, based on the OTU table collapsed at genus level
(Fig. S5A), whereas, gut microbiota composition was dramatically
altered following CRO and CTX treatment (Fig. S5B and C). We con-
firm that Enterococcus was significantly higher in CTX than in CRO-
treated mice along days of collection (p-value = 0.01, Fig. 2C) and
that Klebsiella was significantly higher in CRO than in CTX-
treated mice (p-value = 0.01, Fig. 2D). Unclassified Enterobacteri-
aceae, Parabacteroides and Lactobacillus were also higher in CRO
than in CTX-treated mice (p-value = 0.04, p-value = 0.03 and p-
value = 0.1, respectively).

3.4. Antibiotic fecal concentrations impact on OTU abundance

We investigated the relationship between CRO, CTX and
desacetyl-CTX fecal concentrations and the gut microbiome by
identifying significant multivariate linear associations using MaA-
sLin. The relative abundance of 34 OTUs was positively correlated
with CRO fecal concentration levels, including members of Sphin-
gomonadaceae, Microbacteriaceae, Sphingobacteriaceae and Enter-
obacteriaceae families. Two OTUs were positively correlated with
CTX/desacetyl-CTX fecal concentration levels, corresponding to
Lactobacillus and Leucobacter genera.

We observed that higher antibiotic concentration levels were
not associated with highest PC1 and PC2 scores but preceded these
metagenomics alterations leading to colonization by ESBL-
producing Kp.

3.5. ESBL-producing Klebsiella pneumoniae carriage is associated to
taxonomic changes

We observed that clustering of fecal samples was partly driven
by the increased carriage of ESBL-producing Kp (r2 = 0.0641, p-
value = 0.001, Fig. S6). Higher colonization levels being associated
with higher PC1 and PC2 scores in the two groups, i.e. with the
most altered microbiota. This beta-diversity pattern was mainly
found in CRO-treated mice and especially at day 12 as described
in Fig. S3B and suggested that CRO selects a microbial community
which promotes colonization by ESBL-producing Kp. Conversely,
highest inter-individual diversity observed at day 12 in CTX-
treated mice was associated with in a lower level of colonization.
We found that 8 taxa from the OTU table collapsed at genus level,
were significantly different between mice displaying a high level of
ESBL-producing Kp and those displaying a low level (Fig. S6B).
Specifically, mice with a high level were associated with a signifi-
cant gain in Klebsiella and unclassified Pseudomonadaceae when
compared to low level mice, that were, conversely, associated with
increase in unclassified Bacteroidales, unclassified Desulfovibri-
onaceae, Sutterella, unclassified Peptococcaceae, unclassified
Clostridiaceae and Akkermansia.

These results were confirmed by a negative association found
between intensity of ESBL-producing Kp carriage and OTUs from
Bacteroidales and Clostridiaceae (Table S2).
4. Discussion

This experimental study shows three main results: (i) CRO
appears to promote higher fecal carriage of ESBL-producing Kp
than CTX; (ii) both antibacterial agents altered fecal microbiotas,
but CRO had a more important impact than CTX; (iii) higher level
of fecal colonization by ESBL-producing Kp was associated with
1428
more altered microbiota. These results suggest that the effect of
CRO on Kp colonization could be mediated by its effect on the
intestinal microbiota.

We observe that fecal Kp levels were significantly higher in
CRO-treated mice than in 2 other groups (CTX and NaCl) but were
equivalent in control and CTX-treated mice. We cannot explain
these results neither by the fecal concentrations observed during
the experience nor by the MIC of the strain. Indeed, concentrations
of CRO and CTX in the feces were they similar to those observed by
previously published studies [17,25,26]. Moreover, we cannot sta-
ted that MIC of CRO and CTX were different regarding the variabil-
ity in measurement [38]. Therefore, we made 2 hypotheses: the
first based on the modification of the architecture of the microbiota
and the second based on the mechanism of action of these two
3GC.

Indeed, we found that CRO and CTX drove the architecture of
the gut microbiota in two different trajectories. As expected, we
found a significant decrease in alpha diversity between
antibiotic-treated mice and control mice but we did not find signif-
icant difference in alpha diversity between CTX and CRO-treated
mice [16]. If before the treatment and until day 4, it was impossible
to tell the difference between CRO- and CTX-treated mice, differ-
ences appeared at day 8 and were accentuated at day 12. A more
important inter-individual variability was observed in CTX-
treated mice which do not reached all the maximum values of
PC1 and PC2 at day 12 contrary to CRO-treated mice which reached
high PC1 and PC2 values. Interestingly, higher Kp-colonization
levels were associated with more altered microbiota in the two
groups and higher antibiotic concentration levels were not associ-
ated with highest PC1 and PC2 scores but were preceded by these
metagenomics alterations. Conversely, highest inter-individual
diversity observed at day 12 in CTX-treated mice was associated
with a lower level of colonization. These data suggested that CRO
could select a microbial community which promotes colonization
by ESBL-producing Kp more easily than CTX. These modifications
have not been observed by Burdet et al. but their work focused
on low dosages of CRO given over only three days and in healthy
individuals which are not comparable to those potentially given
in more serious infections [16]. The only two subjects with changes
in the microbiota were those with detectable CRO in the stool but
previous study that CRO is more frequently found in the stool in
high concentrations and similar to that which we find [16,26].

Our results challenge also the pharmacokinetic hypothesis con-
sidering that CRO only could selected more ESBL-producing Enter-
obacteriaceae because of a higher fecal elimination than CTX [12].
As explain before, we observed detectable concentration of CRO,
CTX and its active metabolite desacetyl-CTX until 10 days after
stopping treatment in faeces [39]. These results confirm those of
Grall et al. who found digestive excretion of CTX in significant pro-
portions [17]. We could also hypothesize that desacetyl-CTX plays
a role in the prevention of carriage ESBL-producing Enterobacteri-
aceae. Indeed, if the bactericidal activity of desacetyl-CTX is gener-
ally considered to be lower than CTX (the MIC of desacetyl-CTX is
8-fold higher than that of CTX on susceptible strains of Kp),
desacetyl-CTX could act as a beta-lactamase inhibitor and could
potentiate the action of CTX as suggested by previous studies
[40,41]. To reinforce this hypothesis, Labia et al showed that
desacetyl-CTX was much more stable to hydrolysis by beta-
lactamase than CTX and could have a sustained bactericidal effect
even in the presence of these enzymes [42].

These data are crucial for the comprehension of the parameters
influencing the carriage of ESBL-producing Enterobacteriaceae,
especially for patient displaying a high risk of colonization such
as patient treated with antibiotics or travelers in endemic area.

Our study has several limitations. First, we used 16S rRNA
sequencing that limits taxonomic identification at genus level.



M. Grégoire, F. Berteau, R. Bellouard et al. Computational and Structural Biotechnology Journal 19 (2021) 1423–1430
Therefore, we were not able to identify species or strains that differ
between CRO and CTX treated. In addition, our work is limited to a
single strain of ESBL-producing Enterobacteriaceae and deserves to
be strengthened by testing other strains.

5. Conclusions

In mice, both CRO and CTX modify the microbiota but CRO pro-
motes more the carriage of a strain of ESBL-producing Kp. If CRO
appears to select a favorable specific microbial community for
the installation of this bacteria in a concentration-dependent
way, CTX and particularly its active metabolite desacetyl-CTX
could prevent colonization because of a beta-lactamase inhibitor
effect.
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