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1  | INTRODUC TION

Aging is a complex and multi-factorial process that involves sys-
tem-wide dysregulation across many biological pathways and molecule 
types (Hoffman, Lyu, Pletcher, & Promislow, 2017). Understanding 

mechanisms of healthy aging in humans is important because early 
detection of deviations from a healthy aging trajectory could be used 
to promote longevity by delaying, avoiding, or preventing the devel-
opment of age-related diseases (Alpert et al., 2019). However, this 
task has been challenging in part because of the complex interplay 
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Abstract
Aging is intimately linked to system-wide metabolic changes that can be captured 
in blood. Understanding biological processes of aging in humans could help main-
tain a healthy aging trajectory and promote longevity. We performed untargeted 
plasma	metabolomics	quantifying	770	metabolites	on	a	cross-sectional	cohort	of	268	
healthy	individuals	including	125	twin	pairs	covering	human	lifespan	(from	6	months	
to	82	years).	Unsupervised	clustering	of	metabolic	profiles	revealed	6	main	aging	tra-
jectories throughout life that were associated with key metabolic pathways such as 
progestin steroids, xanthine metabolism, and long-chain fatty acids. A random forest 
(RF)	model	was	successful	to	predict	age	in	adult	subjects	(≥16	years)	using	52	metab-
olites (R2 = .97). Another RF model selected 54 metabolites to classify pediatric and 
adult	participants	(out-of-bag	error	=	8.58%).	These	RF	models	in	combination	with	
correlation network analysis were used to explore biological processes of healthy 
aging. The models highlighted established metabolites, like steroids, amino acids, and 
free fatty acids as well as novel metabolites and pathways. Finally, we show that 
metabolic profiles of twins become more dissimilar with age which provides insights 
into nongenetic age-related variability in metabolic profiles in response to environ-
mental exposure.
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of genetic, environmental, and lifestyle factors involved in aging. 
Metabolomics—the unbiased profiling of a large panel of metabolites—
has become the approach of choice to study aging with the realization 
that metabolic alterations are central to the aging process (Barzilai, 
Huffman,	Muzumdar,	&	Bartke,	2012;	Collino	et	al.,	2013;	López-Otín,	
Blasco,	Partridge,	Serrano,	&	Kroemer,	2013;	Montoliu	et	al.,	2014).	In	
addition, metabolomics captures genetic and nongenetic factors since 
metabolites are influenced by the biology of the host, gut microbial 
activity,	and	environmental	exposure	(Rinschen,	 Ivanisevic,	Giera,	&	
Siuzdak, 2019). Recent studies combining genetic and metabolic pro-
files in twins were instrumental in quantifying the relative influence 
of genetic and environmental factors on blood metabolite levels and 
showed a wide range of heritability largely dependent on chemical 
classes (Darst, Koscik, Hogan, Johnson, & Engelman, 2019; Kettunen 
et al., 2012; Long et al., 2017; Shin et al., 2014).

In	the	recent	years,	metabolomics	has	been	successfully	applied	
to the study of human aging highlighting many biomarkers and bio-
logical pathways associated with age (Chaleckis, Murakami, Takada, 
Kondoh,	&	Yanagida,	2016;	Menni	et	al.,	2013;	Rist	et	al.,	2017;	Yu	
et al., 2012). Through various modeling and experimental method-
ologies, steroids, amino and fatty acids, and biomarkers of kidney 
function have been found to have significant associations with aging. 
However, these studies were often limited by the age range of par-
ticipants	focusing	on	adults	(>18	years	old)	and	by	the	range	of	me-
tabolites covered (~100–500).

In	 this	context,	we	profiled	a	wide	array	of	770	metabolites	 in	
blood from a cross-sectional cohort of healthy individuals enriched 
for	 twin	pairs	 and	aged	6	months	 to	82	years	old.	The	aim	of	 the	
study was threefold: (a) describe longitudinal trends of changes with 
age, (b) identify metabolites and pathways associated with age using 
random forest (RF) machine learning algorithm (regression and clas-
sification models), and (c) investigate biological variability of meta-
bolic profiles in twin pairs with age.

2  | RESULTS

2.1 | Cohort characteristics and generation of 
untargeted metabolomics data

A	 cohort	 consisting	 of	 268	 healthy	 individuals	 including	 125	 twin	
pairs was recruited with the objective of having an even distribution 
of	ages	across	a	human	lifespan	(6	months	to	82	years	old)	(Figure	1a).	
Demographic characteristics are shown in Table 1. The cohort was 
divided	 in	two	groups	 including	pediatric	 (<16	years	old)	and	adult	
participants	(16–82	years)	with	the	assumption	that	puberty	is	over	
at	 age	 16.	 The	 pediatric	 population	 contained	 fewer	 female	 par-
ticipants	(45.3%	vs.	69.8%)	and	a	lower	percentage	of	monozygotic	
twins	among	the	twin	pairs	(64%	vs.	91%)	than	the	adult	population.

Untargeted metabolomics was performed on randomized plasma 
samples using a broad range liquid chromatography-mass spectrom-
etry (LC-MS) platform (Contrepois, Jiang, & Snyder, 2015). This plat-
form	uses	complementary	hydrophilic	liquid	chromatography	(HILIC)	

and reverse-phase liquid chromatography (RPLC) separations cou-
pled	with	high-resolution	mass	spectrometry	 (HRMS).	Over	17,000	
MS peaks were robustly detected. After filtering and curation, 770 
metabolites could be identified (Figure 1a). The named metabolites 
were categorized in eight main chemical classes and 59 pathways 
to help biological interpretation and enrichment analysis (Table S1). 
Annotation confidence levels for each metabolite were provided 
following	 the	 Metabolomics	 Standards	 Initiative	 (MSI)	 confidence	
scheme (Table S1) (Schymanski et al., 2014; Sumner et al., 2007).

2.2 | Metabolic profiles are influenced by age

Variance decomposition was performed on recorded confound-
ers	including	age,	body	mass	index	(BMI),	sex,	asthma	status	(GINA	
score) (Bousquet, 2000), smoking and second-hand smoking status 
(Figure S1). Among the tested variables, age showed the most vari-
ance	in	our	dataset	(1.01%	median,	44.50%	maximum).	In	addition,	
a global aging trajectory in the cohort could be visualized in two di-
mensions by plotting the principal components (PCs) PC4 (p = 2.2E-
12) and PC5 (p = 1.4E-15) that associated the most strongly with age 
(see methods, Figure 1b).

2.3 | Metabolic aging trajectories

We took advantage of the even age distribution of our cohort across 
a pediatric and an adult population and defined six clusters based 
on metabolite aging trajectories (Figure 2, Table S1). Pathway en-
richment analysis via hypergeometric testing was used to highlight 
biological functions enriched in each cluster (FDR < 0.1). Clusters 1, 
4,	5,	and	6	contained	84%	of	the	metabolites.	Metabolites	in	cluster	
1 increased strongly until adult age and then tended to slowly in-
crease with age. The metabolites belonging to this cluster were en-
riched for xanthine and histidine metabolism. Cluster 4 was enriched 
for acylcarnitines, as well as long and polyunsaturated fatty acids. 
Molecules in this cluster tended to remain constant at young age and 
linearly increased with age after the onset of adulthood. Clusters 
5	and	6	presented	opposing	parabolic	shapes	with	metabolites	de-
creasing at early age and then increasing at adult age for cluster 5 
and	vice	versa	in	cluster	6.	The	latter	cluster	was	enriched	for	mono-
acylglycerols	 and	 progestin	 steroids.	 On	 average,	 metabolites	 in	
cluster	5	reached	a	minimum	at	age	29.6	±	9.2	years	(mean,	standard	
deviation)	and	metabolites	in	cluster	6	were	the	most	concentrated	
at	age	31.0	±	11.2	years.	These	cluster	classifications	were	used	to	
guide biological interpretations in the sections below.

2.4 | Machine learning reveals metabolites 
associated with age in a healthy adult population

A regression random forest (RF) model analysis to predict age was 
performed	on	adults	 aged	16	years	 and	older	 to	 focus	on	healthy	
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aging in adults (n = 215). The dataset was modeled to correct for 
BMI	and	sex	as	these	demographics	are	known	to	cause	variability	in	
metabolic	profiles	(Darst	et	al.,	2019;	Piening	et	al.,	2018)	(Figure	S1).	
A model containing 52 metabolites (Figure 3a) successfully predicted 
healthy aging in adults with a mean squared error of 4.45, R-square 
of	0.97,	and	54.78%	of	variance	explained	(Figure	3b).	Interestingly,	
metabolites	 in	 clusters	4	 (increase	with	 age)	 and	6	 (decrease	with	
age)	dominated	representing	50.0%	and	19.2%	of	the	selected	me-
tabolites, respectively. As expected, androsterone and progesterone 
derivatives contributed the most to the model (Darst et al., 2019; 
Feldman et al., 2002) including dehydroisoandrosterone sulfate 
(DHEA-S),	pregnanolone	sulfate,	and	16-α-hydroxy-DHEA-3-sulfate, 
of	which	all	presided	 in	cluster	6.	 In	addition	to	steroid	hormones,	
metabolites involved in amino acid (i.e., phenylacetylglutamine, cys-
tine, phenylalanine, citrulline, tryptophan) and lipid metabolism (i.e., 
sn-glycero-3-phosphoethanolamine and polyunsaturated fatty acids 

eicosapentaenoic acid and arachidonic acid) contributed to the RF 
model. Three unknown metabolites with elemental compositions 
C9H17NO3,	C19H34O15,	and	C21H34O6S	were	among	the	most	
important metabolites in the model but could not be confidently an-
notated. Further work would be necessary to formally identify these 
molecules.	 Interestingly,	 C19H34O15	 and	 C21H34O6S	 resided	 in	
cluster	6	and	had	the	same	longitudinal	pattern	of	change	with	age	
as androsterone and progesterone derivatives suggesting similar 
function and/or structure (Figure S2A). The unknown metabolite 
with	 the	 elemental	 composition	 C9H17NO3	 displayed	 a	 different	
aging trajectory with a positive linear association in adulthood as 
seen in cluster 4.

Correlation network analysis of metabolites included in the RF 
model revealed distinct functional clusters of co-regulated metab-
olites including androgenic and progestin hormones, fatty acids, 
and amino acids (Figure 3c). Betweenness centrality that represents 

F I G U R E  1   Untargeted metabolomics 
of aging plasma. (a) Natural log metabolite 
abundances of all 770 detected 
metabolites	(rows)	in	268	individuals	
(columns) ranging from low (blue) to 
high (red). Metabolites are ordered by 
metabolic class and median intensity 
across all the samples in the study, and 
individuals are ordered chronologically 
by age. (b) Principal component analysis 
using the top two principal components 
associated with age (i.e., PC4 and PC5). 
Association with age is calculated via 
linear modeling of each PC

(a)

(b)
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the importance of the node in the network was calculated for each 
metabolite.	 Interestingly,	 the	 unknown	metabolite	 with	 elemental	
composition	C12H25N3O3,	residing	in	cluster	4,	was	central	in	the	
network and was ranked 9th for its importance in the RF regression 
model, suggesting it may have a critical function in the aging process.

2.5 | Machine learning reveals metabolites that 
distinguish pediatric and adult participants

Next, we were interested in identifying the metabolites that 
would classify samples from pediatric (n = 53) and adult (n = 215) 

participants. An RF classification model determined 54 metabolites 
(Figure 4a) important in differentiating pediatric participants from 
adults	with	an	out-of-bag	estimate	of	error	of	8.58%.	In	contrast	to	
the regression model, the classification model selected metabolites 
enriched in cluster 1 (more abundant in adults) and 5 (less abundant 
in	adults)	representing	40.7%	and	24.1%,	respectively.	The	classi-
fication	 error	was	 very	 small	 for	 adults	 (3%)	 and	was	 greater	 for	
pediatric	 participants	 (28%)	 likely	 because	 of	 the	 smaller	 sample	
size of the latter (Figure 4b). As expected, metabolite biomarkers 
for the consumption of coffee (i.e., caffeine, theophylline, trigo-
nelline, quinic acid and 1-methyl uric acid), residing in cluster 1, as 
well as androsterone derivatives (i.e., androsterone glucuronide 
and	DHEA-S)	 in	cluster	6,	were	 important	 in	the	RF	classification	
model. All these molecules were more abundant in adult partici-
pants.	In	addition,	we	observed	two	glycosylated	amino	acids	that	
were important to the model, namely galactosyl-hydroxylysine and 
glucosyl-galactosyl-hydroxylysine. The level of these molecules 
was decreased in the adult group (Figure S2B). We also found 
creatinine, C-glycosyl tryptophan, γ-carboxyethyl hydroxychro-
man (CEHC) glucuronide, γ-glutamyl-ε-lysine, α-glutamyl-lysine, 
proline-hydroxyproline and acetylcarnosine as main contributors 
in the model.

Correlation network analysis of metabolites selected in the 
model highlighted a cluster of steroid hormones containing andros-
terone derivatives as well as a cluster of xenobiotics coming from 
coffee	consumption	(Figure	4c).	Interestingly,	creatinine	had	a	cen-
tral position in the network and positively associated with 20 me-
tabolites (Bonferroni adjusted p-value <.01) bridging the two main 

TA B L E  1   Cohort demographics

 

 

<16 years ≥16 years Total

Individuals	(twin	
sets)

53 (25) 215a (100) 268	(125)

Age in years 
(mean, SD)

7.0	±	4.1 42.5	±	17.3 35.5	±	21.1

Sex	%	female	(n) 45.3%	(24) 69.8%	(150) 64.9%	(174)

BMI	(mean,	SD) 16.0	±	2.7 27.0	±	6.3 24.9	±	7.2

Monozygotic 
individuals	%	of	
twins (n)

64.0%	(32)b 91.0%	(182) 85.6%	(214)

a12 Singletons, 1 set of triplets. 
bZygosity unknown for 1 twin pair. 

F I G U R E  2   Metabolic aging trajectories. Fuzzy c-mean clustering of all 770 metabolite abundances fitted to a loess curve and Z-score 
scaled	(black	lines),	adjusted	for	sex	and	BMI,	as	a	function	of	age	in	years.	Average	trend	of	clusters	is	shown	as	a	red	line.	Pathways	with	
FDR < 0.1 are considered significant and displayed
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clusters containing androgenic hormones and xenobiotics. Clinically, 
plasma creatinine is used to monitor renal function and was found to 
increase with age in our cohort (Shlipak et al., 2009; Tiao, Semmens, 
Masarei, & Lawrence-Brown, 2002).

Interestingly,	 the	 metabolites	 selected	 in	 the	 two	 RF	 mod-
els generated to predict age in a healthy adult population and to 

classify pediatric and adult participants presented little overlap 
(n = 7 metabolites). While the regression RF model successfully 
selected metabolites involved in energy metabolism (i.e., amino 
acid and lipid metabolism), the classification model selected many 
xenobiotics including metabolites derived from the consumption 
of coffee.

F I G U R E  3   Regression model Random Forest analysis. (a) Significant metabolites in the regression RF model ordered by importance and 
color-coded by cluster. (b) 2D scatter plot representing predicted age vs. actual age. MSE = mean squared error. (c) Correlation network 
analysis of significant metabolites in the model. Nodes are colored by metabolic class and sized by betweenness centrality. Edges are colored 
by association direction

(a) (b)

(c)
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2.6 | Variability of metabolic profiles in twin pairs as 
a function of age

Since our cohort was enriched for twin pairs, and specifically mo-
nozygotic pairs, we assessed the variability of metabolic profiles 
between twins with age. As expected, we found that the Spearman 
rank correlation coefficient calculated across all detected me-
tabolites was significantly higher between twin samples (median 
rho	 =	 0.894)	 than	 between	 age-	 and	 sex-matched	 participants	
(median	 rho	 =	 0.835,	p = 2.7E-31), age-matched participants (me-
dian	rho	=	0.831,	p	=	6.4E-36),	and	randomly	selected	pairs	(median	
rho	=	0.825,	p	=	8.5E-40)	 (Figure	5a).	Linear	modeling	of	pairwise	
Spearman's correlation as a function of age resulted in a significant 
negative term for age in twins (p = 1.1E-3) as well as age- and sex-
matched (p = 4.1E-4) and age-matched pairs (p = 5.2E-3). Random 
pairs without age or sex matching showed no significant association 

of Spearman's rank correlations and age (p	 =	 .36)	 (Figure	5b).	The	
results in twins were not driven by twin status since the cohort had 
more dizygotic twins in pediatric than in adult individuals (Table 1). 
Via linear model, we calculated that the pairwise correlation between 
metabolic	profiles	of	a	given	twin	pair	decreases	by	0.0005906	each	
year. These observations may reflect the impact of differential envi-
ronmental exposure on twin pairs that accumulate with age.

3  | DISCUSSION

Metabolomics has become a popular approach to study biologi-
cal processes associated with age and has been applied in various 
human studies (Barzilai et al., 2012; Collino et al., 2013; López-
Otín	et	al.,	2013;	Montoliu	et	al.,	2014;	Rinschen	et	al.,	2019).	Our	
study expands on previous work by profiling 770 chemically diverse 

F I G U R E  4   Classification model Random Forest analysis. (a) Significant metabolites in the classification RF model ordered by importance 
and color-coded by cluster. (b) Two-way table of the classification model. (c) Correlation network analysis of significant metabolites in the 
model. Nodes are colored by metabolic class and sized by betweenness centrality. Edges are colored by association direction

(a) (b)

(c)
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plasma metabolites from twin pairs of pediatric and adult partici-
pants (n	=	268)	with	an	even	distribution	of	age	(6	months	to	82	years	
old). We used a sensitive and robust LC-MS platform involving com-
plementary	hydrophilic	liquid	chromatography	(HILIC)	and	reverse-
phase liquid chromatography (RPLC) separations to capture a wide 
array of metabolites covering 59 biochemical pathways (Contrepois 
et	al.,	2015).	Our	novel	bioinformatic	approach	combining	unsuper-
vised clustering, machine learning and correlation networks reca-
pitulated known biology but also led to discoveries.

Regression and classification RF selected a small number of me-
tabolites that successfully predicted age in an adult population and 
classified pediatric and adult participants. Xenobiotics were among 
the strongest predictors that differentiated pediatric and adult par-
ticipants and included many metabolites associated with coffee con-
sumption (i.e., caffeine). These molecules were much more abundant 
in the blood of adult subjects (cluster 1) which was expected given 
that coffee is frequently ingested by adults but rarely by children 
(Azam, Hadi, Khan, & Hadi, 2003; Fulgoni, Keast, & Lieberman, 
2015). These results validate our study demonstrating that we 
generated good quality untargeted metabolomics data and we em-
ployed an efficient bioinformatic approach to extract meaningful 
biology from the data.

The classification model revealed two glycosylated forms of 
hydroxylysine found in collagen. Galactosyl-hydroxylysine is a 
marker of bone resorption (Al-Dehaimi, Blumsohn, & Eastell, 1999). 
Previous studies found galactosyl-hydroxylysine to be (a) higher in 
the blood of girls compared with premenopausal women reflecting 
high bone turnover and (b) higher in postmenopausal compared with 
premenopausal women reflecting higher bone resorption rates in 

postmenopausal older women due to estrogen deficiency related 
with	menopause	(Feng	&	McDonald,	2011).	Our	data	validate	these	
findings with galactosyl-hydroxylysine describing a positive para-
bolic trajectory (cluster 5), and we found that glucosyl-galactosyl-hy-
droxylysine follows the same aging trajectory.

As expected, androsterone and progesterone derivatives 
were selected by machine learning algorithms because they 
vary greatly with age (Darst et al., 2019; Feldman et al., 2002). 
Dehydroepiandrosterone sulfate (DHEA-S), a sulfate ester of adre-
nal steroid dehydroepiandrosterone (DHEA), was selected with both 
models.	 Its	 levels	are	known	 to	correlate	 strongly	with	age,	and	 it	
has been shown to be an important regulator of some age-related 
biological processes (Feldman et al., 2002). However, neither DHEA 
nor low-dose testosterone replacement in elderly people presented 
physiologically	relevant	beneficial	effects	(Nair	et	al.,	2006).	Steroid	
hormones showed a negative parabolic pattern, with levels spiking 
at	around	age	30	that	decay	throughout	adulthood	(cluster	6).

In	 addition	 to	 steroid	 hormones,	 many	 amino	 acids	 and	 lipids	
were selected in the models. We detected some expected changes 
including an accumulation with age of citrulline and cystine, a di-
meric form of cysteine, presumably due to impaired muscle function 
in	 the	 elderly	 (Pitkänen,	Oja,	Kemppainen,	 Seppä,	&	Mero,	 2003).	
Importantly,	our	study	included	pediatrics	samples	which	allows	to	
discriminate metabolites based on their changes before puberty. 
Even though citrulline and cystine are both known to increase with 
age, we found that they belonged to different clusters. Citrulline, 
in cluster 5, presented a parabolic curve with decreased levels with 
age before puberty followed by an increase with age in adults while 
cystine in cluster 4 remained constant before puberty and increased 

F I G U R E  5   Variability of metabolic profiles in twins. (a) Spearman's correlation of the whole collection of metabolites between various 
pairs of individuals. p-value shown was calculated via Kruskal–Wallis test. (b) Spearman's correlation plotted as a function of age shows a 
significant decreasing trend over time in twins

(a) (b)
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with age in the adult population. These findings demonstrate the 
power of our approach to discover new metabolic aging trajectories 
throughout the human lifespan.

We also observed some modified amino acids that accumulated 
with age (cluster 4). Phenylacteylglutamine was important in the re-
gression	model	(8th	position)	and	has	been	described	as	a	marker	of	
healthy	aging	 (Collino	et	 al.,	2013).	 Interestingly,	 it	 is	produced	by	
the gut microbiome from amino acid fermentation which is in line 
with the growing body of literature related to gut microbial composi-
tion	shift	with	age	(Nagpal	et	al.,	2018;	Yatsunenko	et	al.,	2012).	We	
also detected C-glycosyl tryptophan in cluster 4 that was shown to 
strongly correlate with chronological age (Menni et al., 2013).

Two polyunsaturated fatty acids, arachidonic acid (AA), and 
eicosapentaenoic acid (EPA) were highlighted in our analysis and 
positively associated with age (cluster 4). Even though docosahex-
aenoic acid (DHA) was not selected in the models, it presented the 
same	 longitudinal	 trajectory	 as	 AA	 and	 EPA	 (Otsuka,	 Kato,	 Imai,	
Ando, & Shimokata, 2013). These molecules are important modu-
lators of cardiovascular health and inflammation (James, Gibson, & 
Cleland,	2000).	 In	a	 recent	 study,	Deelen	et	al.	 (2019)	 identified	a	
metabolic signature containing 14 biomarkers predictive of all-cause 
mortality.	Interestingly,	polyunsaturated	fatty	acids	were	important	
molecules both in their model to predict all-cause mortality indepen-
dent of age and sex and in our model to predict age.

Correlation network analysis revealed that creatinine presented 
the most connections in the classification model highlighting its cen-
tral role in the aging process. Creatinine is an important molecule 
that is used to measure renal function in the clinic and was found 
to increase strongly with age in the pediatrics cohort (cluster 1). 
Unknown	metabolite	C12H25N3O3	was	central	 in	 the	correlation	
network for the regression model bridging steroid hormones, free 
fatty acids, and amino acids which highlights its potential functions 
in	 the	 biological	 process	 of	 aging	 in	 healthy	 adults.	 Interestingly,	
some unknown metabolites were among the most important mol-
ecules	 in	 our	models	with	C9H17NO3	 that	was	 ranked	1st	 in	 the	
regression RF model.

Importantly,	the	longitudinal	trajectories	of	metabolites	with	age	
described in our analysis are best generalized as parabolic. Hence, a 
model using a second-order term (y = β*age2 + β*age) should be more 
appropriate than a simple linear model of age (y = β*age) to identify 
metabolites associated with age. Linear models have been widely 
used potentially impacting accuracy and significance of the findings 
(Menni et al., 2013; Yu et al., 2012).

We are the first, to our knowledge, to show a decrease in 
Spearman's rank correlation between twins’ untargeted metabolic 
profiles as age increases. This observation is likely explained by 
the influence of nongenetic factors including lifestyle and envi-
ronmental exposure on the metabolome. This increased variability 
with age was also observed in other biological systems such as the 
immune	system	 (Brodin	et	al.,	2015;	Cheung	et	al.,	2018).	The	av-
erage	change	in	correlation	over	our	cohorts	age	range	of	80	years	
between	 twins	 (−0.0005906/year	 *	 80	 years	 =	 −0.046)	 is	 on	 the	
order of the difference between the average of the twin correlations 

and the average of the random age-matched correlations over the 
same	age	range	(−0.073).	Comparing	these	two	values	helps	to	con-
textualize changes in correlations due to genetic factors, or due to 
aging. The relatively high correlations of metabolic profiles among 
randomly age-matched participants reflect the small variability in 
abundance of most metabolites between healthy individuals. As 
an example, a modest increase of circulating branched-chain amino 
acids	 (10%–20%)	 most	 consistently	 differentiates	 individuals	 with	
insulin	resistance	and/or	type	2	diabetes	(Guasch-Ferré	et	al.,	2016;	
Schüssler-Fiorenza Rose et al., 2019).

This study should be assessed in the context of its limitations. 
First, the participants were not required to fast before the blood draw 
and blood samples were collected at any time of the day. However, 
we demonstrated the biological relevance of the metabolomics data 
generated since we were able to reproduce main expected changes 
associated with age. Second, our study is cross-sectional by design 
which limits its statistical power due to inter-individual variability of 
metabolic profiles. To circumvent this issue, two recent studies pro-
filed metabolites in a longitudinal fashion (Chak et al., 2019; Darst 
et al., 2019). Even though these studies improve the robustness of 
the findings, they do not give insights into mechanisms resulting in 
the observed metabolic changes. Longitudinal multi-omics stud-
ies will likely be key to unravel molecular mechanisms that results 
in age-dependent metabolism dysregulation in human plasma by 
integrating information from multiple regulatory levels (Piening et 
al.,	 2018;	Zhou	et	 al.,	 2019).	 Lastly,	 younger	 twins	most	 likely	 still	
live together or have lived apart for a shorter period of time and, 
thus, have more recently shared environmental exposures than older 
twins, which has to be considered when interpreting the results of 
the twin analysis.

Overall,	 we	 show	 that	 our	 computational	 approach	 involving	
clustering, RF machine learning, and network analysis was successful 
to describe metabolic aging trajectories throughout life and discover 
metabolites and pathways dysregulated with age. Additionally, we 
revealed an increased variability of metabolic profiles in twin pairs 
with age suggesting accumulating effects of differential exposure on 
human metabolome.

4  | E XPERIMENTAL PROCEDURES

4.1 | Study design and participants

A	 cohort	 of	 268	 participants	 enriched	 for	 twins	 was	 recruited	
as	 part	 of	 an	 observational	 study	 (ClinicalTrials.gov	 Identifier:	
NCT01613885),	 which	 included	 twins	 of	 all	 ages	 from	 sites	 in	
Washington	and	California	between	2010	and	2016.	Individuals	with	
an active infection, history of cancer, autoimmune disease, or that 
use oral steroids or immunomodulators were not included in this 
analysis. As such, participants were considered healthy. The cohort 
was composed of 125 twin pairs, 1 triplet set, and 15 singlets con-
sisting of family members or instances of only one twin arriving at 
the	appointment.	In	addition	to	a	routine	examination,	participants	
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completed a detailed questionnaire regarding their medical history 
as	well	as	dietary	habits.	Individual-level	demographic	information,	
self-reported disease status, and self-reported frequent medication 
usage are provided in Table S2. This study was conducted with the 
approval	 of	 Stanford	 University	 Institutional	 Review	 Board	 (IRB-
19495), and all subjects provided signed informed consent before 
participation.

4.2 | Blood collection and plasma preparation

Intravenous	whole-blood	was	collected	nonfasted	and	at	any	time	
of the day in 10 ml EDTA-vacutainer tubes, and plasma was pre-
pared within 24 hr following centrifugation at 2,200 rpm for 20 min 
at 24°C. Blood was kept at room temperature prior to processing. 
The top layer plasma was pipetted off, aliquoted, and immediately 
frozen	 at	−80°C.	Plasma	aliquots	were	de-identified	 in	 agreement	
with CFR/GCP (code of federal regulation/good clinical practice) 
guidelines. Samples from twin pairs were collected the same day at 
the same time.

4.3 | Chemicals

LC-MS-grade solvents and mobile phase modifiers were obtained 
from Fisher Scientific (water, acetonitrile, methanol, formic acid) and 
Sigma-Aldrich (ammonium acetate).

4.4 | Metabolite extraction

Fresh plasma aliquots were used for the study, and metabolites were 
extracted in a randomized order as previously described (Contrepois 
et al., 2015). Briefly, metabolites were prepared from 100 µl of 
plasma using 1:1:1 acetone:acetonitrile:methanol, evaporated to 
dryness under nitrogen, and reconstituted in 1:1 methanol:water.

4.5 | Untargeted metabolomics profiling

Metabolic extracts were analyzed four times using hydrophilic liquid 
chromatography	 (HILIC)	 and	 reverse-phase	 liquid	 chromatography	
(RPLC) separation in both positive and negative ionization modes. 
Data were acquired on a Thermo Q Exactive plus mass spectrometer 
equipped	with	a	HESI-II	probe	and	operated	in	full	MS	scan	mode.	
MS/MS data were acquired on pool samples consisting of an equi-
molar	mixture	of	100	 randomized	 samples	 in	 the	 study.	HILIC	ex-
periments	were	performed	using	a	ZIC-HILIC	column	2.1	×	100	mm,	
3.5 μm, 200Å (Merck Millipore), and mobile phase solvents con-
sisting of 10 mM ammonium acetate in 50/50 acetonitrile/water 
(A) and 10 mM ammonium acetate in 95/5 acetonitrile/water (B). 
RPLC experiments were performed using a Zorbax SBaq column 
2.1	×	50	mm,	1.7	μm, 100Å (Agilent Technologies), and mobile phase 

solvents	consisting	of	0.06%	acetic	acid	in	water	(A)	and	0.06%	ace-
tic acid in methanol (B).

Data quality was ensured by (a) sample randomization for metab-
olite extraction and data acquisition, (b) multiple injections of a pool 
sample to equilibrate the LC-MS system prior to run the sequence 
(12	and	6	injections	for	HILIC	and	RPLC	methods,	respectively),	(c)	
spike-in	9-labeled	internal	standards	(IS)	during	the	sample	prepara-
tion to control for extraction efficiency and evaluate LC-MS perfor-
mance, (d) checking mass accuracy, retention time, and peak shape 
of	 IS	 in	every	samples,	and	 (e)	 injection	of	a	pool	sample	every	10	
injections to control for signal deviation with time.

4.6 | Data processing and metabolite annotation

Data from each mode were independently analyzed using Progenesis 
QI	 software	 v2.3	 (Nonlinear	 Dynamics).	 Metabolic	 features	 from	
blanks and that did not show sufficient linearity upon dilution were 
discarded (R2	<	.6).	Only	metabolic	features	present	in	>33%	of	the	
samples were kept for further analysis, and missing values were im-
puted	using	minimum	value	 imputation	 (Tyanova	et	 al.,	 2016).	MS	
signal	drift	with	time	was	corrected	for	each	metabolite	using	LOESS	
normalization method (locally estimated scatterplot smoothing Local 
Regression) on pool samples. Data from each mode were merged, and 
metabolites were formally identified by matching the fragmentation 
spectra and retention time to analytical-grade standards when pos-
sible or matching experimental MS/MS to fragmentation spectra in 
publicly available databases. We used the Metabolomics Standards 
Initiative	 (MSI)	 level	of	confidence	 to	grade	metabolite	annotation	
confidence (level 1 - level 4) (Table S1). Level 1 represents formal 
identifications where the biological signal matches accurate mass, 
retention time, and fragmentation spectra of an authentic standard 
ran on the same platform. For level 2 identification, the biological 
signal matches accurate mass and fragmentation spectra available 
in	METLIN	database.	Acylcarnitines,	 free	 fatty	acids,	and	complex	
lipids do not necessarily all have MS/MS data in public databases 
but were annotated based on expected signature fragments. Level 
3 represents putative identifications that are the most likely name 
based on previous knowledge of blood composition. Level 4 con-
sists in unknown metabolites. After careful annotation of the meta-
bolic features, a total of 770 metabolites were measured using our 
metabolite profiling platform. Metabolites were then categorized in 
classes and pathways based on the KEGG database where possible. 
Metabolite abundances (spectral counts) for all participants can be 
found in Table S3.

4.7 | Data analysis and visualization

4.7.1 | Heatmap and principal component analysis

Natural log metabolite abundances of all 770 detected metabolites 
(rows)	in	268	individuals	(columns)	were	plotted	as	a	heatmap	using	
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the	 R	 package	 “pheatmap”	 (v1.0.8).	 Principal	 component	 analysis	
was performed using the function prcomp in the base “stats” pack-
age in R (v3.3.3). Abundances were natural log-transformed and 
scaled by metabolite using the Z-score method (mean of zero and 
standard	 deviation	 of	 1)	 prior	 to	 the	 analysis.	 In	 order	 to	 identify	
the 2 principal components (PCs) most strongly associated with age, 
we applied linear regression models between PC scores and age for 
each PC and selected the 2 PC with the smallest p values. The 4th 
and 5th PCs ordered by overall variation were selected.

4.7.2 | Variance partition analysis

Variance partition was performed using the “variancePartition” 
package	in	R	(v1.4.2).	Age	and	BMI	were	considered	continuous	vari-
ables	whereas	sex,	asthma	status	 (GINA	scoring)	defined	by	a	pul-
monologist (Bousquet, 2000), smoking, and second-hand smoking 
exposure were considered categorical variables.

4.7.3 | Clustering of metabolic aging trajectories

Fuzzy c-means clustering was performed using the R package 
“Mfuzz” (v2.20.0). Data inputted into the clustering algorithm 
were	created	by	fitting	a	LOESS	model	of	age	in	years	(6	months	to	
82	years)	vs.	metabolite	abundances	using	span	=	0.75	with	R	pack-
age “stats” (v3.3.3). Data were then scaled so that the mean equal 0 
and the standard deviation equal 1 for each metabolite. We calcu-
lated the minimum centroid distance for a range of cluster numbers 
and chose six clusters as the optimal number of clusters.

4.7.4 | Random forest prediction modeling

Two predictive models were generated using random forest (RF) al-
gorithm	(“RandomForest”	package	in	R	(v4.6)).	The	regression	model	
used	 age	 as	 a	 continuous	 variable	 in	 adult	 population	 (≥16	 years	
old).	Importance	values	were	assessed	(“importance	=	T”).	The	clas-
sification model used age as a discrete variable to distinguish adults 
(≥16	years	old)	from	pediatrics	subjects	(<16	years	old).	Abundance	
profiles of all metabolite were natural log-transformed and adjusted 
for	sex	and	BMI	using	a	linear	model	prior	to	modeling.	Significance	
was defined as the model importance metric greater than the abso-
lute value of the most negative metabolite. Sub-sampling (“sampsize” 
parameter) was utilized when performing the classification model on 
the adult group to account for the unbalanced size between pediat-
ric and adult populations in the cohort.

4.7.5 | Correlation network analysis

Pairwise Spearman's rank correlations were calculated using the 
R package “Hmisc” (v3.15–0), and weighted, undirected networks 

were plotted with “igraph” (v0.7.1). Correlations with Bonferroni 
adjusted p-values below 0.01 were included and displayed via the 
Fruchterman–Reingold	method.	Only	vertices	with	at	least	one	con-
nection were plotted. Nodes were color-coded by chemical classes, 
and their size represents the betweenness centrality.

4.7.6 | Pathway enrichment analysis

Pathway enrichment analysis was performed using hypergeometric 
tests and the background of the detected metabolites in the study. p 
values were adjusted for multiple comparisons using Benjamini and 
Hochberg correction (Benjamini, 2010).

4.7.7 | Twin metabolic variability

To evaluate metabolic variability between twins, we calculated 
Spearman's rank correlations using all the detected metabolites (R 
package “stats” (v 3.3.3)). We also calculated the Spearman's rank 
correlations between randomly selected, age-matched, and be-
tween randomly selected, sex- and age-matched pairs. Age match-
ing was done by randomly selecting an individual within three years 
of age. We also included a set of randomly selected pairs without 
any matching restrictions. Singlets were not included in this analy-
sis. For triplet participants, we randomly picked two sex-matched 
triplets.
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