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1  | INTRODUC TION

Aging is a complex and multi-factorial process that involves sys-
tem-wide dysregulation across many biological pathways and molecule 
types (Hoffman, Lyu, Pletcher, & Promislow, 2017). Understanding 

mechanisms of healthy aging in humans is important because early 
detection of deviations from a healthy aging trajectory could be used 
to promote longevity by delaying, avoiding, or preventing the devel-
opment of age-related diseases (Alpert et al., 2019). However, this 
task has been challenging in part because of the complex interplay 
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Abstract
Aging is intimately linked to system-wide metabolic changes that can be captured 
in blood. Understanding biological processes of aging in humans could help main-
tain a healthy aging trajectory and promote longevity. We performed untargeted 
plasma metabolomics quantifying 770 metabolites on a cross-sectional cohort of 268 
healthy individuals including 125 twin pairs covering human lifespan (from 6 months 
to 82 years). Unsupervised clustering of metabolic profiles revealed 6 main aging tra-
jectories throughout life that were associated with key metabolic pathways such as 
progestin steroids, xanthine metabolism, and long-chain fatty acids. A random forest 
(RF) model was successful to predict age in adult subjects (≥16 years) using 52 metab-
olites (R2 = .97). Another RF model selected 54 metabolites to classify pediatric and 
adult participants (out-of-bag error = 8.58%). These RF models in combination with 
correlation network analysis were used to explore biological processes of healthy 
aging. The models highlighted established metabolites, like steroids, amino acids, and 
free fatty acids as well as novel metabolites and pathways. Finally, we show that 
metabolic profiles of twins become more dissimilar with age which provides insights 
into nongenetic age-related variability in metabolic profiles in response to environ-
mental exposure.
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of genetic, environmental, and lifestyle factors involved in aging. 
Metabolomics—the unbiased profiling of a large panel of metabolites—
has become the approach of choice to study aging with the realization 
that metabolic alterations are central to the aging process (Barzilai, 
Huffman, Muzumdar, & Bartke, 2012; Collino et al., 2013; López-Otín, 
Blasco, Partridge, Serrano, & Kroemer, 2013; Montoliu et al., 2014). In 
addition, metabolomics captures genetic and nongenetic factors since 
metabolites are influenced by the biology of the host, gut microbial 
activity, and environmental exposure (Rinschen, Ivanisevic, Giera, & 
Siuzdak, 2019). Recent studies combining genetic and metabolic pro-
files in twins were instrumental in quantifying the relative influence 
of genetic and environmental factors on blood metabolite levels and 
showed a wide range of heritability largely dependent on chemical 
classes (Darst, Koscik, Hogan, Johnson, & Engelman, 2019; Kettunen 
et al., 2012; Long et al., 2017; Shin et al., 2014).

In the recent years, metabolomics has been successfully applied 
to the study of human aging highlighting many biomarkers and bio-
logical pathways associated with age (Chaleckis, Murakami, Takada, 
Kondoh, & Yanagida, 2016; Menni et al., 2013; Rist et al., 2017; Yu 
et al., 2012). Through various modeling and experimental method-
ologies, steroids, amino and fatty acids, and biomarkers of kidney 
function have been found to have significant associations with aging. 
However, these studies were often limited by the age range of par-
ticipants focusing on adults (>18 years old) and by the range of me-
tabolites covered (~100–500).

In this context, we profiled a wide array of 770 metabolites in 
blood from a cross-sectional cohort of healthy individuals enriched 
for twin pairs and aged 6 months to 82 years old. The aim of the 
study was threefold: (a) describe longitudinal trends of changes with 
age, (b) identify metabolites and pathways associated with age using 
random forest (RF) machine learning algorithm (regression and clas-
sification models), and (c) investigate biological variability of meta-
bolic profiles in twin pairs with age.

2  | RESULTS

2.1 | Cohort characteristics and generation of 
untargeted metabolomics data

A cohort consisting of 268 healthy individuals including 125 twin 
pairs was recruited with the objective of having an even distribution 
of ages across a human lifespan (6 months to 82 years old) (Figure 1a). 
Demographic characteristics are shown in Table 1. The cohort was 
divided in two groups including pediatric (<16 years old) and adult 
participants (16–82 years) with the assumption that puberty is over 
at age 16. The pediatric population contained fewer female par-
ticipants (45.3% vs. 69.8%) and a lower percentage of monozygotic 
twins among the twin pairs (64% vs. 91%) than the adult population.

Untargeted metabolomics was performed on randomized plasma 
samples using a broad range liquid chromatography-mass spectrom-
etry (LC-MS) platform (Contrepois, Jiang, & Snyder, 2015). This plat-
form uses complementary hydrophilic liquid chromatography (HILIC) 

and reverse-phase liquid chromatography (RPLC) separations cou-
pled with high-resolution mass spectrometry (HRMS). Over 17,000 
MS peaks were robustly detected. After filtering and curation, 770 
metabolites could be identified (Figure 1a). The named metabolites 
were categorized in eight main chemical classes and 59 pathways 
to help biological interpretation and enrichment analysis (Table S1). 
Annotation confidence levels for each metabolite were provided 
following the Metabolomics Standards Initiative (MSI) confidence 
scheme (Table S1) (Schymanski et al., 2014; Sumner et al., 2007).

2.2 | Metabolic profiles are influenced by age

Variance decomposition was performed on recorded confound-
ers including age, body mass index (BMI), sex, asthma status (GINA 
score) (Bousquet, 2000), smoking and second-hand smoking status 
(Figure S1). Among the tested variables, age showed the most vari-
ance in our dataset (1.01% median, 44.50% maximum). In addition, 
a global aging trajectory in the cohort could be visualized in two di-
mensions by plotting the principal components (PCs) PC4 (p = 2.2E-
12) and PC5 (p = 1.4E-15) that associated the most strongly with age 
(see methods, Figure 1b).

2.3 | Metabolic aging trajectories

We took advantage of the even age distribution of our cohort across 
a pediatric and an adult population and defined six clusters based 
on metabolite aging trajectories (Figure 2, Table S1). Pathway en-
richment analysis via hypergeometric testing was used to highlight 
biological functions enriched in each cluster (FDR < 0.1). Clusters 1, 
4, 5, and 6 contained 84% of the metabolites. Metabolites in cluster 
1 increased strongly until adult age and then tended to slowly in-
crease with age. The metabolites belonging to this cluster were en-
riched for xanthine and histidine metabolism. Cluster 4 was enriched 
for acylcarnitines, as well as long and polyunsaturated fatty acids. 
Molecules in this cluster tended to remain constant at young age and 
linearly increased with age after the onset of adulthood. Clusters 
5 and 6 presented opposing parabolic shapes with metabolites de-
creasing at early age and then increasing at adult age for cluster 5 
and vice versa in cluster 6. The latter cluster was enriched for mono-
acylglycerols and progestin steroids. On average, metabolites in 
cluster 5 reached a minimum at age 29.6 ± 9.2 years (mean, standard 
deviation) and metabolites in cluster 6 were the most concentrated 
at age 31.0 ± 11.2 years. These cluster classifications were used to 
guide biological interpretations in the sections below.

2.4 | Machine learning reveals metabolites 
associated with age in a healthy adult population

A regression random forest (RF) model analysis to predict age was 
performed on adults aged 16 years and older to focus on healthy 
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aging in adults (n  =  215). The dataset was modeled to correct for 
BMI and sex as these demographics are known to cause variability in 
metabolic profiles (Darst et al., 2019; Piening et al., 2018) (Figure S1). 
A model containing 52 metabolites (Figure 3a) successfully predicted 
healthy aging in adults with a mean squared error of 4.45, R-square 
of 0.97, and 54.78% of variance explained (Figure 3b). Interestingly, 
metabolites in clusters 4 (increase with age) and 6 (decrease with 
age) dominated representing 50.0% and 19.2% of the selected me-
tabolites, respectively. As expected, androsterone and progesterone 
derivatives contributed the most to the model (Darst et al., 2019; 
Feldman  et al., 2002) including dehydroisoandrosterone sulfate 
(DHEA-S), pregnanolone sulfate, and 16-α-hydroxy-DHEA-3-sulfate, 
of which all presided in cluster 6. In addition to steroid hormones, 
metabolites involved in amino acid (i.e., phenylacetylglutamine, cys-
tine, phenylalanine, citrulline, tryptophan) and lipid metabolism (i.e., 
sn-glycero-3-phosphoethanolamine and polyunsaturated fatty acids 

eicosapentaenoic acid and arachidonic acid) contributed to the RF 
model. Three unknown metabolites with elemental compositions 
C9H17NO3, C19H34O15, and C21H34O6S were among the most 
important metabolites in the model but could not be confidently an-
notated. Further work would be necessary to formally identify these 
molecules. Interestingly, C19H34O15 and C21H34O6S resided in 
cluster 6 and had the same longitudinal pattern of change with age 
as androsterone and progesterone derivatives suggesting similar 
function and/or structure (Figure S2A). The unknown metabolite 
with the elemental composition C9H17NO3 displayed a different 
aging trajectory with a positive linear association in adulthood as 
seen in cluster 4.

Correlation network analysis of metabolites included in the RF 
model revealed distinct functional clusters of co-regulated metab-
olites including androgenic and progestin hormones, fatty acids, 
and amino acids (Figure 3c). Betweenness centrality that represents 

F I G U R E  1   Untargeted metabolomics 
of aging plasma. (a) Natural log metabolite 
abundances of all 770 detected 
metabolites (rows) in 268 individuals 
(columns) ranging from low (blue) to 
high (red). Metabolites are ordered by 
metabolic class and median intensity 
across all the samples in the study, and 
individuals are ordered chronologically 
by age. (b) Principal component analysis 
using the top two principal components 
associated with age (i.e., PC4 and PC5). 
Association with age is calculated via 
linear modeling of each PC

(a)

(b)
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the importance of the node in the network was calculated for each 
metabolite. Interestingly, the unknown metabolite with elemental 
composition C12H25N3O3, residing in cluster 4, was central in the 
network and was ranked 9th for its importance in the RF regression 
model, suggesting it may have a critical function in the aging process.

2.5 | Machine learning reveals metabolites that 
distinguish pediatric and adult participants

Next, we were interested in identifying the metabolites that 
would classify samples from pediatric (n = 53) and adult (n = 215) 

participants. An RF classification model determined 54 metabolites 
(Figure 4a) important in differentiating pediatric participants from 
adults with an out-of-bag estimate of error of 8.58%. In contrast to 
the regression model, the classification model selected metabolites 
enriched in cluster 1 (more abundant in adults) and 5 (less abundant 
in adults) representing 40.7% and 24.1%, respectively. The classi-
fication error was very small for adults (3%) and was greater for 
pediatric participants (28%) likely because of the smaller sample 
size of the latter (Figure 4b). As expected, metabolite biomarkers 
for the consumption of coffee (i.e., caffeine, theophylline, trigo-
nelline, quinic acid and 1-methyl uric acid), residing in cluster 1, as 
well as androsterone derivatives (i.e., androsterone glucuronide 
and DHEA-S) in cluster 6, were important in the RF classification 
model. All these molecules were more abundant in adult partici-
pants. In addition, we observed two glycosylated amino acids that 
were important to the model, namely galactosyl-hydroxylysine and 
glucosyl-galactosyl-hydroxylysine. The level of these molecules 
was decreased in the adult group (Figure S2B). We also found 
creatinine, C-glycosyl tryptophan, γ-carboxyethyl hydroxychro-
man (CEHC) glucuronide, γ-glutamyl-ε-lysine, α-glutamyl-lysine, 
proline-hydroxyproline and acetylcarnosine as main contributors 
in the model.

Correlation network analysis of metabolites selected in the 
model highlighted a cluster of steroid hormones containing andros-
terone derivatives as well as a cluster of xenobiotics coming from 
coffee consumption (Figure 4c). Interestingly, creatinine had a cen-
tral position in the network and positively associated with 20 me-
tabolites (Bonferroni adjusted p-value <.01) bridging the two main 

TA B L E  1   Cohort demographics

 

 

<16 years ≥16 years Total

Individuals (twin 
sets)

53 (25) 215a (100) 268 (125)

Age in years 
(mean, SD)

7.0 ± 4.1 42.5 ± 17.3 35.5 ± 21.1

Sex % female (n) 45.3% (24) 69.8% (150) 64.9% (174)

BMI (mean, SD) 16.0 ± 2.7 27.0 ± 6.3 24.9 ± 7.2

Monozygotic 
individuals % of 
twins (n)

64.0% (32)b 91.0% (182) 85.6% (214)

a12 Singletons, 1 set of triplets. 
bZygosity unknown for 1 twin pair. 

F I G U R E  2   Metabolic aging trajectories. Fuzzy c-mean clustering of all 770 metabolite abundances fitted to a loess curve and Z-score 
scaled (black lines), adjusted for sex and BMI, as a function of age in years. Average trend of clusters is shown as a red line. Pathways with 
FDR < 0.1 are considered significant and displayed
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clusters containing androgenic hormones and xenobiotics. Clinically, 
plasma creatinine is used to monitor renal function and was found to 
increase with age in our cohort (Shlipak et al., 2009; Tiao, Semmens, 
Masarei, & Lawrence-Brown, 2002).

Interestingly, the metabolites selected in the two RF mod-
els generated to predict age in a healthy adult population and to 

classify pediatric and adult participants presented little overlap 
(n  =  7 metabolites). While the regression RF model successfully 
selected metabolites involved in energy metabolism (i.e., amino 
acid and lipid metabolism), the classification model selected many 
xenobiotics including metabolites derived from the consumption 
of coffee.

F I G U R E  3   Regression model Random Forest analysis. (a) Significant metabolites in the regression RF model ordered by importance and 
color-coded by cluster. (b) 2D scatter plot representing predicted age vs. actual age. MSE = mean squared error. (c) Correlation network 
analysis of significant metabolites in the model. Nodes are colored by metabolic class and sized by betweenness centrality. Edges are colored 
by association direction

(a) (b)

(c)
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2.6 | Variability of metabolic profiles in twin pairs as 
a function of age

Since our cohort was enriched for twin pairs, and specifically mo-
nozygotic pairs, we assessed the variability of metabolic profiles 
between twins with age. As expected, we found that the Spearman 
rank correlation coefficient calculated across all detected me-
tabolites was significantly higher between twin samples (median 
rho  =  0.894) than between age- and sex-matched participants 
(median rho  =  0.835, p  =  2.7E-31), age-matched participants (me-
dian rho = 0.831, p = 6.4E-36), and randomly selected pairs (median 
rho = 0.825, p = 8.5E-40) (Figure 5a). Linear modeling of pairwise 
Spearman's correlation as a function of age resulted in a significant 
negative term for age in twins (p = 1.1E-3) as well as age- and sex-
matched (p = 4.1E-4) and age-matched pairs (p = 5.2E-3). Random 
pairs without age or sex matching showed no significant association 

of Spearman's rank correlations and age (p  =  .36) (Figure 5b). The 
results in twins were not driven by twin status since the cohort had 
more dizygotic twins in pediatric than in adult individuals (Table 1). 
Via linear model, we calculated that the pairwise correlation between 
metabolic profiles of a given twin pair decreases by 0.0005906 each 
year. These observations may reflect the impact of differential envi-
ronmental exposure on twin pairs that accumulate with age.

3  | DISCUSSION

Metabolomics has become a popular approach to study biologi-
cal processes associated with age and has been applied in various 
human studies (Barzilai et al., 2012; Collino et al., 2013; López-
Otín et al., 2013; Montoliu et al., 2014; Rinschen et al., 2019). Our 
study expands on previous work by profiling 770 chemically diverse 

F I G U R E  4   Classification model Random Forest analysis. (a) Significant metabolites in the classification RF model ordered by importance 
and color-coded by cluster. (b) Two-way table of the classification model. (c) Correlation network analysis of significant metabolites in the 
model. Nodes are colored by metabolic class and sized by betweenness centrality. Edges are colored by association direction

(a) (b)

(c)
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plasma metabolites from twin pairs of pediatric and adult partici-
pants (n = 268) with an even distribution of age (6 months to 82 years 
old). We used a sensitive and robust LC-MS platform involving com-
plementary hydrophilic liquid chromatography (HILIC) and reverse-
phase liquid chromatography (RPLC) separations to capture a wide 
array of metabolites covering 59 biochemical pathways (Contrepois 
et al., 2015). Our novel bioinformatic approach combining unsuper-
vised clustering, machine learning and correlation networks reca-
pitulated known biology but also led to discoveries.

Regression and classification RF selected a small number of me-
tabolites that successfully predicted age in an adult population and 
classified pediatric and adult participants. Xenobiotics were among 
the strongest predictors that differentiated pediatric and adult par-
ticipants and included many metabolites associated with coffee con-
sumption (i.e., caffeine). These molecules were much more abundant 
in the blood of adult subjects (cluster 1) which was expected given 
that coffee is frequently ingested by adults but rarely by children 
(Azam, Hadi, Khan, & Hadi, 2003; Fulgoni, Keast, & Lieberman, 
2015). These results validate our study demonstrating that we 
generated good quality untargeted metabolomics data and we em-
ployed an efficient bioinformatic approach to extract meaningful 
biology from the data.

The classification model revealed two glycosylated forms of 
hydroxylysine found in collagen. Galactosyl-hydroxylysine is a 
marker of bone resorption (Al-Dehaimi, Blumsohn, & Eastell, 1999). 
Previous studies found galactosyl-hydroxylysine to be (a) higher in 
the blood of girls compared with premenopausal women reflecting 
high bone turnover and (b) higher in postmenopausal compared with 
premenopausal women reflecting higher bone resorption rates in 

postmenopausal older women due to estrogen deficiency related 
with menopause (Feng & McDonald, 2011). Our data validate these 
findings with galactosyl-hydroxylysine describing a positive para-
bolic trajectory (cluster 5), and we found that glucosyl-galactosyl-hy-
droxylysine follows the same aging trajectory.

As expected, androsterone and progesterone derivatives 
were selected by machine learning algorithms because they 
vary greatly with age (Darst et al., 2019; Feldman et al., 2002). 
Dehydroepiandrosterone sulfate (DHEA-S), a sulfate ester of adre-
nal steroid dehydroepiandrosterone (DHEA), was selected with both 
models. Its levels are known to correlate strongly with age, and it 
has been shown to be an important regulator of some age-related 
biological processes (Feldman et al., 2002). However, neither DHEA 
nor low-dose testosterone replacement in elderly people presented 
physiologically relevant beneficial effects (Nair et al., 2006). Steroid 
hormones showed a negative parabolic pattern, with levels spiking 
at around age 30 that decay throughout adulthood (cluster 6).

In addition to steroid hormones, many amino acids and lipids 
were selected in the models. We detected some expected changes 
including an accumulation with age of citrulline and cystine, a di-
meric form of cysteine, presumably due to impaired muscle function 
in the elderly (Pitkänen, Oja, Kemppainen, Seppä, & Mero, 2003). 
Importantly, our study included pediatrics samples which allows to 
discriminate metabolites based on their changes before puberty. 
Even though citrulline and cystine are both known to increase with 
age, we found that they belonged to different clusters. Citrulline, 
in cluster 5, presented a parabolic curve with decreased levels with 
age before puberty followed by an increase with age in adults while 
cystine in cluster 4 remained constant before puberty and increased 

F I G U R E  5   Variability of metabolic profiles in twins. (a) Spearman's correlation of the whole collection of metabolites between various 
pairs of individuals. p-value shown was calculated via Kruskal–Wallis test. (b) Spearman's correlation plotted as a function of age shows a 
significant decreasing trend over time in twins

(a) (b)
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with age in the adult population. These findings demonstrate the 
power of our approach to discover new metabolic aging trajectories 
throughout the human lifespan.

We also observed some modified amino acids that accumulated 
with age (cluster 4). Phenylacteylglutamine was important in the re-
gression model (8th position) and has been described as a marker of 
healthy aging (Collino et al., 2013). Interestingly, it is produced by 
the gut microbiome from amino acid fermentation which is in line 
with the growing body of literature related to gut microbial composi-
tion shift with age (Nagpal et al., 2018; Yatsunenko et al., 2012). We 
also detected C-glycosyl tryptophan in cluster 4 that was shown to 
strongly correlate with chronological age (Menni et al., 2013).

Two polyunsaturated fatty acids, arachidonic acid (AA), and 
eicosapentaenoic acid (EPA) were highlighted in our analysis and 
positively associated with age (cluster 4). Even though docosahex-
aenoic acid (DHA) was not selected in the models, it presented the 
same longitudinal trajectory as AA and EPA (Otsuka, Kato, Imai, 
Ando, & Shimokata, 2013). These molecules are important modu-
lators of cardiovascular health and inflammation (James, Gibson, & 
Cleland, 2000). In a recent study, Deelen et al. (2019) identified a 
metabolic signature containing 14 biomarkers predictive of all-cause 
mortality. Interestingly, polyunsaturated fatty acids were important 
molecules both in their model to predict all-cause mortality indepen-
dent of age and sex and in our model to predict age.

Correlation network analysis revealed that creatinine presented 
the most connections in the classification model highlighting its cen-
tral role in the aging process. Creatinine is an important molecule 
that is used to measure renal function in the clinic and was found 
to increase strongly with age in the pediatrics cohort (cluster 1). 
Unknown metabolite C12H25N3O3 was central in the correlation 
network for the regression model bridging steroid hormones, free 
fatty acids, and amino acids which highlights its potential functions 
in the biological process of aging in healthy adults. Interestingly, 
some unknown metabolites were among the most important mol-
ecules in our models with C9H17NO3 that was ranked 1st in the 
regression RF model.

Importantly, the longitudinal trajectories of metabolites with age 
described in our analysis are best generalized as parabolic. Hence, a 
model using a second-order term (y = β*age2 + β*age) should be more 
appropriate than a simple linear model of age (y = β*age) to identify 
metabolites associated with age. Linear models have been widely 
used potentially impacting accuracy and significance of the findings 
(Menni et al., 2013; Yu et al., 2012).

We are the first, to our knowledge, to show a decrease in 
Spearman's rank correlation between twins’ untargeted metabolic 
profiles as age increases. This observation is likely explained by 
the influence of nongenetic factors including lifestyle and envi-
ronmental exposure on the metabolome. This increased variability 
with age was also observed in other biological systems such as the 
immune system (Brodin et al., 2015; Cheung et al., 2018). The av-
erage change in correlation over our cohorts age range of 80 years 
between twins (−0.0005906/year  *  80  years  =  −0.046) is on the 
order of the difference between the average of the twin correlations 

and the average of the random age-matched correlations over the 
same age range (−0.073). Comparing these two values helps to con-
textualize changes in correlations due to genetic factors, or due to 
aging. The relatively high correlations of metabolic profiles among 
randomly age-matched participants reflect the small variability in 
abundance of most metabolites between healthy individuals. As 
an example, a modest increase of circulating branched-chain amino 
acids (10%–20%) most consistently differentiates individuals with 
insulin resistance and/or type 2 diabetes (Guasch-Ferré et al., 2016; 
Schüssler-Fiorenza Rose et al., 2019).

This study should be assessed in the context of its limitations. 
First, the participants were not required to fast before the blood draw 
and blood samples were collected at any time of the day. However, 
we demonstrated the biological relevance of the metabolomics data 
generated since we were able to reproduce main expected changes 
associated with age. Second, our study is cross-sectional by design 
which limits its statistical power due to inter-individual variability of 
metabolic profiles. To circumvent this issue, two recent studies pro-
filed metabolites in a longitudinal fashion (Chak et al., 2019; Darst 
et al., 2019). Even though these studies improve the robustness of 
the findings, they do not give insights into mechanisms resulting in 
the observed metabolic changes. Longitudinal multi-omics stud-
ies will likely be key to unravel molecular mechanisms that results 
in age-dependent metabolism dysregulation in human plasma by 
integrating information from multiple regulatory levels (Piening et 
al., 2018; Zhou et al., 2019). Lastly, younger twins most likely still 
live together or have lived apart for a shorter period of time and, 
thus, have more recently shared environmental exposures than older 
twins, which has to be considered when interpreting the results of 
the twin analysis.

Overall, we show that our computational approach involving 
clustering, RF machine learning, and network analysis was successful 
to describe metabolic aging trajectories throughout life and discover 
metabolites and pathways dysregulated with age. Additionally, we 
revealed an increased variability of metabolic profiles in twin pairs 
with age suggesting accumulating effects of differential exposure on 
human metabolome.

4  | E XPERIMENTAL PROCEDURES

4.1 | Study design and participants

A cohort of 268 participants enriched for twins was recruited 
as part of an observational study (ClinicalTrials.gov Identifier: 
NCT01613885), which included twins of all ages from sites in 
Washington and California between 2010 and 2016. Individuals with 
an active infection, history of cancer, autoimmune disease, or that 
use oral steroids or immunomodulators were not included in this 
analysis. As such, participants were considered healthy. The cohort 
was composed of 125 twin pairs, 1 triplet set, and 15 singlets con-
sisting of family members or instances of only one twin arriving at 
the appointment. In addition to a routine examination, participants 
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completed a detailed questionnaire regarding their medical history 
as well as dietary habits. Individual-level demographic information, 
self-reported disease status, and self-reported frequent medication 
usage are provided in Table S2. This study was conducted with the 
approval of Stanford University Institutional Review Board (IRB-
19495), and all subjects provided signed informed consent before 
participation.

4.2 | Blood collection and plasma preparation

Intravenous whole-blood was collected nonfasted and at any time 
of the day in 10  ml EDTA-vacutainer tubes, and plasma was pre-
pared within 24 hr following centrifugation at 2,200 rpm for 20 min 
at 24°C. Blood was kept at room temperature prior to processing. 
The top layer plasma was pipetted off, aliquoted, and immediately 
frozen at −80°C. Plasma aliquots were de-identified in agreement 
with CFR/GCP (code of federal regulation/good clinical practice) 
guidelines. Samples from twin pairs were collected the same day at 
the same time.

4.3 | Chemicals

LC-MS-grade solvents and mobile phase modifiers were obtained 
from Fisher Scientific (water, acetonitrile, methanol, formic acid) and 
Sigma-Aldrich (ammonium acetate).

4.4 | Metabolite extraction

Fresh plasma aliquots were used for the study, and metabolites were 
extracted in a randomized order as previously described (Contrepois 
et al., 2015). Briefly, metabolites were prepared from 100  µl of 
plasma using 1:1:1 acetone:acetonitrile:methanol, evaporated to 
dryness under nitrogen, and reconstituted in 1:1 methanol:water.

4.5 | Untargeted metabolomics profiling

Metabolic extracts were analyzed four times using hydrophilic liquid 
chromatography (HILIC) and reverse-phase liquid chromatography 
(RPLC) separation in both positive and negative ionization modes. 
Data were acquired on a Thermo Q Exactive plus mass spectrometer 
equipped with a HESI-II probe and operated in full MS scan mode. 
MS/MS data were acquired on pool samples consisting of an equi-
molar mixture of 100 randomized samples in the study. HILIC ex-
periments were performed using a ZIC-HILIC column 2.1 × 100 mm, 
3.5  μm, 200Å (Merck Millipore), and mobile phase solvents con-
sisting of 10  mM ammonium acetate in 50/50 acetonitrile/water 
(A) and 10  mM ammonium acetate in 95/5 acetonitrile/water (B). 
RPLC experiments were performed using a Zorbax SBaq column 
2.1 × 50 mm, 1.7 μm, 100Å (Agilent Technologies), and mobile phase 

solvents consisting of 0.06% acetic acid in water (A) and 0.06% ace-
tic acid in methanol (B).

Data quality was ensured by (a) sample randomization for metab-
olite extraction and data acquisition, (b) multiple injections of a pool 
sample to equilibrate the LC-MS system prior to run the sequence 
(12 and 6 injections for HILIC and RPLC methods, respectively), (c) 
spike-in 9-labeled internal standards (IS) during the sample prepara-
tion to control for extraction efficiency and evaluate LC-MS perfor-
mance, (d) checking mass accuracy, retention time, and peak shape 
of IS in every samples, and (e) injection of a pool sample every 10 
injections to control for signal deviation with time.

4.6 | Data processing and metabolite annotation

Data from each mode were independently analyzed using Progenesis 
QI software v2.3 (Nonlinear Dynamics). Metabolic features from 
blanks and that did not show sufficient linearity upon dilution were 
discarded (R2 < .6). Only metabolic features present in >33% of the 
samples were kept for further analysis, and missing values were im-
puted using minimum value imputation (Tyanova et al., 2016). MS 
signal drift with time was corrected for each metabolite using LOESS 
normalization method (locally estimated scatterplot smoothing Local 
Regression) on pool samples. Data from each mode were merged, and 
metabolites were formally identified by matching the fragmentation 
spectra and retention time to analytical-grade standards when pos-
sible or matching experimental MS/MS to fragmentation spectra in 
publicly available databases. We used the Metabolomics Standards 
Initiative (MSI) level of confidence to grade metabolite annotation 
confidence (level 1 - level 4) (Table S1). Level 1 represents formal 
identifications where the biological signal matches accurate mass, 
retention time, and fragmentation spectra of an authentic standard 
ran on the same platform. For level 2 identification, the biological 
signal matches accurate mass and fragmentation spectra available 
in METLIN database. Acylcarnitines, free fatty acids, and complex 
lipids do not necessarily all have MS/MS data in public databases 
but were annotated based on expected signature fragments. Level 
3 represents putative identifications that are the most likely name 
based on previous knowledge of blood composition. Level 4 con-
sists in unknown metabolites. After careful annotation of the meta-
bolic features, a total of 770 metabolites were measured using our 
metabolite profiling platform. Metabolites were then categorized in 
classes and pathways based on the KEGG database where possible. 
Metabolite abundances (spectral counts) for all participants can be 
found in Table S3.

4.7 | Data analysis and visualization

4.7.1 | Heatmap and principal component analysis

Natural log metabolite abundances of all 770 detected metabolites 
(rows) in 268 individuals (columns) were plotted as a heatmap using 
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the R package “pheatmap” (v1.0.8). Principal component analysis 
was performed using the function prcomp in the base “stats” pack-
age in R (v3.3.3). Abundances were natural log-transformed and 
scaled by metabolite using the Z-score method (mean of zero and 
standard deviation of 1) prior to the analysis. In order to identify 
the 2 principal components (PCs) most strongly associated with age, 
we applied linear regression models between PC scores and age for 
each PC and selected the 2 PC with the smallest p values. The 4th 
and 5th PCs ordered by overall variation were selected.

4.7.2 | Variance partition analysis

Variance partition was performed using the “variancePartition” 
package in R (v1.4.2). Age and BMI were considered continuous vari-
ables whereas sex, asthma status (GINA scoring) defined by a pul-
monologist (Bousquet, 2000), smoking, and second-hand smoking 
exposure were considered categorical variables.

4.7.3 | Clustering of metabolic aging trajectories

Fuzzy c-means clustering was performed using the R package 
“Mfuzz” (v2.20.0). Data inputted into the clustering algorithm 
were created by fitting a LOESS model of age in years (6 months to 
82 years) vs. metabolite abundances using span = 0.75 with R pack-
age “stats” (v3.3.3). Data were then scaled so that the mean equal 0 
and the standard deviation equal 1 for each metabolite. We calcu-
lated the minimum centroid distance for a range of cluster numbers 
and chose six clusters as the optimal number of clusters.

4.7.4 | Random forest prediction modeling

Two predictive models were generated using random forest (RF) al-
gorithm (“RandomForest” package in R (v4.6)). The regression model 
used age as a continuous variable in adult population (≥16  years 
old). Importance values were assessed (“importance = T”). The clas-
sification model used age as a discrete variable to distinguish adults 
(≥16 years old) from pediatrics subjects (<16 years old). Abundance 
profiles of all metabolite were natural log-transformed and adjusted 
for sex and BMI using a linear model prior to modeling. Significance 
was defined as the model importance metric greater than the abso-
lute value of the most negative metabolite. Sub-sampling (“sampsize” 
parameter) was utilized when performing the classification model on 
the adult group to account for the unbalanced size between pediat-
ric and adult populations in the cohort.

4.7.5 | Correlation network analysis

Pairwise Spearman's rank correlations were calculated using the 
R package “Hmisc” (v3.15–0), and weighted, undirected networks 

were plotted with “igraph” (v0.7.1). Correlations with Bonferroni 
adjusted p-values below 0.01 were included and displayed via the 
Fruchterman–Reingold method. Only vertices with at least one con-
nection were plotted. Nodes were color-coded by chemical classes, 
and their size represents the betweenness centrality.

4.7.6 | Pathway enrichment analysis

Pathway enrichment analysis was performed using hypergeometric 
tests and the background of the detected metabolites in the study. p 
values were adjusted for multiple comparisons using Benjamini and 
Hochberg correction (Benjamini, 2010).

4.7.7 | Twin metabolic variability

To evaluate metabolic variability between twins, we calculated 
Spearman's rank correlations using all the detected metabolites (R 
package “stats” (v 3.3.3)). We also calculated the Spearman's rank 
correlations between randomly selected, age-matched, and be-
tween randomly selected, sex- and age-matched pairs. Age match-
ing was done by randomly selecting an individual within three years 
of age. We also included a set of randomly selected pairs without 
any matching restrictions. Singlets were not included in this analy-
sis. For triplet participants, we randomly picked two sex-matched 
triplets.
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