
Hu et al. Horticulture Research           (2021) 8:130 Horticulture Research
https://doi.org/10.1038/s41438-021-00570-7 www.nature.com/hortres

REV I EW ART ICLE Open Ac ce s s

Advances and perspectives in discovery and
functional analysis of small secreted proteins in
plants
Xiao-Li Hu1,2, Haiwei Lu 2, Md Mahmudul Hassan 2, Jin Zhang3, Guoliang Yuan2,4, Paul E. Abraham2,
Him K. Shrestha2,5, Manuel I. Villalobos Solis2, Jin-Gui Chen 2,4, Timothy J. Tschaplinski2,4, Mitchel J. Doktycz2,
Gerald A. Tuskan4, Zong-Ming (Max) Cheng1,6 and Xiaohan Yang1,2,4

Abstract
Small secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through
conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been
found to play important roles in various processes, including plant growth and development, plant response to abiotic
and biotic stresses, and beneficial plant–microbe interactions. Over the past 10 years, substantial progress has been
made in the identification and functional characterization of SSPs in several plant species relevant to agriculture,
bioenergy, and horticulture. Yet, there are potentially a lot of SSPs that have not been discovered in plant genomes,
which is largely due to limitations of existing computational algorithms. Recent advances in genomics, transcriptomics,
and proteomics research, as well as the development of new computational algorithms based on machine learning,
provide unprecedented capabilities for genome-wide discovery of novel SSPs in plants. In this review, we summarize
known SSPs and their functions in various plant species. Then we provide an update on the computational and
experimental approaches that can be used to discover new SSPs. Finally, we discuss strategies for elucidating the
biological functions of SSPs in plants.

Introduction
Plant small secreted proteins (SSPs) are less than 250

amino acids (aa) in length and can be actively transported
out of plant cells1,2. In plants, SSPs have been shown to
play important roles in various biological processes such
as growth, development, reproduction, resistance to
abiotic and biotic stresses, and beneficial plant–microbe
interactions3–5. In general, 30,000–40,000 protein-
encoding genes have been reported in individual plant
genomes6. Yet hundreds to thousands of SSPs are
potentially overlooked in a single plant genome7 for two

reasons: (1) the SSP space is occupied by many proteins
with a length of less than 100 aa2,8 and (2) 50% of the
discovered secreted proteins in plants do not have a
known signal peptide9, both of which create difficulties in
SSP annotation using traditional computational approa-
ches10–12.
In recent years, the increasing volume of genomics data

and the continuously evolving machine learning algo-
rithms have boosted the effectiveness of computationally
predicting SSPs. Meanwhile, advances in functional
genomics research have accelerated the experimental
validation of predicted SSPs and the elucidation of their
functional roles. As a result, SSP-focused research has
become an emerging area with great potential for growth,
as reflected by the rapidly increasing number of publica-
tions on SSPs in various organisms, including animals,
microbes, and plants. Here with a focus on plant SSPs, we
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first summarize the current understanding of SSP bio-
synthesis and secretion. We then discuss the structures
and functions of representative SSPs that are well char-
acterized in various plant species, including model spe-
cies, food crops, bioenergy feedstocks, and horticultural
plants. We also highlight computational tools, experi-
mental approaches, and their combinations used to
identify novel SSPs. Finally, we discuss the strategies that
have been or can be used to explore the functions of SSPs.

Biosynthesis and secretion of SSPs in plants
Biosynthesis of SSPs
In plants, SSPs have been found to be produced via

multiple alternative pathways, as illustrated in Fig. 1. The
majority of the characterized SSPs to date are proteolytic
cleavage products synthesized via the removal of an N-
terminal signal sequence (NSS; also known as N-terminal
signal peptide) and/or a pro-domain from larger protein
precursors, which can be either nonfunctional or

functional11,13. SSPs derived from nonfunctional pre-
cursors can be further classified into three subcategories
based on features of their mature forms. SSPs belonging
to the first subcategory typically consist of less than 20 aa
in their mature forms which have few or no cysteine (Cys)
residues and contain one to several types of post-
translational modifications (PTM), such as tyrosine
(Tyr) sulfation, proline (Pro) hydroxylation or Pro glyco-
sylation. Therefore, these SSPs are named PTM SSPs.
Several well-studied PTM SSPs in Arabidopsis thaliana
are involved in plant growth and development, including
CLAVATA 3 (CLV3), C-TERMINALLY ENCODED
PEPTIDE 1 (CEP1), PLANT PEPTIDE CONTAINING
SULFATED TYROSINE 1 (PSY1), and ROOT MER-
ISTEM GROWTH FACTOR 1 (RGF1)11,14,15. The second
subcategory features SSPs with mature peptides that
contain an even number (often ranging from 2 to 16) of
Cys residues. These Cys residues are essential for forming
the disulfide bonds in the active mature SSPs. Most of the
known Cys-rich SSPs are involved in plant–microbe
interactions, such as PLANT DEFENSINs (PDFs), non-
specific LIPID TRANSFER PROTEINS (nsLTPs), and
KNOTTINs. Meanwhile, several Cys-rich SSPs have been
found to regulate plant development, such as S-LOCUS
CYSTEINE-RICH PROTEIN/S-LOCUS PROTEIN11
(SCR/SP11) and LUREs11,15. The third subcategory con-
tains non-Cys-rich/non-PTM SSPs, which often lack the
NSS in their precursor forms and contain Cys, Pro, Tyr,
glycine (Gly), lysine (Lys), or other amino acids with
dominant roles in conferring the activity of the mature
SSPs. SSPs within this subcategory have been primarily
found to participate in plant defense responses, with
SYSTEMINS (SYS), GRIM REAPER PEPTIDE (GRIp),
and PLANT ELICITOR PEPTIDES (PEPs) being the
representative examples11.
In the past decade, a growing number of plant SSPs has

been found derived from functional protein precursors,
such as INCEPTINs from A. thaliana, Zea mays, Oryza
sativa, and Vigna unguiculata, the Glycine max SUB-
TILASE PEPTIDE (Gm-SUBPEP), and the Solanum
lycopersicum CYSTEINE-RICH SECRETORY PRO-
TEINS, ANTIGEN5, and PATHOGENESIS-RELATED 1
PROTEINS derived peptide 1 (CAPE1)11.
In addition to being processed from larger protein

precursors, plant SSPs can be directly encoded by small
open reading frames (sORFs), which can sometimes locate
upstream of the main ORFs (therefore called “uORFs”),
within presumed non-coding RNAs (e.g., long non-coding
RNAs), or within primary transcripts of miRNAs. These
SSPs are denoted as “short peptides encoded by sORFs”,
“sPEPs”, or “nonprecursor-derived peptides”11,16,17. Some
known examples of such SSPs include the uORF2-
encoded sucrose control peptide (SC-PEPTIDE) that is
required for sufficient sucrose-induced repression of
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Fig. 1 Classification of small secreted proteins (SSPs) in plants.
Plant SSPs can be derived from protein precursors, which can be
either nonfunctional or functional, or translated from small open
reading frames (sORFs). SSPs derived from functional protein
precursors often contain an N-terminal signal sequence (NSS), which is
removed during maturation. SSPs synthesized from nonfunctional
precursors can be further divided into three categories: post-
translationally modified (PTM) SSPs, Cys-rich SSPs, and non-Cys-rich/
non-PTM SSPs. In addition, SSPs can be encoded by sORFs that locate
at upstream of main ORFs (uORFs), in transcripts of long non-coding
RNAs (lncRNAs), or primary transcripts of miRNAs (pri-miRNAs).
Adapted from ref. 11
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translation in A. thaliana18, the miPEP171b that regulates
root development in Medicago truncatula19, and
ENOD40s that are involved in sucrose use in nitrogen-
fixing nodules in G. max20.

Mechanisms of SSP secretion
Our knowledge of plant SSP secretion largely overlaps

with our understanding of protein trafficking and secre-
tion, which follows several different mechanisms21–23.
The majority of plant SSPs with an NSS are secreted via
the conventional protein secretion (CPS) pathway (Fig. 2),
which is conserved among eukaryotes. Guided by the
NSS, SSPs are first transported to the endoplasmic reti-
culum (ER) where the NSS is removed. These SSPs are
then exported to the cis side of the Golgi apparatus
(Golgi) and further sorted through the Golgi or the trans-
Golgi network (TGN). Modifications, such as glycosyla-
tion that are required for SSP maturation, occur when
SSPs travel through the Golgi. Finally, the mature SSPs
are delivered to the apoplast via secretory vesicles or
granules17,22–24.
However, some NSS-containing SSPs bypass the CPS

pathway. They follow unconventional protein secretion
(UPS) routes (Fig. 2)22,23 while traveling to the extra-
cellular space, usually upon pathogen attack or the
exposure to other biotic or abiotic stress conditions9,24.
The simplest UPS route directly transports these proteins
from the ER to the plasma membrane (PM). Alternative
UPS routes utilize vesicular carriers, including the secre-
tory multivesicular body (MVB) and vacuole, that can fuse

with the PM to release their contents into the apoplast/
extracellular space22.
In addition, secreted proteins without an NSS (also

known as cytosolic leaderless proteins, LSPs), which
represent a large proportion of the plant secretome21,
cannot be processed by the CPS. These proteins have
been proposed to be secreted through the excyst-positive
organelle (EXPO)—a double-membrane organelle whose
formation is Golgi- and TGN-independent. The EXPOs
can fuse with the PM to secrete LSPs (Fig. 2)9,21.

Known SSPs and their biological roles in plants
Known SSPs
Because the genome of model herbaceous plant A.

thaliana is considered to be better annotated and
characterized than other plant species, we focus on
known SSP families found in A. thaliana. Also, we
discuss SSPs that have been identified from several
important plant species, including Z. mays, O. sativa, S.
lycopersicum, M. truncatula, and Populus trichocarpa.
A large number of SSPs have been computationally
predicted in plants, as demonstrated in public data-
bases, including OrysPSSP5, PlantSSP25, and MtSSPdb3.
For instance, according to the database PlantSSP25,
there are 2451, 5373, and 3216 predicted SSPs, which
are less than 200 aa in length with NSS, in A. thaliana,
O. sativa, and P. trichocarpa, respectively. These pre-
dicted SSPs account for 6.9%, 8.0%, and 7.1% of all the
annotated proteins (including splice variants) in the A.
thaliana (version TAIR10), O. sativa (version MSU6.1),
and P. trichocarpa (JGI v2) genome, respectively. More
recently, with the release of the reannotated M. trun-
catula genome, 4439 genes (6.3% of all the annotated
genes) were predicted to encode SSPs that are less than
230 aa with NSS but not transmembrane regions3.
Although interest in decoding genomes for potential
SSPs has been growing substantially in recent years,
only a limited number of SSPs have been experimentally
characterized, which are distributed among approxi-
mately 50 gene families13, with their representative
members listed in Table 1.

Structure of known SSPs
Protein function is dependent on a well-defined and fol-

ded three-dimensional (3D) structure and intrinsically dis-
ordered regions (IDRs), which are not likely to form a
defined 3D structure26. Some of the known SSPs in plants
have well-defined 3D structure, as demonstrated in Fig. 3.
For instance, hydroxyproline-bound tri-arabinoside-induced
conformation was found when post-translationally modified
protein CLV3 became biologically active27. The β-turn-like
conformation, for example, which is a feature of CEP1, is
associated with biological activity28. On the other hand,
enzymatic maturation processes produce bioactive Cys-rich

Fig. 2 Secretion mechanisms of small secreted proteins (SSPs) in
plants. Most N-terminal signal sequence (NSS)-containing SSPs are
secreted via the conventional protein secretion (CPS) pathway that
begins at the endoplasmic reticulum (ER). SSPs are subsequently
routed through either the Golgi apparatus (Golgi) (1) or trans-Golgi
network (TGN) (2) before being delivered to the apoplast.
Alternatively, some NSS-containing SSPs are secreted by
unconventional protein secretion (UPS) routes, including direct
transportation from ER to the apoplast (3), transportation through
secretory multivesicular bodies (MVBs) (4), and vacuoles (5). Cytosolic
leaderless proteins (LSPs) are secreted through the excyst-positive
organelle (EXPO) (6). Adapted from ref. 22
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SSPs with correct oxidative folding under oxidative condi-
tions by
forming diverse disulfide patterns as well as loop

regions, which are supposed to be crucial for
protein–protein interactions (PPIs)15,29. SCR/SP11 con-
tains an α/β sandwich motif connected by L1 loop that
serve as binding site for specific receptors30. LTP has four
α-helices, three loops, and four disulfide bridges with
eight conserved cysteines4. EPF includes one loop and

three disulfide bonds, which contains two antiparallel
β-strands connected by a 14-residue loop31. However, it
has been estimated that 10% of secreted proteins are
intrinsically disordered proteins (IDPs), with >70% of
their length being IDRs26. For example, LTP1 from A.
thaliana contains a defined 3D structural domain (Fig.
3C) and without IDR (Fig. 4A) but LEA4 from A. thaliana
has no defined 3D structural domain and is fully dis-
ordered (Fig. 4B).

Biological roles of known plant SSPs
Role of SSPs in plant growth and development
Some of the known SSPs are associated with multiple

aspects of plant growth and development. During these
processes, most SSPs act as signaling molecules that are
involved in cell-to-cell communication by binding mem-
brane receptors and coordinating responses with plant
hormones14,32. In terms of meristem maintenance, CLE14
and CLE40 expression has been observed in A. thaliana
root meristematic zone and found to play roles in con-
trolling meristematic activity as well as cell number33,34.
Although CLE43 does not affect root apical meristem
growth in A. thaliana35, its homologs, BnCLE43a and

Table 1 A list of representative small secreted proteins that have been experimentally confirmed in plants

Plant species Protein name Gene locus Protein length (aa) Gene family* (Pfam ID) Reference

Arabidopsis thaliana CEP1 AT1G47485 91 89

Arabidopsis thaliana CLV3 AT2G27250 96 PF11250 148

Arabidopsis thaliana EPLF9 AT4G12970 102 PF16851 149

Arabidopsis thaliana EPF1 AT2G20875 104 PF13912 150

Arabidopsis thaliana GLV6 AT2G03830 123 151

Arabidopsis thaliana LTP1 AT2G38540 118 PF00234 152

Arabidopsis thaliana PREPIP1 AT4G28460 72 153

Arabidopsis thaliana PREPIP2 AT4G37290 84 153

Arabidopsis thaliana PROPEP1 AT5G64900 92 PF00879 154

Arabidopsis thaliana PROPEP2 AT5G64890 109 PF00879 155

Arabidopsis thaliana PROPEP3 AT5G64905 96 PF00879 55

Arabidopsis thaliana PSK1 AT1G13590 87 PF06404 156

Arabidopsis thaliana RALF1 AT1G02900 120 PF05498 157

Arabidopsis thaliana RGF1 AT5G60810 116 158

Arabidopsis thaliana IDA1 AT3G25655 86 159

Medicago truncatula NCR169 Medtr7g029760 61 PF07127 160

Oryza sativa DEF7 LOC_Os02g41904.1 80 PF00304 161

Populus trichocarpa CLE20 Potri.014G156600 74 39

Solanum lycopersicum CAPE1 Solyc00g174340 159 PF00188 162

Zea mays PROZIP1 AC210027.3_FG003 137 51

Fig. 3 Three-dimensional structure of some known small
secreted proteins in plants. A CEP1 (PDB ID: 2MFO). B SCR/SP11
(PDB ID: 1UGL). C LTP (PDB ID: 1MZL). D Stomagen (PDB ID: 2LIY). The
Protein Data Bank (PDB) data were obtained from RCSB protein data
bank (https://www.rcsb.org/)165,166 and visualized using Mol*167
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BnCLE43b, were found in Brassica napus could repress A.
thaliana root growth when synthetic peptides were added
to the culture medium36. In A. thaliana, both CLE9 and
CLE10 control xylem differentiation through regulation of
the cytokinin signal pathway37, and CLE41 can drive
vascular cell division38. In contrast, PtrCLE20 identified in
vascular cambium cells of P. trichocarpa was shown to
restrain cell division, resulting in an inhibition of lateral
growth of the stem39. Besides the impact on vegetative
tissues or organs, SSPs can affect flower development. For
example, CLV1 acts with CLV3 to avoid enlarged mer-
istems and extra floral organs in A. thaliana40. The
pollen-specific SlPRALF gene that encodes a 129 aa pre-
proprotein was recognized to negatively regulate pollen
tube elongation in S. lycopersicum41.

Role of SSPs in plant response to abiotic and biotic stresses
To sense and respond to various stresses, plants have

evolved complex signaling and defense mechanisms42.
Induced SSPs have been observed in many stress
responses in plants, including some SSPs recognized as
hormone-like molecules43. SSPs act quickly and syner-
gistically at low concentrations in reaction to different
stresses44.
SSPs are involved in a variety of biotic stresses

responses in diverse plant species. For example, an SSP
called SYSTEMIN identified in S. lycopersicum was the
first wound response signaling peptide45,46. When plants
are attacked by herbivores or pathogens, a series of

defense signals and pathways can be induced by SYS-
TEMIN through its interaction with SYSTEMIN
RECEPTOR 1, which includes stimulation of PROTEASE
INHIBITOR production, as well as enhancement of
ethylene and jasmonic acid biosynthesis47,48.
Plant SSPs can initiate immune responses and increase

resistance to pathogens. For example, an SSP called IRP,
which was identified from the proteomic analysis of O.
sativa suspension cells cultured with bacterial pepti-
doglycan and fungal chitin, increased the abundance of
phenylalanine ammonia-lyase 1 (PAL1) and activated
mitogen-activated protein kinases (MAPKs), which are
known to be associated with plant immunity49. Two
pathogen-responsive SSPs, TaSSP6 and TaSSP7, are
responsible for resistance to Septoria tritici blotch, a
severe foliar disease caused by the fungal pathogen
Zymoseptoria tritici in Triticum aestivum50. In Z. mays,
Zip1 was demonstrated to trigger plant immunity by
activating salicylic acid defense signaling51.
SSPs are also involved in responses to abiotic stresses.

For example, CLE25, found in A. thaliana, is induced
under dehydration, which triggers ABA biosynthesis in
leaves to prevent water loss by regulating stomatal clo-
sure52. In A. thaliana roots, AtRALFL8 encoding a SSP
can be induced not only by nematode infection but also by
drought stress, leading to cell wall remodeling53. To
determine extracellular proteins that respond to heat
stress, a quantitative proteomic analysis was conducted by
collecting proteins from heat-tolerant Sorghum bicolor

Fig. 4 Examples of plant small secreted proteins containing intrinsically disordered regions (IDRs). A LTP1 (gene locus: AT2G38540), with a
defined 3D structural domain (PDB ID: 1MZL). B LEA4 (gene locus: AT5G06760) with IDR only. The protein sequence data were obtained from
Phytozome (https://phytozome-next.jgi.doe.gov/)168 and IDRs were predicted using IUPred2A (https://iupred2a.elte.hu/)169,170
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cell suspension culture medium, resulting in the identifi-
cation of an SSP named germin protein, which was highly
induced at the protein level54. Another example is the
small peptide AtPep3 encoded by AtPROPEP3, which has
been shown to play an important role in salinity stress
tolerance in A. thaliana55.

Role of plant SSPs in beneficial plant–microbe interactions
SSPs play important roles in cross-kingdom interac-

tions. It is widely accepted that SSPs generated from
plant-associated microorganisms (e.g., fungi, bacteria) can
be used as effector proteins to promote plant microbial
colonization56–58. However, studies on the identification
of plant SSPs as effector proteins that affect microbes have
been very limited2. Plants can adapt to a low availability of
nutrients by altering root system architecture, with some
can form symbiotic associations with rhizobia and
mycorrhizal fungi59,60. In legumes, SSPs can affect root
development and rhizobial–legume symbiosis61,62. CLE
family members have been characterized in different
species, such as CLE12 and CLE13 inM. truncatula, CLE-
RS (CLE-root signal) 1/2/3 in Lotus japonicus, and RIC
(rhizobium-induced CLE) in G. max. These SSPs appear
to be involved in the negative systemic autoregulation of
the nodulation pathway and inhibit newly formed nodules
in roots63. Conversely, in M. truncatula, CEP1 was found
to modulate lateral root formation and increase the
number and size of nodules60. When L. japonicus was
inoculated with the arbuscular mycorrhizal (AM) fungus
Rhizophagus irregularis, in comparison with formation of
nodules in L. japonicus, alternate CLE genes, including
LjCLE19 and LjCLE20, were upregulated in roots, indi-
cating that different signaling pathways are involved in
AM and root nodule symbiosis64. In addition, a recent
study reported that SSPs produced by P. trichocarpa were
induced when co-culture with ectomycorrhizal mycor-
rhizal (EM) fungus Laccaria bicolor and several P. tri-
chocarpa SSPs could enter fungal hyphae when they were
exposed to L. bicolor2, suggesting plant SSPs may mediate
ectomycorrhizal symbiosis as well.

Computational and experimental approaches for
discovery of SSPs in plants
Computational approaches for discovery of SSPs
In general, there are two main steps to computationally

predict SSPs in plant genomes, i.e., predicting small pro-
teins encoded by sORFs and subsequently evaluating their
ability to be secreted. A large number of sORFs can be
found by locating in-frame start and stop codons in the
plant genomes. However, annotations of sORFs have been
largely overlooked because such short sequences were
initially classified as random nonsense occurrences65. In
the recent decade, progress in the development of com-
putational methods for gene prediction has contributed to

the identification of numerous sORFs in plants. For
example, sORF finder is a tool for identifying putative
small sORFs between 10 and 100 amino acids based on
significant selective constraints, which works well for
predicting sORFs in plant genomes66. Small Peptide
Alignment Discovery Application is a homology-based
program which can accurately identify and annotate genes
in a given family, including sORFs in plants67. One caveat
of these in silico sORF prediction tools is that the pre-
dicted sORFs may be pseudogenes. To address this issue,
transcript expression data generated by transcriptome
sequencing (RNA-seq) can be used for identifying func-
tional sORFs, as demonstrated in SSP discovery in P.
trichocarpa2,10. Transcript sequences obtained from
RNA-seq data can be either protein coding sequences
(CDS) or non-coding RNAs68,69. Finally, using DeepCPP,
a new deep neural network-based tool, aims to predict
short sequences with coding potential70.
The potential for secretion of small proteins has been

determined using tools based on specific algorithms, in
particular many use newly developed machine learning
(ML) approaches (Table 2). To predict NSS-containing
SSPs, SignalP 5.0, based on deep neural networks, is
commonly utilized because it has a user-friendly interface
and good performance across plant species71. However,
since an NSS is common in several types of membrane
proteins, membrane spanning proteins with both pre-
dicted signal peptide and at least one transmembrane
region should be excluded72. MEMSAT-SVM73 can be
used for transmembrane helix topology prediction, and
SPOCTOPUS74 is designed for predicting both signal
peptide and transmembrane topology. Because the exis-
tence of certain numbers of NSS-containing proteins
follow UPS routes, SecretomeP has been constructed and
is a ML algorithm to predict unconventionally secreted
proteins75. In addition, the number of Cys residues and
their arrangement have been used to predict Cys-rich
SSPs without signal peptide76. In some studies, an addi-
tional criterion, such as the lack of endoplasmic
reticulum-retention motif, is taken into consideration for
secretion prediction. Several authors recommend that
small proteins containing C-terminal KDEL or HDEL
motifs should be excluded as non-SSPs76,77. Protein
secretion mediated by conventional (e.g., CLE78) or
unconventional (e.g., PME79) mechanisms can be eval-
uated using various tools for predicting multiple protein
subcellular localizations, such as LocTree3 (refs. 80,81),
CELLO82, YLoc83, DeepLoc84, and TargetP85. Also, ML-
based methods have been developed recently for pre-
dicting both conventional and unconventional secretion,
e.g., ApoplastP86, BUSCA87, and Plant-mSubP88. A pipe-
line integrating the best methods for computational pre-
diction of SSPs is proposed in “Integrative approaches for
discovery of SSPs”.
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Experimental approaches for discovery of SSPs
The putative SSPs predicted using computational

approaches described in “Computational approaches for
discovery of SSPs” need to be verified using experimental
approaches to provide protein-level evidence. To address
this issue, protein mass spectrometry (MS) data can be
used to determine (1) whether the predicted SSPs are
truly expressed proteins in extracellular localization and
(2) whether the predicted SSP sequences are full length or
partial fragments of longer protein sequences. For
instance, a novel 15 aa secreted peptide named CEP1
encoded by AT1G47485 was effectively identified in A.
thaliana by liquid chromatography-mass spectrometry
(LC-MS) analysis89. The feasibility of this system was
tested initially by detecting a known small secreted pep-
tide CLE44 in the medium using transgenic A. thaliana
overexpressing the CLE44 gene. Computational predic-
tion of SSP secretion can also be verified through MS
analysis of extracellular proteins. For example, protein
MS has been successfully used to identify plant immune
response proteins that are secreted into apoplastic space
in A. thaliana leaves90. Proteomic analyses of secretomes
have identified secreted proteins in O. sativa91, Hippo-
phae rhamnoides92, S. bicolor54, Solanum chacoense93,
and S. lycopersicum94. Such global analyses of plant
secretomes could facilitate the discovery of SSPs. How-
ever, proteins containing IDRs of sufficient length tend to
be more susceptible to degradation, resulting in lower
protein abundance26. This may cause a problem for
studying plant SSPs that contain a large portion of IDRs
using proteomics approaches because MS has lower
sensitivity than transcriptome sequencing. To increase
the sensitivity of detecting SSPs in plants, it is necessary
to enrich for IDRs containing proteins and low molecular
weight proteins in protein extract using gel filters95 or
ultrafiltration devices96,97.
Besides plant secretome proteomics, molecular

approaches can be used to test SSP secretion. For
example, the CDS of SSPs can be fused with reporter
genes, such as green fluorescent protein98, and the gene
fusion constructs can be tested for secretion of reporter-
tagged SSPs using agroinfiltration-based transient gene
expression99 or stable transformation in plants. The
secretion of SSPs has been tested using the yeast
expression system as well2.

Integrative approaches for discovery of SSPs
From an amalgamation perspective, multiple tools can

be assimilated to predict SSPs. Here we propose such a
pipeline for SSP discovery by integrating the methods
discussed in Sections “Computational approaches for
discovery of SSPs” and “Experimental approaches for
discovery of SSPs” (as illustrated in Fig. 5). Briefly, sORFs
encoding small proteins are predicted from genomicTa
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sequences using gene prediction pipeline such as Seqp-
ing100 based on self-training HMM models and tran-
scriptomic data. Next, NSS-containing small proteins that
are transported via CSP pathways are predicted with ML-
based tools, such as SignalP 5.0. At this stage small pro-
teins containing transmembrane regions, which are unli-
kely to be secreted, should be identified and eliminated
from downstream analysis. Given that some NSS-
containing proteins follow USP pathways, additional
ML-based software, such as SecretomeP, may be applied
simultaneously. In addition, the secretion ability of pro-
teins without an NSS are inferred by subcellular locali-
zation prediction tools (Table 2), which are helpful for
predicting secreted proteins contaning an NSS as well.
Putative SSPs predicted by computational tools are then
validated with MS-based and/or molecular experiments,
particularly for their secretion ability, before further
functional characterization. Proteomics data are then used
to confirm the protein expression of putative sORFs to
discover small proteins that are derived from larger

protein precursors and/or to localize protein accumula-
tion outside cells.

Strategies for elucidating the function of plant
SSPs
Examination of secretion and transport pathways
Given that apoplastic localization of SSPs can be vital

for their function, functional characterization of SSPs
often requires refining the knowledge of their traffick-
ing, transport, and secretion routes both within plants
and between plants and their microbial partners. Per-
haps the most direct method for investigating SSP
movement is to visualize SSPs under a fluorescence or
electron microscope after tagging them with a fluor-
escent protein or other label, as demonstrated by Wang
et al.101 when investigating EXPO-mediated transpor-
tation of the A. thaliana Exo70 paralog—Exo70E2, and
by Chen et al.102 when studying the movement of the
transcription factor HY5 from shoot to root in A.
thaliana. One requirement for this approach is that the
fusion of the SSPs and the fluorescent markers must not
alter the mobility, secretion, or the function of the
SSPs23,103 or interfere with the folding and fluorescence
intensity of the markers.
Small-molecule reagents have been used to dissect

protein trafficking routes. A widely used example is the
fungal toxin brefeldin A (BFA). Given that BFA can dis-
rupt the retrograde traffic from the Golgi to the ER, it
serves as a powerful tool for distinguishing Golgi-
dependent and -independent protein trafficking104,105.
Another example is concanamycin A (ConcA)—an inhi-
bitor of vacuolar-type ATPase (V-ATPase), which blocks
post-Golgi trafficking and has been used in examining the
transportation pathway of VHA-a3 (refs. 106,107). Addi-
tionally, small molecules that can interact with trafficking-
related organelles or vesicles have been used to screen for
their potential application in elucidating protein secretion
pathways108. The power of these trafficking inhibitors,
however, becomes limited when it comes to examining
the movement of SSPs between plants and microbes. An
alternative approach could be based on fluorescently
tagged SSP, which was discussed above and appears to be
more useful for examining the cross-kingdom movement
of plant SSPs.
In addition, a learn-by-design approach based on

rewriting the transport pathway can be informative for
evaluating if secretion is required for SSP function. Tar-
geted redirection has been achieved by fusing SSPs to
alternative sorting signals. For example, Rojo et al.109

fused different vacuolar sorting signals to the C terminus
of CLV3 and redirected the destination of CLV3 from
apoplast to the vacuole. The authors concluded that
apoplastic localization is essential for CLV3 to activate the
CLV signaling pathway in A. thaliana.

Fig. 5 An integrative pipeline for discovery of small secreted
proteins (SSPs) in plants. A Small open reading frames (sORFs)
encoding small proteins can be predicted by using gene prediction
tools based on genome sequence and transcriptomic data. B
Predicting secretion processes for small proteins using machine
learning approaches. C Experimental validation of predicted SSPs. NSS:
N-terminal signal sequence for protein secretion, CPS: conventional
protein secretion, UPS: unconventional protein secretion, MS: mass
spectrometry, SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel
electrophoresis
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Uncovering phenotypic traits conferred by SSP-encoding
genes
Reverse genetics techniques, by imparting loss- or gain-

of-function mutations via ectopic expression, virus-
induced gene silencing, and RNA interference
(RNAi)110,111, are among the most powerful tools to reveal
phenotypes associated with genes of interest. These
techniques work equally well for studying the function of
SSP-encoding genes. For example, CLV3—the meristem
development regulator, when constitutively overexpressed
in transgenic A. thaliana112 demonstrated the correlation
between the level of CLV3 protein and the accumulation
of the meristem cells. In addition, A. thaliana in which
the expression of CLV3 was suppressed by RNAi was
created by Chuang and Meyerowitz113 for studying the
associated phenotypic changes in floral development.
Similarly, RNAi-induced suppression of the PtCLV3
ortholog PttCLE47 were employed by Kucukoglu et al.114

to investigate its role in cambial development and sec-
ondary xylem formation in hybrid aspen (Populus tre-
mula × P. tremuloides).
Besides traditional techniques, the recent revolution in

gene editing tools, particularly the invention of the
CRISPR/Cas and related technologies, provides new
opportunities for efficient gene knockout, gene knockin,
gene activation, and gene suppression in plants115–118. Its
development is based on an immune system naturally
found in bacteria and archaea, the CRISPR/Cas9 system
has been widely used for creating gene knockouts by
creating double-strand breaks, which are then repaired by
error-prone the non-homologous end joining in plants
and therefore often lead to indel mutations in the target
gene. The efficacy of CRISPR/Cas9-mediated gene
knockout has been demonstrated in a number of her-
baceous and woody plant species119–122. In the last few
years, the adaptation of CRISPR into a recruiting platform
and the discover of Cas9 variants have made CRISPR/Cas
a more versatile tool. For example, transcriptional acti-
vation and suppression of single and multiple genes can
now be conferred by the CRISPR/deactivated Cas9
(dCas9)-based transcriptional regulation system123,124. All
of these tools can be used in tuning the expression of SSPs
for revealing their targets and examining their biological
impacts.

Identification of receptors and partners involved in SSP
signal transduction pathways
As discussed above (see “Biological roles of known plant

SSPs”), many plant SSPs act as signaling molecules and
have the ability to affect the expression of other genes.
Therefore, identifying the receptors and other down-
stream targets of an SSP of interest is the ultimate step
towards deciphering SSPs’ biological function. A number
of early studies, particularly those done in A. thaliana,

have been relying on creating targeted mutants or per-
forming mutational screen to achieve this goal. Taking
receptors of CLV3 in A. thaliana for instance: CLV1,
which is a leucine-rich repeat receptor-like kinase, was
verified via phenotypic analysis of single or double
mutants125. Meanwhile, CORYNE (CRN) which is a
membrane-associated protein kinase, and TOAD-
STOOL2 (TOAD2) which is a receptor-like kinase, were
identified by screening the population created with ethyl
methanesulfonate mutagenesis126,127.
Besides mutational screens, PPI data can provide valu-

able evidence in identifying novel partners that interact
with SSPs during signal transduction. Several in vitro and
in vivo PPI detection approaches, such as affinity pur-
ification (AP), tandem affinity purification, and yeast two-
hybrid (Y2H), have been commonly used128. In particular,
the capability of Y2H-based approaches has been exten-
ded from one-by-one clonal identification to proteome-
wide mapping of PPIs, with the recent development of
matrix-based Y2H methods coupled with next-generation
sequencing (NGS) technology129. Compared with muta-
tional screen, Y2H-NGS approaches make it possible to
identify novel interaction partners of SSPs even within an
organism whose genome has not been fully annotated yet.

Discovery-based extraction, screening, and identification
of SSPs
High-throughput analytical approaches that couple

selective enrichment, fractionation/isolation, and pheno-
type screening followed by MS-based identification pro-
vide an established framework to screen plant tissues for
biologically relevant SSPs45,89,130–132 (Fig. 6). This classical
approach for the discovery of novel natural products
starts with an enrichment strategy to selectively isolate
molecules of interest from highly complex crude extracts.
For SSPs, common cellular extraction techniques use size
exclusion ultrafiltration strategies, such as molecular
weight cut-off spin column filters, to selectively enrich for
low molecular weight protein fractions96,97. Other tech-
niques include gel-based separations49,95,133, solvent
extractions89,134, and size exclusion chromato-
graphy134,135. Following these enrichment strategies, SSPs
can be further fractionated based on physicochemical
properties (e.g., polarity, hydrophobicity, stability, solubi-
lity) using liquid chromatography136–138.
Either as crude extract mixtures, enrichments, or iso-

lated fractions, SSPs can be evaluated for their bioactivity
against cell-based or cell-free biosystems. Cell-based
screening can be used to assess simple effects on cell
viability, morphology, and proliferation, or to elucidate
the mechanism of action. Common phenotypes profiled
in cell-based systems are growth promotion/restriction or
antimicrobial activity139–142. Alternatively, cell-free
screening has been employed to evaluate the effect of

Hu et al. Horticulture Research           (2021) 8:130 Page 9 of 14



SSPs to better describe the thermodynamic, kinetic, or
structural basis for molecular interactions with other
cellular constituents143. Cell-free screening can be
employed to identify SSPs with the abilities to scavenge
free radicals, chelate metals, or bind to certain macro-
molecular targets that regulate various biological pro-
cesses such as epigenetic processes and cell
proliferation144,145.
Following the detection of fractions with relevant

bioactivity, molecule libraries can be further interrogated
via high-throughput LC-MS/MS to sequence unknown
SSPs. Some of the current challenges in accurate and
sensitive identification of SSPs with MS include lack of
SSP representation in protein databases, inadequate
understanding of SSP maturation mechanisms, and partial
knowledge of their PTM. Thus, the characterization of

SSPs by LC-MS/MS can benefit from the use of de novo
search strategies146. De novo sequencing algorithms derive
peptide sequences using only fragment ion information
from the tandem mass spectra, are generally optimized to
run without the restriction of cleavage enzymes (i.e.,
trypsin) and work in an unbiased manner as they do not
necessarily require any input based on prior knowledge of
the sample147.

Conclusion and perspectives
In the past several years, there has been increasing

evidence that SSPs play important roles during plant
growth, development and response to biotic and abiotic
stresses, and consequently a growing appreciation of the
biological significance of plant SSPs. A sheer number of
SSPs have been predicted in diverse lineages of organisms,

Fig. 6 Experimental framework to screen biologically relevant small secreted proteins (SSPs). The experimental workflow to characterize
bioactive SSPs consists of four main steps: A The extraction and enrichment of the low molecular weight (MW) fraction of the secreted proteome of a
sample, e.g., with the use of molecular weight cut-off filters. B The fractionation/isolation of low MW fractions using different chromatographic
separations techniques to reduce their complexity and assemble a set of SSP candidates to test for bioactivity. Other low MW molecules like
metabolites can be removed at this step if needed. C SSP bioactivity assays against cell-based or cell-free systems to elucidate their mechanisms of
action (i.e., growth promotion or antimicrobial activity). D Interrogation of SSP fraction libraries with bioactivity via high-resolution/high-mass
accuracy LC-MS/MS. Novel SSP sequence characterization could be aided by de novo search strategies. Figure was created with BioRender.com

Hu et al. Horticulture Research           (2021) 8:130 Page 10 of 14



and the intercellular or inter-organismal movement of
SSPs infers that SSPs are likely a significant and common
mode of signaling among organisms. It is now known that
SSPs are synthesized and secreted via diverse pathways in
plants. Currently, however, the number of characterized
SSPs in plants is low. The majority of SSPs encoded in
plant genomes are overlooked and remain unannotated.
Roadblocks that prevent progress in the study of SSPs
include (1) a lack of reliable methods for isolating SSPs for
experimental characterization, (2) a lack of capabilities for
real-time monitoring the intercellular or inter-organismal
movement of SSPs, (3) a lack of structural data for SSPs,
and (4) a lack of computational tools for predicting non-
conventional secretion of SSPs.
Recent advances in high-throughput molecular screen-

ing approaches and bioinformatics offer exciting oppor-
tunities for the discovery and characterization of SSPs. For
example, the rapid accumulation of omics data, including
genomics, transcriptomics, and proteomics, provide rich
databases for discovering plant SSPs, including those
derived from larger protein precursors and directly
encoded by sORFs. Meanwhile, advanced ML tools have
evolved to predict the secretion pathways, including both
CPS and UPS that SSPs follow. Such computational pre-
diction on secretion can be verified experimentally, for
example, via bioimaging of fluorescent reporter-tagged
protein candidates. In addition, advanced plant bio-
technologies, particularly, CRISPR/Cas-based genome-
editing systems and transcriptional regulation systems
(i.e., CRISPRa and CRISPRi) allow for efficient gene
knockout, activation, and suppression, and therefore
analysis of the biological roles of SSPs, and identification
of their partners by combining with PPI and NGS data.
The discovery and functional role of SSPs in plant growth
and development will continue to expand in the near
future.
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