
ForceAtlas2, a Continuous Graph Layout Algorithm for
Handy Network Visualization Designed for the Gephi
Software
Mathieu Jacomy1,2,3*, Tommaso Venturini1, Sebastien Heymann3,4, Mathieu Bastian3

1 Sciences Po, médialab, Paris, France, 2 Equipex DIME SHS, Paris, France, 3 Gephi Consortium, Paris, France, 4 LIP6 - CNRS - Universite Pierre et Marie Curie, Paris, France

Abstract

Gephi is a network visualization software used in various disciplines (social network analysis, biology, genomics…). One of
its key features is the ability to display the spatialization process, aiming at transforming the network into a map, and
ForceAtlas2 is its default layout algorithm. The latter is developed by the Gephi team as an all-around solution to Gephi
users’ typical networks (scale-free, 10 to 10,000 nodes). We present here for the first time its functioning and settings.
ForceAtlas2 is a force-directed layout close to other algorithms used for network spatialization. We do not claim a
theoretical advance but an attempt to integrate different techniques such as the Barnes Hut simulation, degree-dependent
repulsive force, and local and global adaptive temperatures. It is designed for the Gephi user experience (it is a continuous
algorithm), and we explain which constraints it implies. The algorithm benefits from much feedback and is developed in
order to provide many possibilities through its settings. We lay out its complete functioning for the users who need a
precise understanding of its behaviour, from the formulas to graphic illustration of the result. We propose a benchmark for
our compromise between performance and quality. We also explain why we integrated its various features and discuss our
design choices.

Citation: Jacomy M, Venturini T, Heymann S, Bastian M (2014) ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for
the Gephi Software. PLoS ONE 9(6): e98679. doi:10.1371/journal.pone.0098679

Editor: Mark R. Muldoon, Manchester University, United Kingdom

Received October 2, 2013; Accepted May 6, 2014; Published June 10, 2014

Copyright: � 2014 Jacomy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mathieu.jacomy@sciencespo.fr

Introduction

This paper addresses two different audiences. To Gephi users,

we offer a complete description of the ForceAtlas2 algorithm and

its settings. To the researchers or engineers interested in the

development of spatialization algorithms, we offer a discussion of

our choices of features and implementation.

If developing an algorithm is ‘‘research’’ and implementing it is

‘‘engineering’’, then a specificity of Gephi overall, is that it is based

in engineering rather than in research. This is why it looks so

different to a software like Pajek. This is also why ForceAtlas2 is

more about usability than originality.

Our contribution to the mathematics of network spatialization is

limited to the benchmark of a specific implementation of adaptive

speed (step length selection). This paper focuses more on how

classical techniques fit together in the perspective of a rich user

experience - and which techniques do not.

It is necessary to explain quickly how the user feedback led us to

the specific orientation of ForceAtlas2 (a continuous algorithm). In

the next sections we will explore the different techniques gathered

in this layout, with some formal terminology and many

illustrations. We will discuss our implementation of step length

selection with examples and a benchmark. And finally we will offer

a short discussion about the general design of the algorithm.

In 2008 we started to develop Gephi [1], a software to visualize

and manipulate networks, at the Maison des Sciences de l’Homme

in Paris under the direction of Dana Diminescu [2]. Our goal was

to provide some network analysis methods to social scientists, that

would not require learning graph theory.

Three reference softwares inspired us: Pajek [3], GUESS [4]

and TouchGraph. TouchGraph offered a manipulative interface

that we highly appreciated, but it had serious performance issues

and the layout was not adapted to scale-free networks of a hundred

nodes or more (high visual cluttering). Pajek is very powerful but

not adapted to dynamic exploration (it is designed as a

computation software, where visualization is a bonus). GUESS

was the most adapted to our needs, being user-centric and

implementing state-of-the-art spatialization algorithms such as

GEM [5].

We do not explore here the reasons why we created Gephi

rather than just using GUESS, since it is a much larger discussion.

However, an important point for this paper is that we wanted a

continuous layout, that runs homogeneously and which can be

displayed. Visualizing the ‘‘live’’ spatialization is a key feature of

Gephi. It provides a very intuitive understanding of the layout

process and its settings. It allows users to have a trial-error

approach to the layout, that improves the learning curve of Gephi.

We developed ForceAtlas2 by combining existing techniques.

We did it ‘‘wildly’’: we did not start from a systematic review of

academic papers, and we eventually redeveloped existing tech-

niques. We implemented features when they were needed by users,

and we tried to incorporate user-friendly settings in the design.

(When we reworked all the settings, we created a ‘‘version 2’’ of

‘‘ForceAtlas’’ to avoid a too confusing change. Both versions are

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e98679

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0098679&domain=pdf

still available in Gephi even if the first version is obsolete.) We

focused ForceAtlas2 on fluency and quality, because fluency is

required by Gephi’s interactive user experience, and because

researchers prefer quality over performance.

The fundamentals of the algorithm are not sophisticated. As

long as it runs, the nodes repulse and the edges attract. This push

for simplicity comes from a need for transparency. Social scientists

cannot use black boxes, because any processing has to be

evaluated in the perspective of the methodology. Our features

change the forces or how they are simulated, but keep this model

of continuous force directed layout: forces apply continuously as

long as the layout is running. We give more details about our

reasons at this end of this paper.

Developing a continuous algorithm prevented us from imple-

menting many powerful techniques. We cite here some techniques

that we intentionally avoided for focusing reasons. Simulated

annealing [6] cannot be fully implemented, nor can any auto-stop

feature (like Yifan Hu [7], also implemented in Gephi). Our layout

stops exclusively at the user’s request. Phased strategies, used for

example by OpenOrd [8], are by definition incompatible, even if

in this case it allows OpenOrd to spatialize much larger networks.

Graph coarsening [7,9] cannot be implemented for the same

reason. Finally, strategies where forces do not apply homoge-

neously do not necessary fit, because the motion of the network

during the layout is not as fluid and it impacts the user experience.

It is especially the case of the old Kamada Kawai [10] and more

recently GEM [5].

We abandoned many techniques by keeping ForceAtlas2

continuous. But most of these are actually optimizations, and

our performances are still compatible with the size of networks

managed by Gephi (as we will see). We were able to implement

qualitative features that impact the placement of the nodes, such as

a degree-dependent repulsion force suggested by Noack [11],

gravitation, and other features. We also implemented the Lin-Log

forces proposed by Noack, a great inspiration for us, since his

conception of layout quality corresponds to researchers’ needs (a

visual interpretation of modularity).

Anatomy of ForceAtlas2

ForceAtlas2 is a force directed layout: it simulates a physical

system in order to spatialize a network. Nodes repulse each other

like charged particles, while edges attract their nodes, like springs.

These forces create a movement that converges to a balanced

state. This final configuration is expected to help the interpretation

of the data.

The force-directed drawing has the specificity of placing each

node depending on the other nodes. This process depends only on

the connections between nodes. Eventual attributes of nodes are

never taken into account. This strategy has its drawbacks. The

result varies depending on the initial state. The process can get

stuck in a local minimum. It is not deterministic, and the

coordinates of each point do not reflect any specific variable. The

result cannot be read as a Cartesian projection. The position of a

node cannot be interpreted on its own, it has to be compared to

the others. Despite these issues, the technique has the advantage of

allowing a visual interpretation of the structure. Its very essence is

to turn structural proximities into visual proximities, facilitating

the analysis and in particular the analysis of social networks.

Noack [12] has shown that the proximities express communities.

Noack relies on the very intuitive approach of Newman [13,14]:

actors have more relations inside their community than outside,

communities are groups with denser relations. Newman proposes

an unbiased measure of this type of collective proximity, called

‘‘modularity’’. Noack [12] has shown that force-directed layouts

optimize this measure: communities appear as groups of nodes.

Force-directed layouts produce visual densities that denote

structural densities. Other types of layouts allow a visual

interpretation of the structure, like the deterministic layout ‘‘Hive

Plots’’ [15], but they do not depict the modular aspect of the

structure.

Energy Model
Every force-directed algorithm relies on a certain formula for

the attraction force and a certain formula for the repulsion force.

The ‘‘spring-electric’’ layout [16] is a simulation inspired by real

life. It uses the repulsion formula of electrically charged particles

(Fr~k=d2) and the attraction formula of springs (Fa~{k:d)

involving the geometric distance d between two nodes. Fruchter-

man and Rheingold [17] created an efficient algorithm using

custom forces (attraction Fa~d2=k and repulsion Fr~{k2=d,

with k adjusting the scaling of the network). Note that actually,

non-realistic forces have been used since the beginning, noticeably

by Eades [16] in his pioneer algorithm. Fruchterman and

Rheingold were inspired by Eades’ work, and they noticed that

despite using the spring metaphor to explain his algorithm, the

attraction force is not that of a spring.

Sixteen years later, Noack [11] explained that the most

important difference among force-directed algorithms is the role

played by distance in graph spatialization. In physical systems,

forces depend on the distance between the interacting entities:

Figure 1. Layouts with different types of forces. Layouts with Fruchterman-Reingold (a{r~3), ForceAtlas2 (a{r~2) and the LinLog mode of
ForceAtlas2 (a{r~1).
doi:10.1371/journal.pone.0098679.g001

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e98679

closer entities attract less and repulse more than more distant

entities and vice versa. The interdependence between distance and

forces can be linear, exponential or logarithmic. The spring model

for example, replicates precisely the physical forces from which it is

inspired, thereby establishing a linear proportionality between the

distance and the force (as for the spring attraction) and as a square

proportionality between the distance and the force, as for

electromagnetic repulsion. Noack defines the energy model or

‘‘(attraction,repulsion)-model’’ of a layout as the exponent taken by

distance in the formulas used to calculate attraction and repulsion

(the log being considered as the 0th power). For example, the

model of the spring-electric layout is (1,{2).
The (attraction,repulsion)-model of ForceAtlas (1,{1) has an

intermediate position between Noack’s LinLog (0,{1) and the

algorithm of Fruchterman and Rheingold (2,{1), as pictured in

Figure 1.

Noack [12] states that ‘‘distances are less dependent on densities

for large a{r, and less dependent on path lengths for small a’’ (the

‘‘density’’ is the ratio of actual edges on potential edges). It means

that visual clusters denote structural densities when a{r is low,

that is when the attraction force depends less on distance, and

when the repulsion force depends more on it. ForceAtlas2’s ability

to show clusters is better than Fruchterman and Rheingold’s

algorithm but not as good as the LinLog (Figure 1).

A classical attraction force. The attraction force Fa

between two connected nodes n1 and n2 is nothing remarkable.

It depends linearly on the distance d(n1,n2). We will explain later

why there is no constant adjusting of this force.

Fa(n1,n2)~d(n1,n2) ð1Þ

Repulsion by degree. A typical use case of ForceAtlas2 is the

social network. A common feature of this type of network is the

presence of many ‘‘leaves’’ (nodes that have only one neighbor).

This is due to the power-law distribution of degrees that

characterizes many real-world data. The forests of ‘‘leaves’’

surrounding the few highly connected nodes is one of the principal

sources of visual cluttering. We take into account the degree of the

nodes (the count of connected edges) in the repulsion, so that this

specific visual cluttering is reduced.

The idea is to bring poorly connected nodes closer to very

connected nodes. Our solution is to tweak the repulsion force so

that it is weaker between a very connected node and a poorly

connected one. As a consequence they will end up being closer in

the balanced state (Figure 2). Our repulsion force Fr is

proportional to the produce of the degrees plus one (degz1) of

the two nodes. The coefficient kr is defined by the settings.

Fr(n1,n2)~kr
(deg(n1)z1)(deg(n2)z1)

d(n1,n2)
ð2Þ

This formula is very similar to the edge repulsion proposed by

Noack [11] except that he uses degree and not the degree plus one.

The z1 is important as it ensures that even nodes with a degree of

zero still have some repulsion force. We speculate that this feature

has more impact on the result and its readability than the

(attraction, repulsion)-model.

Settings
We detail now the settings proposed to the user, what they

implement, and their impact on the layout. Most of these settings

allow the user to affect the placement of nodes (the shape of the

network). They allow the user to get a new perspective on the data

and/or to solve a specific problem. They can be activated while

the layout is running, thus allowing the user to see how they

impact the spatialization.

LinLog mode. Andreas Noack produced an excellent work

on placement quality measures [18]. His LinLog energy model

arguably provides the most readable placements, since it results in

a placement that corresponds to Newman’s modularity [14], a

widely used measure of community structure. The LinLog mode

just uses a logarithmic attraction force.

Fa(n1,n2)~log(1zd(n1,n2)) ð3Þ

This formula is different from Noack’s since we add 1 to the

distance to manage superposed nodes (log(0) would produce an

error). We have already seen that this energy model has a strong

impact on the shape of the graph, making the clusters tighter

(Figure 1). We also observed that it converges slowly in some cases.

Figure 2. Regular repulsion vs. repulsion by degree. Fruchterman-Rheingold layout on the left (regular repulsion) and ForceAtlas2 on the right
(repulsion by degree). While the global scheme remains, poorly connected nodes are closer to highly connected nodes. (a{r~1).
doi:10.1371/journal.pone.0098679.g002

Figure 3. Effects of the gravity. ForceAtlas2 with gravity at 2 and 5.
Gravity brings disconnected components closer to the center (and
slightly affects the shape of the components as a side-effect).
doi:10.1371/journal.pone.0098679.g003

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e98679

Switching from regular mode to LinLog mode needs a readjust-

ment of the scaling parameter.

Gravity. Gravity is a common improvement of force-directed

layouts. This force Fg(n) prevents disconnected components

(islands) from drifting away, as pictured in Figure 3. It attracts

nodes to the center of the spatialization space. Its main purpose is

to compensate repulsion for nodes that are far away from the

center. In our case it needs to be weighted like the repulsion:

Fg(n)~kg(deg(n)z1) ð4Þ

kg is set by the user.

The ‘‘Strong gravity’’ option sets a force that attracts the nodes

that are distant from the center more (d(n) is this distance). This

force has the drawback of being so strong that it is sometimes

stronger than the other forces. It may result in a biased placement

of the nodes. However, its advantage is to force a very compact

layout, which may be useful for certain purposes.

F ’g (n)~kg(deg(n)z1)d(n) ð5Þ

Scaling. A force-directed layout may contain a couple of

constants ka and kr playing an opposite role in the spatialization of

the graph. The attraction constant ka adjusts the attraction force,

and kr the repulsion force. Increasing ka reduces the size of the

graph while increasing kr expands it. In the first version of

ForceAtlas, the user could modify the value of both variables. For

practical purposes, however, it is better to have only one single

scaling parameter. In ForceAtlas2, the scaling is kr while there is

no ka. The higher kr, the larger the graph will be, as you can see in

Figure 4.

Edge weight. If the edges are weighted, this weight will be

taken into consideration in the computation of the attraction force.

This can have a dramatic impact on the result, as pictured in

Figure 5. If the setting ‘‘Edge Weight Influence’’ d is set to 0, the

weights are ignored. If it is set to 1, then the attraction is

proportional to the weight. Values above 1 emphasize the weight

effects. This parameter is used to modify the attraction force

according to the weight w(e) of the edge e:

Fa~w(e)dd(n1,n2) ð6Þ

Dissuade Hubs. ForceAtlas2 has a ‘‘Dissuade Hubs’’ mode

that, once activated, affects the shape of the graph by dividing the

attraction force of each node by its degree plus 1 for nodes it points

to. When active, the attraction force is computed as follows:

Fa(n1,n2)~
d(n1,n2)

deg(n1)z1
ð7Þ

This mode is meant to grant authorities (nodes with a high

indegree) a more central position than hubs (nodes with a high

outdegree). This is useful for social networks and web networks,

where authorities are sometimes considered more important than

hubs. ‘‘Dissuade Hubs’’ tends to push hubs to the periphery while

keeping authorities in the center. Note that here we improperly use

the concepts of Hub and Authority defined by Kleinberg [19]. We

do not actually compute the HITS algorithm for performance

issues.

Prevent Overlapping. With this mode enabled, the repul-

sion is modified so that the nodes do not overlap. The goal is to

produce a more readable and aesthetically pleasing image, as

pictured in Figure 6.

The idea is to take into account the size of the nodes size(n) in

computing the distance d(n1,n2) both in the attraction force and in

the repulsion force.

N d ’(n1,n2)~d(n1,n2){size(n1){size(n2) is the ‘‘border-to-bor-

der’’ distance preventing overlapping.

N if d ’(n1,n2)w0 (no overlapping) then we use d ’ instead of d to

compute forces:

Figure 4. Effects of the scaling. ForceAtlas2 with scaling at 1, 2 and 10. The whole graph expands as scaling affects the distance between
components as well as their size. Note that the size of the nodes remains the same; scaling is not zooming.
doi:10.1371/journal.pone.0098679.g004

Figure 5. Effects of the edge weight influence. ForceAtlas2 with Edge Weight Influence at 0, 1 and 2 on a graph with weighted edges. It has a
strong impact on the shape of the network.
doi:10.1371/journal.pone.0098679.g005

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e98679

Fa(n1,n2)~d ’(n1,n2)

Fr(n1,n2)~kr

(deg(n1)z1)(deg(n2)z1)

d ’(n1,n2)

N if d ’(n1,n2)v0 (overlapping) then no attraction and a stronger

repulsion:

Fa(n1,n2)~0

Fr(n1,n2)~k’r(deg(n1)z1)(deg(n2)z1)

N if d ’(n1,n2)~0 then there is no attraction and no repulsion

In Gephi’s implementation k’r is arbitrarily set to 100. Note that

the swinging measure is biased due to this option, that is why we

also implemented a diminishing factor on the local speed (dividing

it by 10). It is important to notice that this mode adds a

considerable friction in the convergence movement, slowing

spatialization performances. It is necessary to apply it only after

the convergence of graph spatialization.

Approximate repulsion. In order to improve spatialization

performances on big graphs, we implemented the optimization of

Barnes Hut [20]. Relying on an approximate computation of

repulsion forces, such optimization generates approximation and

may be counter-productive on small networks, thus we allow the

user to disable it. Besides from the side effects of the approxima-

tion, it does not impact the shape of the layout. Without the

Barnes Hut optimization, the complexity time is O(n2) where n is

the number of nodes.

Performance Optimization

The Issue of Speed
When employing a force-based layout, users have to deal with a

speed/precision trade-off. Speed may accelerate the convergence,

but the lack of precision may prevent it. This issue is a

consequence of using a simulation of the forces. It appears in

any force-directed algorithm as well as in other types of

simulations. The time is not something continuous in the

simulation, because it is computed step-by-step. When using many

computing steps, a precise simulation is produced but it takes

longer to compute: it is slow. If few steps are chosen, it is computed

quickly but the simulation is imprecise. Reducing the number of

steps is making a rougher approximation of the system. The

proper term to discuss this would be ‘‘step length’’, since it is the

mathematical variable that we actually use. But we will prefer here

the term of ‘‘speed’’, because it is closer to the experience of users.

The speed of the simulation is just like the step length: a high speed

means long steps (less precision), a low speed means short steps

(more precision). In a force-directed algorithm, increasing the

speed makes the precision drop. We cannot have speed and

precision at the same time. The effect of the approximation is that

some nodes become unable to find a stable position and start

oscillating around their balancing position (Figure 7).

This oscillation problem is known as a problem of ‘‘tempera-

ture’’, because we can compare the movement of a node to the

temperature of a molecule. Different solutions exist: local

temperatures as featured in GEM [5], adaptive cooling as featured

in Yifan Hu [7] or simulated annealing [6]. ForceAtlas2 features

its own implementation of local temperatures as well as adaptive

cooling, but in the perspective of a continuous layout. In terms of

‘‘speed vs. precision’’, since users are more comfortable with these

concepts, we compute an optimal speed for each node as well as

for the whole graph. Our strategy is to measure oscillations and to

compute a speed that allows only a certain amount of oscillation.

This amount is set by the user as ‘‘Tolerance (speed)’’. In Gephi’s

implementation, we set three default values: 0.1 under 5000 nodes,

1 up to 50000 nodes and 10 above 50000. We now describe how

this feature works.

Adapting the Local Speed
We implemented a strategy aimed at optimizing the conver-

gence. Researchers often visualize scale-free networks where some

Figure 6. Effects of the overlapping prevention. ForceAtlas2
without and with the nodes overlapping prevention.
doi:10.1371/journal.pone.0098679.g006

Figure 7. The oscillation of nodes increases with speed. Fruchterman-Rheingold layout at speeds 100, 500 and 2,500 (superposition at two
successive steps).
doi:10.1371/journal.pone.0098679.g007

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e98679

nodes gather a huge amount of edges. Highly connected nodes

have a high temperature. They tend to oscillate quickly, and

require a high level of precision, thus a low speed. Poorly

connected nodes are very stable and so can operate at high speed.

If we have different speeds for different nodes, we can achieve a

much better performance. Our strategy is to determine the speed

of each node by observing its oscillation, like in GEM [5]. But our

implementation is actually quite different.

Our version of oscillation is based on the forces applied to each

node, and we call it ‘‘swinging’’ (oscillation is about distances). We

Figure 8. Adaptive local speed is a good compromise. Evolution of the quality of ForceAtlas2 variants at each iteration (the higher the better).
Different values of the local speed give different behaviors. The adaptive local speed achieves the best compromise between performance and
quality. The network used is ‘‘facebook_ego_0’’ from our dataset.
doi:10.1371/journal.pone.0098679.g008

Figure 9. Effects of adaptive local speed on different networks. Evolution of the quality of ForceAtlas2 variants at each iteration on the other
facebook ego-networks of our dataset. The adaptive local speed is always the best. Local speed 0.001 converges poorly because the speed is too low.
Local speed 0.1 converges poorly because it oscillates a lot: the speed is too high. Local speed 0.01 is sometimes adapted to the network, and
sometimes not, but never outperforms the adaptive speed.
doi:10.1371/journal.pone.0098679.g009

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e98679

define the swinging swg(n) of a node n as the divergence between

the force applied to n at a given step and the force applied n at the

previous step. Intuitively, the more the node is asked to change

direction, the more it swings. F(t)(n) it the result force applied to n

at step t.

swg(t)(n)~DF(t)(n){F(t{1)(n)D ð8Þ

For a node moving towards its balancing position, swg(n)
remains close to zero. A node that is diverging, on the other hand,

has a high swinging and its movement needs to be slowed down to

make it converge. The speed s(n) of a node n determines how

much displacement D(n) will be caused by the resultant force F(n):

D(n)~s(n)F (n). The resultant force is the sum of all forces applied

to each node (attraction, repulsion and gravity: F~FazFrzFg).

So in ForceAtlas2 the speed is different for every node, and

computed as follows:

s(n)~
kss(G)

(1zs(G)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
swg(n)

p
)

ð9Þ

s(G) is the global speed of the graph (see below). ks is a constant

set to 0.1 in Gephi’s implementation.

The more a node swings, the more it is slowed. If there is no

swinging, the node moves at the global speed. As a protection, we

implemented an additional constraint that prevents the local speed

from being too high, even in case of very high global speeds.

s(n)v
ksmax

DF(n)D
ð10Þ

ksmax~10 in Gephi’s implementation.

Figure 10. Records for a single network. Evolution of the layout quality for a single network over 2048 steps. Rows are the 4 different layouts
and columns the 3 different randomizations. The red dot is the ‘‘Quick and dirty point’’ where 50% of the maximum quality is reached, and the blue
dot is the ‘‘Quasi-optimal point’’ where 90% of the maximum quality is reached. The full visualization is available at this URL: https://github.com/
medialab/benchmarkForceAtlas2/tree/master/benchmarkResults.
doi:10.1371/journal.pone.0098679.g010

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 7 June 2014 | Volume 9 | Issue 6 | e98679

Adapting the Global Speed
At each step, two global values are computed and used to set the

global speed: the global swinging and the global effective traction.

The global swinging swg(G) represents the quantity of erratic

movement present in the global movement of the graph. It is the

sum of local swinging values, weighted by the degree of each node

as in our repulsion force (degree+1).

swg(G)~
X

n

(deg(n)z1)swg(n) ð11Þ

The effective traction tra(n) of a node is the amount of ‘‘useful’’

force applied to that node. Effective traction is the opposite of

swinging: forces that contribute to the convergence. It is defined as

an average:

tra(t)(n)~
DF(t)(n)zF(t{1)(n)D

2
ð12Þ

If a node keeps its course, then tra(n)~F (n). If it goes back to

its previous position (a perfect swinging) then tra(n)~0.

The global effective traction tra(G) is the weighted sum of

effective tractions of nodes:

Figure 11. Overall results of the benchmark. Note that the second and third charts have logarithmic scales. FR is really slow, YH has a good
performance and FA2 has a good quality.
doi:10.1371/journal.pone.0098679.g011

Figure 12. Quasi-Optimal Time over network size. The lower is the better. Note that both scales are logarithmic. On small networks, FR is the
best while FA2_LL is slower. On large networks, FR has a poor performance while other algorithms perform similarly on large networks.
doi:10.1371/journal.pone.0098679.g012

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e98679

tra(G)~
X

n

(deg(n)z1)tra(n) ð13Þ

The global speed s(G) keeps the global swinging swg(G) under

a certain ratio t of the global effective traction tra(G) and is

defined as follows:

s(G)~t
tra(G)

swg(G)
ð14Þ

The ratio t represents the tolerance to swinging and is set by the

user.

NB: During our tests we observed that an excessive rise of the

global speed could have a negative impact. That is why we limited

the increase of global speed s(t)(G) to 50% of the previous step

s(t{1)(G).

Details on this Strategy
Our initial idea was to get the optimal speed under every

circumstance, and avoid a ‘‘speed’’ setting that users do not

manage easily. We did not succeed, and we still have it under the

name of ‘‘Tolerance’’. Below, we explain the strategy we adopted.

An optimal global speed is a similar idea to simulated annealing

[6]. However, it is not the same because we have to prevent the

freezing of the network. Simulated annealing is to find the right

way to ‘‘cool down’’ the network, to reduce its speed so that it

convergences more efficiently. Intuitively, the network can go

faster at the beginning, since it is about finding its general shape,

and needs more precision in the end, for the details. In more

scientific terms, simulated annealing is about shortening the steps

in the end for refining the spatialization, and stopping it. Yifan Hu

[7] uses this technique at the end, during a refining phase.

However he remarks that ‘‘for an application of a force-directed

algorithm from a random initial layout, an adaptive step length

update scheme is more successful in escaping from local

minimums. […] Step length can increase as well as reduce,

depending on the progress made’’. Yifan Hu remarks that out of

the refining phase, an adaptive speed is about ‘‘heating’’ as well as

‘‘cooling’’, because escaping a local minimum may need more

speed (heating). This applies to our scenario, since there is no

refining phase in a continuous algorithm. Yifan Hu evaluates the

convergence of the network and adapts its speed in consequence.

Our ‘‘global speed’’ plays the same role, but we evaluate the

convergence differently. Yifan Hu relies of the variation of global

energy, while we rely on the regularity of applied forces (effective

traction). The reason is that we have also a local speed

optimization, like GEM [5], and that we need some homogeneity

between the global speed and the local speed.

We explained that the local speed aims at providing more

precision to nodes that fail at converging. Like GEM, we try to

minimize swinging (oscillations). The local speed can slow the

nodes down, but cannot speed them up. Even if the node requires

more speed, it is limited by the global speed. The global speed

determines the global movement, it is an ‘‘adaptive heating’’

rather than an ‘‘adaptive cooling’’. It is as high as possible, in the

limit of a certain amount of global swinging determined by the

‘‘Tolerance’’ setting. The local speed regulates the swinging while

the global speed regulates the convergence. But the regulation of

convergence is indirect, since we just compare the global effective

traction with the swinging. We rely here on the assumption that

oscillation denotes a lack of convergence. This assumption is

reasonable, even if we know that it is false under certain

circumstances (the swinging of a node propagates to its neighbors).

GEM also relies on this assumption.

Comparison with other Algorithms
Here, we compare ForceAtlas2 to the recent algorithm of Yifan

Hu and to the old and classic layout of Fruchterman and

Reingold. We did not compare it to OpenOrd, which is very

efficient, but is not a continuous layout. Nor did we compare it to

GEM because it is not implemented in Gephi (that we used as a

benchmarking tool). We also compared the LinLog variant of

ForceAtlas2 because we had no other implementation (they are

very close).

We want to evaluate the speed as well as the quality of each

algorithm on different networks. Different measures exist to

evaluate the quality of a spatial arrangement of the nodes. H.

Purchase uses aesthetic criteria [21] while A. Noack prefers

interpretive properties [18]. We chose Noack’s ‘‘normalizedendv

atedge length’’ (15) because it is more adapted to scale-free

networks and has been used by Noack to evaluate Fruchterman-

Reingold and LinLog.

QNoack(p)~

P
fn1;n2g[E

distance(p(n1),p(n2))

DED
=

P

fn1 ;n2g[N2

distance(p(n1),p(n2))

DN2D

ð15Þ

We will observe that contrary to our expectations, Fruchter-

man-Reingold performs better than LinLog, while LinLog is

empirically more readable than Fruchterman-Reingold (we

provide more details below). However this m easure is very good

at capturing the process of a layout algorithm applied to a given

network. Unlike other measures like edge crossings [21], it is

sensitive to the smallest displacements. We rely on it to track the

behavior of each benchmarked algorithm and to identify when the

Figure 13. Layouts give visibly different results. We find that
FA2_LL and FA2 are more readable, because the different areas of the
network are more precisely defined. However, we do not know any
quality measure that captures this phenomenon.
doi:10.1371/journal.pone.0098679.g013

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e98679

convergence is reached. Even if the measure is not fully satisfying

to evaluate the quality, it is a good way to evaluate the speed.

Noack’s measure has another drawback. It is better when it is

lower, which may lead to interpretation issues. We decided to

invert the measure to be clearer (16):

Q(p)~
1

QNoack(p)
ð16Þ

At each step of the tested algorithm, we compute the quality for

current positions. All the layouts, by definition, improve the

quality of the spatialization. We compare the best quality they

reach, and how many steps are needed to reach a good

convergence (performance). Figure 8 pictures the impact of the

adaptive local speed feature using this protocol. The featured

network is ‘‘facebook_ego_0’’ from our dataset. We compare the

actual implementation to variants where we fixed the local speed

at different values (the algorithm is otherwise similar to the

implementation described above). We observe different scenarios.

If the speed is too low (0.001), the convergence is slow and we do

not have enough steps to see the final quality. If the speed is too

high (0.1) the quality stagnates early on, because of oscillations. A

medium value of 0.01 has a good convergence and a good final

quality, but the adaptive local speed achieves even better on

convergence as well as on final quality. We reproduced this

protocol on the other facebook ego-networks of the dataset and the

results confirm this behavior, as pictured in Figure 9.

We benchmarked our algorithm with a dataset of 68 networks

from 5 to 23,133 nodes. We tried to gather varied networks

corresponding to the actual use of Gephi (a lot of social networks,

and scale-free networks in general). Most of these networks are

from the Stanford Large Network Dataset Collection (http://snap.

stanford.edu/data/) and include social networks (Facebook and

Twitter ego-networks), collaboration networks (from Arxiv) and

autonomous systems (peering information inferred from Oregon

route-views). Some networks come from the Gephi datasets, and

include biological networks (neural network of C. Elegans, protein-

protein interaction network in yeast). The others are generated

with Gephi and include trees, random networks and small-world

networks. Our dataset and the description of each network are

included in the online repository of the benchmark (https://

github.com/medialab/benchmarkForceAtlas2).

We compared four different algorithms: ForceAtlas2 (FA2), its

LinLog variant (FA2_LL), Fruchterman-Reingold (FR) and Yifan

Hu (YH). We used the default settings, with the exception of a few

settings. FA2 and FA2_LL have different settings for small,

medium and large networks: we used the medium settings on every

network. FR was so slow that we updated its speed to 10 and its

‘‘Area’’ setting to 1000 so that the resulting layout has a

comparable size. We also set the FA2_LL ‘‘Scaling’’ to 0.1 for

the same reason.

Exact settings are:

N FA2: BarnesHutTheta 1.2; EdgeWeightInfluence 1.0; Gravity

0.0; JitterTolerance 1.0; ScalingRatio 2.0; AdjustSizes false;

BarnesHutOptimize true; LinLogMode false; OutboundAt-

tractionDistribution false; StrongGravityMode false

N FA2_LL: BarnesHutTheta 1.2; EdgeWeightInfluence 1.0;

Gravity 0.0; JitterTolerance 1.0; ScalingRatio 2.0; AdjustSizes

false; BarnesHutOptimize true; LinLogMode true; Outboun-

dAttractionDistribution false; StrongGravityMode false

N YH: BarnesHutTheta 1.2; ConvergenceThreshold 1.0E-4;

InitialStep 20.797; OptimalDistance 103.985; QuadTreeMax-

Level 10; RelativeStrength 0.2; StepRatio 0.95; AdaptiveCool-

ing true

N FR: Area 1000.0; Gravity 0.0; Speed 10.0

Even if some of the networks are large (23,133 nodes and

186,936 edges) while others are very small (5 nodes and 5 edges),

we wanted to use the same benchmark protocol. On the one hand,

computing the layout quality is time-consuming on the biggest

networks, and the convergence is slow (more than 1,000 steps). We

did not have the time to compute the layout quality for hundreds

of steps on each network. On the other hand, the small networks

converge in a few steps, and we wanted to be able to spot the

moment it happens. We had to track the early steps. As a

compromise, we decided to compute layout quality each ‘‘power

of 2’’ step: 1, 2, 4, 8… up to 2048. The quality evolves a lot at the

early stages of the spatialization, and then reaches a more static

state. Our protocol provides the early behavior of each algorithm

as well as its long-term results. We also observed that some layouts

cause oscillations (as pictured in Figure 8), so we computed each

‘‘power of 2 plus one’’ step: 2, 3, 5, 9… up to 2049. We averaged

the quality at each ‘‘power of 2’’ step with the next step to remove

oscillations.

Each network was randomized three times. The three random

assignments are saved in the dataset. You can download the

dataset here: (https://github.com/medialab/benchmarkForce

Atlas2/blob/master/dataset.zip). The benchmark resulted in 816

records of the layout quality at different steps. You can visualize

these records there http://medialab.github.io/benchmarkForce

Atlas2/and download them https://github.com/medialab/

benchmarkForceAtlas2/tree/master/benchmarkResults. Each file

was analyzed to find the maximum quality, and two key moments.

The ‘‘Quick and dirty’’ point is reached at 50% of the maximum

quality, while the ‘‘Quasi-optimal’’ point is reached at 90% of the

maximum quality. The first corresponds to an estimation of a

rough spatialization while the second approximates a satisfying

layout. A sample of these records is pictured in Figure 10, and the

full visualization is available online. We expressed these points in

milliseconds using the timestamps in the records. The maximum

quality, the ‘‘Quick and dirty’’ time (QND Time) and the ‘‘Quasi-

optimal’’ time (QO Time) are averaged over the 3 randomizations

for each layout.

The overall results, as pictured in Figure 11, show that FR

reaches the best quality but is too slow. Its performance is so poor

on large networks that it cannot be used without an optimized

implementation. YH, FA2 and FA2_LL have a comparable

quality and performance, and Yifan Hu is quicker while

ForceAtlas2 has a better quality. The details give us some useful

informations about the specificities of each algorithm. Yifan Hu

has the best performance, with an average QO Time of 333 ms,

followed by ForceAtlas2 (638 ms), the LinLog variant (1,184 ms)

and finally Fruchterman-Reingold (20,201 ms). FR is not

optimized and was really slow on the largest networks. The

Figure 12 shows the differences of algorithms depending on the

size of the network. FR is most suitable for smaller networks and

the worst for the largest. FA2 and YH are similar at all scales while

FA2_LL is significantly worse on small networks, but not so much

on the largest. FA2 is the quickest to reach its Quick and Dirty

point in average (68 ms). YH (98 ms) and FA2_LL (134 ms) are

not much different, but they highlight the good convergence of

FA2 in the early steps. FR is also far behind (7,853 ms).

We find empirically that it is easier to identify the clusters in

FA2 and FA_LL than in FR and YH. Noack’s measure does not

reflect this observation, and we do not know how to measure this

phenomenon. However we think it is useful to show a sample

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e98679

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
https://github.com/medialab/benchmarkForceAtlas2
https://github.com/medialab/benchmarkForceAtlas2
https://github.com/medialab/benchmarkForceAtlas2/blob/master/dataset.zip
https://github.com/medialab/benchmarkForceAtlas2/blob/master/dataset.zip
http://medialab.github.io/benchmarkForceAtlas2/and
http://medialab.github.io/benchmarkForceAtlas2/and
https://github.com/medialab/benchmarkForceAtlas2/tree/master/benchmarkResults
https://github.com/medialab/benchmarkForceAtlas2/tree/master/benchmarkResults

result of each layout. The Figure 13 compares the result of the four

layouts in three different cases (Facebook ego-networks). We find

that the different areas of the network are more precisely defined

with FA2_LL and FA2. Even if this is debatable, it is clear that the

layouts have different visual properties that are not captured by

the quality measure we used. A more advanced benchmark would

require a different way to capture the visual properties of the

layouts.

In conclusion ForceAtlas2 compares to Yifan Hu in terms of

quality and performance. Yifan Hu has a better performance on

small networks while ForceAtlas2 has a better measured quality,

though evaluating the readability of different layouts would

require a different discussion and protocol. The LinLog mode of

ForceAtlas2 brings more quality at the price of performance, and

Fruchterman-Reingold performs poorly on large networks.

Discussion: Designing a Generic, Continuous
Layout

The visualization of a network involves design choices. We think

users have to be aware of the consequences of these choices. The

strategy we adopt in Gephi is to allow users to see in real time the

consequences of their choices, learning by trial and error.

Interaction, we believe, is the key to understanding. While

developing the Gephi user experience, we strongly desired a

‘‘live’’ spatialization process. Hiding it may lead users to believe

that the placement is unique or optimal. Non-expert users need to

observe the spatialization process and even to interact with it.

Manipulating a graph while it spatializes helps to understand the

difference between a graph layout and a Cartesian projection. The

effect of the settings can be observed and understood. It helps to

figure out that spatialization is a construction that involves the

responsibility of the user.

Users can act on the network by changing the ranking of the

nodes, or filtering nodes and edges, even creating new entities.

ForceAtlas2 passes on modifications in real time, re-computing

forces and continuously updating the placement of nodes. It is

possible to ‘‘play’’ with the network. Since it is intuitive for users,

developers can integrate other features on top. For instance we

integrate the visualization of a dynamic network just as a particular

case of dynamic filtering: the real-time layout updates the structure

according to the specified time span. For an example see the

dynamic visualization of a Twitter conversation, http://gephi.

org/2011/the-egyptian-revolution-on-twitter.

Data monitoring is a basic use case of network visualization.

With Gephi we intend to foster advanced uses: data exploration

and map making. These uses are more demanding. Exploring the

data may require searching for an adapted layout: a satisfactory

algorithm with satisfactory settings. We cannot discuss here how

and why some algorithms are better choices for certain networks,

but we can give basic example cases. ForceAtlas2 is not adapted to

networks bigger than 100,000 nodes, unless allowed to work over

several hours. On the contrary, OpenOrd [8] is not adapted to

networks of fewer than 100 nodes, because its side effects are too

visible at this scale. Certain algorithms are more adapted to certain

sizes, as well as certain densities, or certain community structure.

Certain energy models provide a better depiction of certain

network types. Alternative energy models are relevant features to

diversify the algorithm’s applications. The LinLog, edge weight and

gravity settings are such options, fostering a better exploration of the

structure. Map making requires different features. Its purpose is to

make the network fit in a limited graphic space. Scaling and gravity

settings help users to produce a more compact network. The

overlapping prevention provides more readability to the result. Finally,

some features are implemented just for performance, such as the

Barnes Hut’s optimization (approximate repulsion) and adaptive

speeds. Even in this case we try to provide explicit settings to

the user (Tolerance (speed)).

Integrating various features forces us to adapt some of them. We

bring homogeneity in the different forces we implement. First we

weight the nodes by degree plus one instead of just the degree (we

cannot ignore nodes of degree 0). Secondly we adapt the gravity

energy model to the repulsion force to limit its side effects. When

repulsion is weighted in a certain way (for instance with the dissuade

hubs setting) then the gravity is weighted the same way. We also

normalized certain features to provide a smoother user experience.

When dissuade hubs is activated, we compute a normalization to

ensure that the total energy with the alternative forces is the same

to the reference forces. Thanks to this trick, the network keeps a

comparable spreading in the graphic space. Not that the LinLog

energy model does not benefit from such a normalization, so you

have to adjust the scaling when you activate it.

Conclusion

As more and more people deal with relational data, network

visualization assumes a key importance. ForceAtlas2 is our

practical contribution to network sciences. It is not based on a

new conception of force-directed layouts but it implements many

features from other well-known layouts [7] [11] [5]. However, by

its design and features, it aims to provide a generic and intuitive

way to spatialize networks. Its implementation of adaptive local

and global speeds gives good performances for network of fewer

than 100000 nodes, while keeping it a continuous layout (no phases,

no auto-stop), fitting to Gephi user experience. Its code is

published in Java as a part of Gephi source code (https://

github.com/gephi/gephi/tree/master/LayoutPlugin/src/org/

gephi/layout/plugin/forceAtlas2).

Author Contributions

Conceived and designed the experiments: MJ TV. Performed the

experiments: MJ TV. Analyzed the data: MJ SH. Contributed reagents/

materials/analysis tools: MJ SH MB. Wrote the paper: MJ TV SH MB.

Implemented the algorithm: MJ MB.

References

1. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for
exploring and manipulating networks. In: International AAAI Conference on

Weblogs and Social Media. Association for the Advancement of Artificial
Intelligence.

2. Diminescu D (2008) The connected migrant: an epistemological manifesto.
Social Science Information 47: 565–579.

3. Batagelj V, Mrvar A (1998) Pajek-program for large network analysis.

Connections 21: 47–57.
4. Adar E (2006) Guess: a language and interface for graph exploration. In:

Proceedings of the SIGCHI conference on Human Factors in computing
systems. ACM, 791–800.

5. Frick A, Ludwig A, Mehldau H (1994) A fast adaptive layout algorithm for

undirected graphs (extended abstract and system demonstration).

6. Davidson R, Harel D (1996) Drawing graphs nicely using simulated annealing.

ACM Transactions on Graphics (TOG) 15: 301–331.

7. Hu YF (2005) Efficient and high quality force-directed graph drawing. The

Mathematica Journal 10: 37–71.

8. Martin S, Brown WM, Klavans R, Boyack KW (2011) OpenOrd: an open-

source toolbox for large graph layout. In: Society of Photo-Optical Instrumen-

tation Engineers (SPIE) Conference Series. volume 7868 of Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series.

9. Walshaw C (2001) A multilevel algorithm for force-directed graph drawing. In:

Graph Drawing. Springer, 171–182.

10. Kamada T, Kawai S (1989) An algorithm for drawing general undirected

graphs. Information processing letters 31: 7–15.

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e98679

http://gephi.org/2011/the-egyptian-revolution-on-twitter
http://gephi.org/2011/the-egyptian-revolution-on-twitter
https://github.com/gephi/gephi/tree/master/LayoutPlugin/src/org/gephi/layout/plugin/forceAtlas2
https://github.com/gephi/gephi/tree/master/LayoutPlugin/src/org/gephi/layout/plugin/forceAtlas2
https://github.com/gephi/gephi/tree/master/LayoutPlugin/src/org/gephi/layout/plugin/forceAtlas2

11. Noack A (2007) Energy models for graph clustering. J Graph Algorithms Appl

11: 453–480.
12. Noack A (2009) Modularity clustering is force-directed layout. Physical

Review E 79.

13. Newman MEJ (2004). Analysis of weighted networks. Arxiv:cond-mat/0407503.
14. Newman MEJ (2006) Modularity and community structure in networks.

Proceedings of the National Academy of Sciences 103: 8577–8582.
15. Krzywinski M, Birol I, Jones SJ, Marra MA (2012) Hive plotsrational approach

to visualizing networks. Briefings in Bioinformatics 13: 627–644.

16. Eades P (1984) A heuristic for graph drawing. Congressus Numerantium 42:
149–160.

17. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed

placement. Softw: Pract Exper 21: 1129–1164.
18. Noack A (2007) Unified quality measures for clusterings, layouts, and orderings

of graphs, and their application as software design criteria. PhD thesis,

Brandenburg University of Technology, Cottbus, Germany.
19. Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM

46: 604–632.
20. Barnes J, Hut P (1986) A hierarchical o(n log n) force-calculation algorithm.

Nature 324: 446–449.

21. Purchase H (2002) Metrics for graph drawing aesthetics. Journal of Visual
Languages and Computing 13: 501–516.

ForceAtlas2, Network Layout Algorithm for Gephi

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e98679

