
����������
�������

Citation: Brausch, L.; Hewener, H.;

Lukowicz, P. Classifying Muscle

States with One-Dimensional

Radio-Frequency Signals from Single

Element Ultrasound Transducers.

Sensors 2022, 22, 2789. https://

doi.org/10.3390/s22072789

Academic Editor: Pawel Strumillo

Received: 2 March 2022

Accepted: 2 April 2022

Published: 5 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Classifying Muscle States with One-Dimensional
Radio-Frequency Signals from Single Element
Ultrasound Transducers
Lukas Brausch 1,* , Holger Hewener 1 and Paul Lukowicz 2

1 Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1,
66280 Sulzbach, Germany; holger.hewener@ibmt.fraunhofer.de

2 Chair of Embedded Intelligence, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 47,
67663 Kaiserslautern, Germany; lukowicz@cs.uni-kl.de

* Correspondence: lukas.brausch@ibmt.fraunhofer.de; Tel.: +49-6897-9071-365

Abstract: The reliable assessment of muscle states, such as contracted muscles vs. non-contracted
muscles or relaxed muscles vs. fatigue muscles, is crucial in many sports and rehabilitation scenarios,
such as the assessment of therapeutic measures. The goal of this work was to deploy machine learning
(ML) models based on one-dimensional (1-D) sonomyography (SMG) signals to facilitate low-cost
and wearable ultrasound devices. One-dimensional SMG is a non-invasive technique using 1-D
ultrasound radio-frequency signals to measure muscle states and has the advantage of being able to
acquire information from deep soft tissue layers. To mimic real-life scenarios, we did not emphasize
the acquisition of particularly distinct signals. The ML models exploited muscle contraction signals
of eight volunteers and muscle fatigue signals of 21 volunteers. We evaluated them with different
schemes on a variety of data types, such as unprocessed or processed raw signals and found that
comparatively simple ML models, such as Support Vector Machines or Logistic Regression, yielded
the best performance w.r.t. accuracy and evaluation time. We conclude that our framework for muscle
contraction and muscle fatigue classifications is very well-suited to facilitate low-cost and wearable
devices based on ML models using 1-D SMG.

Keywords: time series classification; ultrasound; radio-frequency signals; machine learning; muscle
contractions; muscle fatigue; wearables

1. Introduction

The reliable assessment of muscle states, such as contracted muscles vs. non-contracted
muscles or relaxed muscles vs. fatigue muscles, is very crucial in many sports and reha-
bilitation scenarios. Signals from various non-invasive and wearable sensors, such as
force sensors [1], inertial measurement units (IMUs) [2], mechanomyograms (MMGs) [3,4],
surface electromyography (sEMG) [5,6], textile resistive pressure mapping sensors [7]
or a combination of those can be used to determine muscle activities or muscle fatigue.
More recently, mobile and wearable Electrical Impedance Tomography (EIT) has also been
proposed as an imaging method for muscular activities [8].

However, an issue common to all of these techniques is that they only measure
signals from the body surface without obtaining information from deeper tissue layers
entailing the muscles directly. An alternative non-invasive technique relying on signals
extracting information from structures within the body is sonomyography (SMG), which
uses ultrasound (US) to obtain information about skeletal muscles. Two-dimensional
Brightness mode (B-Mode) US images, which are produced with a US transducer array
consisting of several elements, are often used for imaging in SMG-based approaches. A
recent review lists 17 studies making use of B-Mode US for biomonitoring muscle and
tendon dynamics during locomotion [9]. Even though B-Mode US has shown remarkable

Sensors 2022, 22, 2789. https://doi.org/10.3390/s22072789 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072789
https://doi.org/10.3390/s22072789
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8740-5398
https://orcid.org/0000-0003-2191-6053
https://doi.org/10.3390/s22072789
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072789?type=check_update&version=2


Sensors 2022, 22, 2789 2 of 18

accuracies for the classification of various muscle activities and muscle states [9], this
technique is not suitable for simple, low-cost and wearable solutions [10].

1.1. Related Work

In contrast to two-dimensional images, raw one-dimensional Amplitude Mode (A-
Mode) radio frequency (RF) signals can be obtained from comparatively cheap single
element US transducers and single channel transmit/receive electronics and do not require
any sophisticated processing such as beamforming. A-Mode US is a much better option for
low-cost and wearable muscle state recognition solutions and has already been exploited,
partially in combination with other sensors, in previous works.

Pioneering work in the field of single element 1-D SMG has been conducted by Guo et.
al. for the detection of dynamic thickness changes in skeletal muscles during contractions
in 2008 [11] and skeletal muscle assessments for prosthetic controls in 2009 [12]. A follow-
up study evaluated the feasibility of signals stemming from single element 1-D SMG
for controlling a powered prosthesis with one degree of freedom [13]. In 2013, Machine
Learning (ML) algorithms, such as Support Vector Machines (SVMs), and artificial neural
networks (ANNs) were used for the first time on single element 1-D SMG signals to predict
wrist angles [14]. Muscle fatigue states were first examined with single element 1-D SMG
in 2017 by tracking thickness changes of the biceps brachii muscle during the fatigue
process [15]. A comparative analysis published in 2018 concluded that the classification
performance of US signals acquired with a single element of a conventional linear array
transducer exceeded the classification performance of sEMG w.r.t. the recognition of six
out of eight hand and wrist gestures but was significantly worse w.r.t. to the recognition of
the rest state [16]. Another publication from the same year found that angles and torques of
elbows could be reconstructed from 1-D SMG signals using SVM models [17]. The A-Mode
US signals of a commercially available system were examined in a 2016 study comprising
206 individuals and it was found that a reliable body fat percentage estimation could be
performed on the basis of those signals [18]. In a publication from 2019, A-Mode signals
were examined w.r.t. their ability to identify acute changes in muscle thickness after four
sets of biceps curls [19]. Another work published in 2020 made use of 1-D SMG signals
to measure acoustic nonlinearity parameters and showed that they have the potential to
represent skeletal muscles dynamically [20]. An additional publication from 2020 presented
a single element wearable ultrasonic sensor, consisting of a transmitter and receiver, and a
corresponding method to measure skeletal muscle contractile parameters [21].

1.2. Our Contribution

The goal of this work was to address the shortcomings of previous approaches by
exploiting signals from deeper soft tissue layers that have been acquired with a wearable
system, which is only possible with other approaches to a limited extent. To this end, we
present a comprehensive ML framework for the classification of 1-D SMG signals stemming
from single element US transducers of healthy volunteers to quantify muscle contraction
and muscle fatigue states. Our working hypothesis is that it is possible to create ML models
discriminating between relaxed and contracted or fatigue signals with high accuracy. In
contrast to previous works [11], we did not emphasize the careful selection of any single
muscle or muscle group. Instead, we allowed a large degree of freedom w.r.t. the exact US
transducer position on a previously defined rough body area, such as the gastrocnemius
muscle or biceps brachii, to allow the usage of our methods in environments such as fitness
monitoring in gyms or rehabilitation centers. In such environments, we do not expect
the user to put any emphasis on transducer positioning for optimal ultrasound signals.
Figure 1 illustrates the examined muscles or muscle groups with the gastrocnemius muscle
sketched on the left and the biceps brachii muscle sketched on the right. This work builds
upon and extends previously published preliminary results [22,23].
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Figure 1. Gastrocnemius muscle (red) and soleus muscle (green) on the left and biceps brachii muscle
on the right (Reprinted with permission from [24]. 2008, BodyParts3D [CC BY-SA 2.1 JP]).

2. Materials and Methods
2.1. Materials

We relied on 1-D US RF signals of healthy volunteers, which we acquired with the
experimental setup shown in Figure 2. It consists of a single element transducer, connected
to a custom-designed electronics board (approx. 90 mm × 30 mm × 13 mm), which
can be battery powered with a power consumption of approx. 2.5 W while measuring.
This board sent the acquired signals of each volunteer via a wireless connection to an
Android smartphone with a custom-built app for storage and future processing. We used
a Panametrics single element US transducer (with a 3.5 MHz center frequency) to obtain
muscle contraction and muscle fatigue data in two different types of experiments.

Figure 2. Experimental setup showing a participant lifting a weight, while a single element ultrasound
transducer was attached to the body surface via a stretch armband. The signals were acquired with
our custom-made acquisition hardware, which transfers them wirelessly to a mobile device.
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2.2. Methods

Classifying 1-D RF signals poses a time series classification (TSC) task, which is a
non-trivial challenge. A publication from 2019 states that TSC “is a hard problem that is not
yet fully understood and numerous attempts have been made in the past to create generic
and domain-specific classification methods” [25]. We analyzed the signals with a variety of
different ML methods and grouped them into traditional ML algorithms, artificial neural
networks (ANNs), and Gradient Boosting Machines (GBMs). The traditional ML algorithm
was a 1 nearest neighbor approach based on the dynamic time warping distance (1-NN
DTW) [26]. The ANNs included a multilayer perceptron (MLP) [27,28], a fully convolu-
tional network (FCN) [27], a radial basis function (RBF) neural network [29,30] and a 1-D
residual neural network (ResNet) [27,28]. We also included neural networks using ran-
dom convolutional kernels. These were ROCKET, MINIROCKET and MultiRocket [31–33].
We also included the more recent Transformer model [34,35]. The GBMs included Cat-
Boost [36], LightGBM [37] and XGBoost [38]. We implemented the ANNs in Python with
the ML frameworks Keras [30,39] and TensorFlow [40], while we used the DTAIDistance
package [41] to deploy 1-NN DTW. We also made use of Scikit-Learn [42] for splitting or
standardization of the input data.

To visualize the distribution of the acquired high-dimensional signals and increase
our understanding of the signals, we deployed dimensionality reduction techniques (DRTs)
such as the linear method Principal Component Analysis (PCA) [43] and the non-linear
approach t-distributed stochastic neighbor embedding (t-SNE) [44]. PCA attempts to
increase the interpretability of the data by minimizing information loss and maximizing
variance. t-SNE converts similarities between data points to joint probabilities and models
each high-dimensional object by a low dimensional point in such a way that similar objects
are modeled by nearby points and dissimilar objects are modeled by distant points with a
higher probability.

2.3. Experimental Setup

We acquired signals from eight healthy participants for the muscle contraction clas-
sification experiments, in which we asked the subjects to perform squats to distinguish
between contracted and non-contracted muscles. We asked all participants to position the
US transducer anywhere above the gastrocnemius calf muscle, located on the back of the
lower leg (see Figure 1), without instructing them on any specific calf muscle locations.
This approach might have resulted in the acquisition of signals suffering from avoidable
disturbances, such as interference from neighboring muscles or muscle groups. However,
we consider this approach to mimic real-life scenarios, such as usage in a gym or in a
rehabilitation facility, adequately.

We acquired data from 21 healthy participants for the muscle fatigue state classification
experiments, in which we asked the subjects to lift weights chosen according to the subjec-
tively perceived fitness level for as long as possible to induce muscle fatigue. Muscle fatigue
is defined as an exercise-induced reduction in maximal voluntary contraction (MVC) [45].
To simulate real-life scenarios, we did not instruct participants to choose any muscle areas
carefully and instead only asked them to put the US transducer on any fitting area above the
biceps brachii muscle (see Figure 1). Tables 1 and 2 provide an overview of the respective
gender, total amount of A-scans used for the classification task, total amount of unique
datasets, and amount of performed squats or respectively maximum weight lifted for each
subject. We provide the raw input data for the muscle contraction experiments [46] and the
muscle fatigue experiments [47,48] online. We present the complete database for the muscle
contraction classification in Table A1 (Appendix A). Tables A2 and A3 (Appendix B) show
the two respective study designs for the muscle fatigue state classification experiments. All
subjects gave their informed consent for inclusion before they participated in the study.
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Table 1. Muscle contraction signals database (summary).

Subject ID Gender # A-Scans # Datasets # Squats

1 Male 92,000 7 154
2 Male 2000 2 8
3 Female 18,872 2 35
4 Male 20,000 2 49
5 Male 10,000 1 27
6 Male 10,000 1 21
7 Male 20,000 2 88
8 Male 40,000 4 133

Table 2. Muscle fatigue signals database (summary).

Subject ID Gender # A-Scans # Datasets Max. Weight [kg]

01 Female 18,283 4 5.0
02 Female 15,155 3 2.5
03 Male 16,161 2 2.5
04 Male 18,863 2 2.5
05 Male 4302 2 7.5
06 Male 27,112 4 7.5
07 Female 13,585 4 5.0
08 Male 8809 3 5.0
09 Male 109,964 51 7.5
10 Female 7967 3 5.0
11 Female 3326 2 5.0
12 Male 4349 2 5.0
13 Male 14,691 3 7.5
14 Female 6950 2 5.0
15 Male 12,817 2 5.0
16 Male 10,218 2 5.0
17 Male 3792 1 7.5
18 Male 14,005 3 5.0
19 Male 5236 2 7.5
20 Male 4635 2 7.5
21 Female 11,817 2 2.5

We stored and processed all signals offline on a system suitable to perform the ML
classification tasks.

All participants in the muscle contraction study annotated the signals manually by
pushing a button during the experiment every time they performed a squat.

For the muscle fatigue signals, we annotated the signals by grouping all signals
stemming from the first 10 s of each dataset into the “relaxed” category and all signals
stemming from the last 10 s of each dataset into the “fatigue” category. Furthermore, we
trimmed the signal sequences by removing the first and last two seconds of each dataset
to account for any noise that might have stemmed from lifting or depositing the weight
at the beginning and end of each dataset. We conducted two independent studies with
the first group (study one) containing signals from all 21 female and male participants,
and the second group (study two) containing only signals from a single male subject.
This study design allowed us to analyze how the inclusion or exclusion of certain signal
types (e.g., signals of subjects with different genders or arm positions) influenced the model
performance. The reason for differentiating between genders is that previous small-scale
studies have hinted at measurable differences in US B-Mode images of gastrocnemius
muscles and tendons during calf raises [49] and differences in shear wave elastography
measurements, showing higher passive biceps brachii muscle stiffness in the right arm for
women in comparison to men [50]. Study one contains 19,677 annotated A-scans, while
study two contains 13,160 annotated A-Scans.
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As we suspected that truncated input data without parts belonging to overdriven
excitation signals would lead to better results, we included them in our analysis as well.
The raw or truncated signals served as input for our models. These input signals were
either not processed at all, pre-processed with a bandpass filter, or transformed with the
Fourier transform, Wavelet transform, or Hilbert transform. Figure 3 illustrates the raw 1-D
US RF A-scans and transformed versions for a relaxed and fatigue signal stemming from
the same subject. Even after careful examination, it is very hard to perceive the very small
differences between signals depicted in Figure 3 visually. This necessitates the usage of
sophisticated ML models relying on large amounts of data to distinguish between different
categories of signals.

Figure 3. Raw 1-D US RF A-scans and transformed versions for a relaxed and fatigue signal stemming
from the same subject.

Additionally, we also included statistical, spectral, temporal features or a combination
thereof in our analysis. We extracted those features with the help of the Time Series Feature
Extraction Library for the Python programming language [51].
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2.4. Evaluation

We only used muscle contraction signals stemming from different datasets from
the same person and the same transducer position. For the muscle fatigue data, we
distinguished between 12 evaluation modes to compare the impact of a variety of signals
and their attributes on the results. Table 3 summarizes the considered evaluation modes.

Table 3. Evaluation modes for muscle fatigue signal classifications.

Evaluation Mode Study Signals Taken from Study [%]

Leave-one-out cross-validation (LOOCV) on all signals 1 100
LOOCV on signals from dominant arm only 1 52.48

LOOCV on signals from non-dominant arm only 1 47.52
LOOCV on signals from female subjects only 1 33.44
LOOCV on signals from male subjects only 1 66.56

LOOCV on signals from dominant arm of female subjects only 1 17.54
LOOCV on signals from non-dominant arm of female subjects only 1 17.67

LOOCV on signals from dominant arm of male subjects only 1 34.94
LOOCV on signals from non-dominant arm of male subjects only 1 31.62

LOOCV on signals from a single subject only 2 100
LOOCV on signals from dominant arm of a single subject only 2 54.89

LOOCV on signals from non-dominant arm of a single subject only 2 45.11

We divided the available data into testing and training datasets, segregated them
according to subject, and desired examined properties and computed the average F1-Score
to compare the performance for each data type and ML model. For each testing dataset, we
used the datasets of all other participants having the desired properties as training data.

For the muscle contraction data classification, we included the ML models MLP, FCN,
ResNet, ROCKET, MINIROCKET, MultiRocket, CatBoost, XGBoost, LightGBM, Trans-
former, 1-NN DTW, SVM and Logistic Regression. For the muscle fatigue data classifi-
cation, we omitted the models MLP, FCN, and ResNet as their inclusion would have led
to a massive increase in computation time by several months for each model, while the
expected performance improvement, judging from the results obtained for the muscle
contraction classifications, was low [22]. This approach led to 252 possible combinations
for the muscle contraction data and 2376 possible combinations for the muscle fatigue data.
Figures 4 and 5 show all possible and examined combinations of signal data, data types,
and ML models for muscle contraction and muscle fatigue data respectively.

Figure 4. Hierarchical diagram illustrating all computed data input combinations for muscle contrac-
tion data.
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Figure 5. Hierarchical diagram illustrating all computed data input combinations for muscle
fatigue data.

3. Results

In this section, we present t-SNE visualizations to gain a better understanding of the
high-dimensional distribution of the acquired signals. Those insights can help to interpret
the results of the applied ML methods in Section 4 with a thorough discussion of the results.
Please note that we omitted the axes of the figures below on purpose, as the t-SNE technique
is meant to provide visualizations of the signal distribution and not quantitative results.

3.1. Muscle Contraction Signals Classifications
3.1.1. T-Distributed Stochastic Neighbor Embedding

Figures 6 and 7 show t-SNE visualizations illustrating the low-dimensional signal
distribution of all A-scans from all datasets with the same transducer position. Each dot
represents a single A-Scan. Figure 6 is color-coded according to the muscle state (relaxed vs.
contracted), while Figure 7 is color-coded according to the datasets the signals stem from.
Comparing both figures to each other clearly indicates that the signals group together more
strongly according to muscle state than according to the dataset they belong to.

Figure 6. t-SNE visualization illustrating the low-dimensional signal distribution of all datasets with
the same transducer position, color-coded according to the muscle state (relaxed vs. contracted). The
t-SNE parameters were set to a perplexity of 200, a learning rate of 200, and 10,000 iterations.
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Figure 7. t-SNE visualization illustrating the low-dimensional signal distribution of all datasets
with the same transducer position, color-coded according to corresponding datasets. The t-SNE
parameters were set to a perplexity of 200, a learning rate of 200, and 10,000 iterations.

3.1.2. Machine Learning

Table 4 depicts the five best-performing data types and ML model combinations based
on the achieved average F1- Scores.

Table 4. Muscle contraction signals classification results (summary).

Model Data Type Signals
Truncated

Average
F1- Score

for All Data
Types [%]

Standard
Deviation for

All Data Types

Time for
Training and

Evaluation [h]

Average
F1- Score

[%]

SVM Hilbert transformed
A-Scans no 85 1.95 0.17 88

MLP Hilbert transformed
A-Scans no 84 1.97 6.66 88

SVM Fourier transformed
A-Scans no 85 1.95 0.09 87

MLP Fourier transformed
A-Scans no 84 1.97 6.12 87

SVM Wavelet transformed
A-Scans no 85 1.95 0.12 86

3.2. Muscle Fatigue Signals Classifications
3.2.1. T-Distributed Stochastic Neighbor Embedding on Signals of Study One

Figures 8–12 show t-SNE visualizations illustrating the low-dimensional signal dis-
tribution of all A-scans from study one. Each dot represents a single A-Scan. Figure 8 is
color-coded according to the muscle state (normal vs. fatigue) and Figure 9 is color-coded
according to the subjects the signals belong to. Figure 10 is color-coded according to gen-
ders (female vs. male), while Figure 11 is color-coded according to the arm the signals
stem from (dominant vs. non-dominant). Finally, Figure 12 is color-coded according to the
maximum weight lifted by each subject (2.5 kg, 5.0 kg, or 7.5 kg).
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Figure 8. t-SNE visualization illustrating the low-dimensional signal distribution of all datasets from
the muscle fatigue study one, color-coded according to the muscle state (normal vs. fatigue). The
t-SNE parameters were set to a perplexity of 200, a learning rate of 200, and 10,000 iterations.

Figure 9. t-SNE visualization illustrating the low-dimensional signal distribution of all datasets from
the muscle fatigue study one, color-coded according to corresponding subjects. The t-SNE parameters
were set to a perplexity of 200, a learning rate of 200, and 10,000 iterations.

Figure 10. t-SNE visualization illustrating the low-dimensional signal distribution of all datasets with
from the muscle fatigue study one, color-coded according to gender (female vs. male). The t-SNE
parameters were set to a perplexity of 200, a learning rate of 200, and 10,000 iterations.
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Figure 11. t-SNE visualization illustrating the low-dimensional signal distribution of all datasets from
the muscle fatigue study one, color-coded according to the arm position (dominant vs. non-dominant).
The t-SNE parameters were set to a perplexity of 200, a learning rate of 200, and 10,000 iterations.

Figure 12. t-SNE visualization illustrating the low-dimensional signal distribution of all datasets
from the muscle fatigue study one, color-coded according to the maximum lifted weight (2.5 kg,
5.0 kg, or 7.5 kg). The t-SNE parameters were set to a perplexity of 200, a learning rate of 200, and
10,000 iterations.

Figure 8 shows that there is no strict grouping of the signals according to muscle state,
even though a tendency is visible.

Figure 9 shows that the signals have a very strong tendency to group together accord-
ing to the subject they belong to.

Figure 10 shows that the signals tend to group according to the gender they are
annotated with. However, this grouping is not very strict and shows only slight tendencies
instead of rigorous borders.

Figure 11 shows that the signals also tend to group according to the arm position they
are annotated with. However, this grouping is again not very strict and shows only slight
tendencies instead of rigorous borders.



Sensors 2022, 22, 2789 12 of 18

Figure 12 shows a slight tendency of the signals to group according to the maximum
weight they have been annotated with.

3.2.2. T-Distributed Stochastic Neighbor Embedding on Signals of Study Two

Figures 13 and 14 show t-SNE visualizations illustrating the low-dimensional signal
distribution of all A-scans from study two. Each dot represents a single A-Scan. Figure 13 is
color-coded according to the muscle state (normal vs. fatigue) and Figure 14 is color-coded
according to the arm the signals stem from (dominant vs. non-dominant). In both figures,
we removed outliers as they significantly distorted the visual representation.

Figure 13. t-SNE visualization illustrating the low-dimensional signal distribution of all datasets
from the muscle fatigue study two, color-coded according to the muscle state (normal vs. fatigue).
The t-SNE parameters were set to a perplexity of 200, a learning rate of 200, and 10,000 iterations.

Figure 14. t-SNE visualization illustrating the low-dimensional signal distribution of all datasets from
the muscle fatigue study two, color-coded according to the arm position (dominant vs. non-dominant).
The t-SNE parameters were set to a perplexity of 200, a learning rate of 200, and 10,000 iterations.

Figure 13 shows that the signals of study two only have a slight tendency to group
according to the muscle state they belong to.

Figure 14 shows that the signals of study two have a strong tendency to group accord-
ing to the arm position they have been annotated with.
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3.2.3. Machine Learning

Table 5 depicts the F1 scores and the time needed for training and evaluation of
the best performing ML model/data type combinations for the classification of muscle
fatigue signals.

Table 5. Muscle fatigue signals classification results (summary).

Evaluation Mode ML Model Data
Type F1 Score

Time for Evaluation
and Training

(Minutes)

LOOCV SVM Wavelet transformed A-scans 82 334
LOOCV

(dominant arm) SVM Wavelet transformed A-scans 84 20

LOOCV
(non-dominant arm) SVM Combination of all possible features 77 <5

LOOCV (female) Logistic
Regression Combination of all possible features 77 <5

LOOCV (female)
[dominant arm]

Logistic
Regression Spectral features 86 <5

LOOCV (female)
[non-dominant arm]

Logistic
Regression

Wavelet transformed
A-Scans 75 <5

LOOCV (male) SVM Wavelet transformed A-scans 84 50
LOOCV (male)
[dominant arm] SVM Wavelet transformed A-scans 86 5

LOOCV (male)
[non-dominant arm] SVM Combination of all possible features

(of truncated signals) 79 <5

LOOCV
(single subject 09)

Logistic
Regression Statistical features 70 <5

LOOCV (single subject 09)
[dominant arm] SVM Wavelet transformed A-scans 78 7

LOOCV
(single subject 09)

[non-dominant arm]
SVM Temporal features 72 <5

A Logistic Regression model relying on extracted spectral features of non-truncated A-
scans and an SVM model relying on non-truncated A-Scans, which have been transformed
with the Wavelet transform, achieve the best average F1 Score of 86%. Both models only
require 5 min or less to complete all training and evaluation computations.

4. Discussion
4.1. Muscle Contraction Signals Classifications

This work only includes results for signals stemming from the same person and the
same transducer position for the muscle contraction state classifications. These signals
represent 22.55% of all available A-scans, 38.1% of all acquired datasets and entail signals
from 37.5% of all subjects. The inclusion of signals stemming from different persons and a
variety of transducer positions did not lead to satisfying classification performances. The
main reason for this is most probably an insufficient size and diversity of the database. The
t-SNE visualizations colored by subjects (see Figure 6) and datasets (see Figure 7) show that
the data points cluster stronger according to the subjects they stem from than according to
the datasets they belong to. After applying t-SNE, a tendency of the data points to cluster
according to their respective annotation was visible but a significant overlap remained (see
Figure 6). This tendency allowed us to formulate the hypothesis that models discriminating
between relaxed and contracted signals with a high accuracy are possible. An observation
is that an SVM model based on Hilbert transformed A-scans achieved an average F1- Score
of ca. 88% in less than 10 min for training and evaluation. Hence, the SVM model trumped
the performance of all ANN models and even 1-NN DTW, which has been the de-facto
TSC benchmark for decades [28]. SVM outperforming even the most recent ANNs in terms
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of speed and accuracy is a remarkable result and paves the way for real-life applications
allowing wearable devices to classify different muscle contraction states based on ML
models using 1-D SMG signals within minutes.

4.2. Muscle Fatigue Signals Classification

The results presented above allow several interpretations of muscle fatigue signal
classifications. Firstly, no Gradient Boosting Machine method ranked among the top-
performing models. Another observation is that using the model 1-NN DTW did not result
in any competitive results, even though this algorithm has been the de-facto TSC benchmark
for decades [28]. Model 1-NN DTW was prohibitively slow for the scenarios described in
this work. The convolutional neural networks based on the ROCKET family [31–33] could
achieve competitive results but always performed worse than SVM and Logistic Regression
w.r.t. accuracy and time, regardless of the underlying data types used. The relatively
straight-forwarded algorithms SVM and Logistic Regression always performed better than
other algorithms and even outperformed complex deep learning approaches. These models
are also, on average, among the fastest approaches. The deep learning Transformer models,
that adopt the mechanism of attention, are the most recent ML architectures used in this
work. Those models yielded competitive results in many scenarios but were never able to
outperform all other models in any case. Transformers also required a prohibitive amount
of time for training and evaluation.

SVM and Logistic Regression were superior approaches for all muscle fatigue state
classification evaluation strategies. ML models based on raw A-scans usually outperformed
models based on truncated A-Scans. Regardless of the best performing data type or model,
the approaches based on signals of the dominant arm always outperformed approaches
based on the non-dominant arm or signals of both arms in a mixed setting. Models based on
all signals of only female subjects performed slightly worse than models based on all signals
of only male subjects. A possible explanation is that less data was available for female
subjects. An additional notable observation is that models based on signals of a single male
subject performed, on average, worse than models based on different subjects. A possible
explanation is that the inclusion of many diverse signals from subjects with different
training levels allowed for easier signal discriminations in comparison to comparatively
homogeneous signals stemming from a single subject with no change in training level. The
training and evaluation times of the best-performing models always stayed below one hour
for models based on signals of a certain arm. Only the best performing model based on all
signals, mixing signals from the dominant and non-dominant arm, needed several hours to
finish training and evaluation. These results show that scenarios requiring a near real-time
classification of muscle fatigue states based on 1-D SMG signals are possible.

4.3. Future Work

Even though average F1- Scores ranging from 70% to 88% would not qualify the
presented algorithms for critical clinical use, they would still be suitable for use cases
in sports–and rehabilitation scenarios as mentioned above. We expect that improved
performances will result from the availability of more data in the future. Real-life imple-
mentations might include libraries such as LIBSVM [52] to deploy the proposed framework
directly on mobile devices. Using cloud computing resources might also be a solution
for more complex models when these are trained and evaluated remotely, while the local
mobile devices would simply acquire the signals without processing them any further in
that scenario.

Additionally, alternative ML models might be used in the future to obtain even
better accuracies. For example, TSC approaches based on transfer learning [53] have
shown promising results in the past. Further work might also exploit data fusion from
multiple modalities, as shown in previous works by others [54]. Adding more data, such as
accelerometer measurements, age, or body mass index, could also be a solution to create
more sophisticated ML models.
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By openly releasing the datasets for this work [46–48], we encourage others to build
on our work and hope to inspire further research in this promising field.

5. Conclusions

To the best of our knowledge, this work presents, for the first time, the implementation
and evaluation of a unified framework for the classification of 1-D US RF signals of muscle
contraction and muscle fatigue states. This is a crucial step towards mobile and wearable
solutions, which could find applications in rehabilitation or fitness tracking scenarios. To
this end, we simulated real-life scenarios as closely as possible by not asking participants to
emphasize obtaining particularly distinct signals and not examining the skin surface with
B-Mode US first to find strongly pronounced muscle areas.

We find that the amount, quality and annotation strategies of our data allow to build
robust, accurate, and fast models. Even though training and initial evaluation of these
models requires a significant amount of time and computational power, the inference
computations, yielding results by presenting previously unseen signals to the trained
models, merely require milliseconds to complete.

Very complex and sophisticated ML models are not necessary to obtain reasonably ro-
bust models. The straight-forward and well-tried algorithms SVM and Logistic Regression
always outperform more sophisticated and complex approaches, such as ANNs, Gradient
Boosting Machines, or 1-NN DTW.
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Appendix A

Table A1 shows the complete database of all signals acquired for the muscle contraction
classification experiments. Eight healthy volunteers (7 male, 1 female) performed squats to
induce muscle contractions. The volunteers placed the US transducer either in a unique
position anywhere above the gastrocnemius calf muscle or kept the transducer in place for
the acquisition of further datasets, which is indicated by non-unique transducer positions.
Additionally, we also present the total amount of acquired A-scans and the average amount
of A-scans acquired per second for each dataset.
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Table A1. Complete muscle contraction signals database.

Dataset
ID Subject ID Gender

Unique
Transducer

Position
# A-Scans A-Scans/s

1 01 male no 3000 54.71
2 01 male no 3000 50.55
3 02 male no 1000 55.32
4 02 male no 1000 52.06
5 01 male yes 6000 56.17
6 01 male yes 50,000 33.95
7 03 female yes 10,000 48.56
8 03 female yes 8872 56.17
9 04 male yes 10,000 48.65
10 04 male yes 10,000 38.98
11 05 male yes 10,000 40.82
12 06 male yes 10,000 45.33
13 07 male no 10,000 58.73
14 07 male no 10,000 59.55
15 01 male yes 10,000 59.97
16 01 male yes 10,000 60.33
17 01 male yes 10,000 60.19
18 08 male no 10,000 47.58
19 08 male no 10,000 47.48
20 08 male yes 10,000 54.44
21 08 male yes 10,000 44.88

Appendix B

Tables A2 and A3 show the two respective study designs for the muscle fatigue
classification experiments. A total of 21 healthy volunteers (14 male, 7 female) lifted
weights to induce an MVC resulting in muscle fatigue. The volunteers placed the US
transducer on a unique position anywhere above the biceps brachii muscle of the dominant
or non-dominant arm. We present the genders, the amount of datasets, the total amount of
A-scans used for the classification task, and the maximum lifted weights for each subject.
The maximum lifted weight was chosen according to the subjectively perceived fitness
level of each test subject. For some subjects, the weights were adjusted in later datasets.

Table A2. Muscle fatigue signals database for all subjects (study one).

Subject ID Gender # Datasets # A-Scans Max. Lifted
Weight [kg]

01 female 4 1390 5.0
02 female 3 1043 2.5
03 male 2 696 2.5
04 male 2 685 2.5
05 male 2 695 7.5
06 male 4 1386 7.5
07 female 4 1367 5.0
08 male 3 1044 5.0
09 male 10 3453 7.5
10 female 3 1044 5.0
11 female 2 696 5.0
12 male 2 695 5.0
13 male 3 1035 7.5
14 female 2 695 5.0
15 male 2 666 5.0
16 male 2 672 5.0
17 male 1 348 7.5
18 male 3 1035 5.0
19 male 1 342 7.5
20 male 1 345 7.5
21 female 1 345 2.5
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Table A3. Muscle fatigue signals database for a single subject (study two).

Subject ID Gender # Datasets # A-Scans Max. Lifted
Weight [kg]

09 male 42 13,160 7.5
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