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Abstract

Background: The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision.
Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we
use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN’s response
temporal dynamics following short duration (1 s) visual stimulation.

Methodology/Principal Findings: Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with
flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical
image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast
agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo
rises to 50% of maximum amplitude (PEAK) 0.260.2 s before the LGN signal (p,0.05). The LGN signal returns to 50% of
PEAK 1.461.2 s before the SC signal (p,0.05). These results indicate the SC signal rises faster than the LGN signal but settles
slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood
vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer
to the large vessels than much of the SC.

Conclusions/Significance: The differences in response timing between SC and LGN are very similar to those between deep
and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates.
This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences
are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and
LGN following short duration visual stimulation are temporally different.
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Introduction

In the rodent visual system, light from the external environment

is focused by the cornea and lens onto the retina. The retina is

composed of photosensitive retinal ganglion cells that project

axons carrying information about the light, such as its color and

spatial pattern. The axons from both eyes come together to form

the optic nerves, which transmit information from the retina to the

brain. The majority of these nerve fibers, 90–95% in rats [1], cross

the midline to the opposite side of the brain. From there, fibers are

known to project to the ventral and dorsal lateral geniculate nuclei

(vLGN and dLGN, respectively), lateral posterior nucleus,

pretectum, and superior colliculus (SC) [2]. The majority of

retinal axons project to the superficial layers of the superior

colliculus. It is involved in numerous functions related to

responding to visual stimuli, including orienting the body to the

stimulus [3] and guiding spatial movement using visual informa-

tion [4]. Another structure receiving up to 37% of retinal

projections is the dLGN of the thalamus [5]. It primarily serves

as a relay station between the retina and the visual cortex (VC),

where higher level processing takes place. Relay neurons in the

dLGN receive signals from fast conducting Y-like retinal axons

and in turn, send signals to the VC along their own fast conducting

axons [2]. Together, the SC and LGN receive almost all direct

projections from the rat retina.

Most of our understanding of the visual system has come from

animal studies conducted with invasive, small field of view, and/or

terminal measurement techniques such as electrical recordings, c-

fos immunohistochemistry, and 2-deoxyglucose labeling. In

comparison, blood oxygenation level-dependent (BOLD) func-

tional magnetic resonance imaging (fMRI) is a non-invasive

technique that can simultaneously examine a large field of view
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(FOV) with high spatial resolution [6]. In addition to fMRI,

various other forms of nuclear magnetic resonance have been used

to study vision, including diffusion imaging [7], manganese-

enhanced MRI [8,9,10], magnetic resonance spectroscopy [11],

and structural MRI [12]. BOLD imaging relies on the different

magnetic properties of oxyhemoglobin and deoxyhemoglobin to

indirectly measure neuronal activity [6]. Mostly conducted on

human subjects, BOLD has also been applied to study visual

functions in animal models, such as cats [13], primates [14], and

rodents [15,16]. These studies recorded regions of the brain

activated by visual stimuli. However, to date, relatively few fMRI

studies have been conducted on human subcortical structures,

such as the SC, because of technical challenges stemming from its

small size and deep position near the brainstem [17,18,19]. The

rat SC occupies a significantly larger portion of the brain, is

located closer to the skull, and receives a greater fraction of retinal

projections. Thus, the rat is a more suitable mammalian model for

functional imaging studies of the SC, and possibly the LGN,

responding to visual stimuli.

Recent BOLD experiments in the rat somatosensory cortex

have observed intrinsic response timing differences following

forepaw stimulation [20,21]. The BOLD response was observed

to rise fastest in cortical layer 4 and slowest at the surface.

However, less is known about BOLD spatiotemporal dynamics in

the subcortex, which is beyond the reach of conventional optical

imaging techniques in rats. In this study, we apply BOLD fMRI

on Sprague Dawley (SD) rats to measure differences in response

temporal dynamics between the SC and LGN following short

duration (1 s) monocular visual stimulation. Experiments are

conducted with both gradient-echo (GE) and spin-echo (SE)

sequences to provide additional confirmation. Rodent visual

fMRI experiments have traditionally been conducted with long

duration block-design stimuli, which are optimal for identifying

responsive brain regions [22]. In contrast, shorter duration

stimuli are better for estimating the shape of the hemodynamic

response and associated timing parameters. Observed differences

may expand our understanding of the spatiotemporal heteroge-

neities in BOLD responses in subcortical regions. This study

represents the first measurements of BOLD response temporal

dynamics in the rodent visual system using short duration

stimulation.

Results

Figure 1a shows the activation map measured from a

representative animal using gradient-echo. Active voxels here are

defined by p,0.001 as computed by Analysis of Variance [23].

Clusters of activation can be observed in the contralateral (left

hemisphere) SC, VC, pretectum, and LGN. Some active voxels

are also observed in the ipsilateral SC. Amongst the visual centers,

the SC and LGN have the greatest density of active voxels.

Figure 1b shows the activation map (p = 0) from the average data

set of all spin-echo animals. Clusters of activation can again be

observed in the contralateral (right hemisphere) SC, contralateral

LGN, and ipsilateral SC. For both acquisition methods, SC active

voxels are mostly in the superficial half, but some intermediate/

deep voxels have p,0.001 when measured with GE.

Figure 2 shows the mean and standard deviation of BOLD signals

(computed across all animals scanned with GE) from all voxels in the

SC and LGN regions of interest (ROIs) in Fig. 1a. In Fig. 2a and 2b,

the responses in both regions rise significantly 2–3 s after onset of

stimulation and reach maximum amplitude (PEAK) at 4 s. Both

responses gradually return to baseline after reaching PEAK with the

LGN response appearing to return faster. Figure 2c illustrates the

temporal differences in the rising portions of the SC and LGN

responses using the normalized mean BOLD signals. The SC

response rises earlier than the LGN response. A small ‘‘initial dip’’

may be present in the LGN response. Figure 2d illustrates temporal

differences in the falling portions of the responses. The LGN

response approaches baseline faster than the SC response. Figure 3

shows the mean and standard deviation of BOLD signals (computed

across all animals scanned with SE) from the SC and LGN ROIs in

Fig. 1b. In Fig. 3a and 3b, the responses in both regions rise

significantly approximately 2 s after onset of stimulation and reach

PEAK at 3 s. Figure 3c shows the SC response rises earlier than the

LGN response. A small ‘‘initial dip’’ may be present in the LGN

response. Figure 3d shows the LGN response approaches baseline

faster than the SC response. BOLD signals measured with both

gradient-echo and spin-echo show the SC signal rises faster than the

LGN signal but is slower returning to baseline.

Table 1 shows the mean and standard deviation of t50 and t150

measured from the animals scanned with GE. The SC BOLD

signal reaches 50% of PEAK 2.660.1 s after onset of stimulation

while the LGN signal requires 2.960.2 s. The difference is

Figure 1. Gradient-echo and spin-echo activation maps. (A) Activation map computed by applying Analysis of Variance [23] on the four slice
fMRI data (slices 1 to 4 arranged from left to right) of a representative animal scanned with the gradient-echo (GE) sequence. Voxels with p,1023 are
colored dark red. The blue and red regions of interest (ROIs) cover voxels containing the contralateral superior colliculus (SC) and lateral geniculate
nucleus (LGN), respectively. The contralateral hemisphere is on the left. (B) Activation map computed from the average fMRI data of all animals
scanned with the spin-echo (SE) sequence. Voxels with p = 0 (beyond computer precision) are colored dark red. Blue and red ROIs cover such voxels
in the contralateral SC and LGN, respectively. The contralateral hemisphere is on the right. Low p-value regions of the SC, LGN, pretectum, and visual
cortex (VC) are labeled.
doi:10.1371/journal.pone.0018914.g001

BOLD Temporal Dynamics of SC and LGN
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Figure 2. Gradient-echo BOLD signals. Mean (solid line) 6 standard deviation (dashed line), computed across all animals scanned with GE, of
BOLD signals from the SC (A) and LGN (B) ROIs in Fig. 1a. (C and D) Solid lines in (A) and (B) normalized to maximum amplitude of 1. The time axes
indicate time from onset of stimulation. The green bars indicate the 1 s stimulation period.
doi:10.1371/journal.pone.0018914.g002

Figure 3. Spin-echo BOLD signals. Mean (solid line) 6 standard deviation (dashed line), computed across all animals scanned with SE, of BOLD
signals from the SC (A) and LGN (B) ROIs in Fig. 1b. (C and D) Solid lines in (A) and (B) normalized to maximum amplitude of 1. The time axes indicate
time from onset of stimulation. The green bars indicate the 1 s stimulation period.
doi:10.1371/journal.pone.0018914.g003

BOLD Temporal Dynamics of SC and LGN

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18914



0.260.2 s and statistically significant (p,0.05). The time to return

to 50% of PEAK is 7.561.1 s for the SC and 6.161.2 s for the

LGN. The difference is 1.461.2 s (p,0.05). Table 2 shows the

mean and standard deviation of the areas under the rising and

falling portions of the normalized BOLD signal (rAUS and fAUS,

respectively) measured from the animals scanned with GE. rAUS

from the SC is 0.860.1 and that from the LGN is 0.660.3. The

difference is 0.260.3 (p,0.05). Along the falling portion, fAUS is

4.561.5 for the SC and 2.460.6 for the LGN. The difference is

2.061.5 (p,0.05). Table 3 shows the mean and standard

deviation of rAUS and fAUS measured from the animals scanned

with SE. rAUS from the SC is 0.360.2 and that from the LGN is

0.260.2. The difference is 0.160.1 (p,0.05). Along the falling

portion, fAUS is 6.061.7 for the SC and 2.761.5 for the LGN.

The difference is 3.462.1 (p,0.01). Together, these parameters

quantify the temporal differences between the SC and LGN

responses observed in Figs. 2 and 3.

Figure 4 shows the Fast Low Angle SHot (FLASH) image

acquired from one animal after injection of monocrystalline iron

oxide nanoparticles (MION). The SC contains numerous thin

dark lines running from the dorsal surface to the periaquaductal

gray. These are likely penetrating blood vessels as iron oxide

particles enlarge susceptibility differences between vessels and

surrounding tissue [24]. Similar penetrating vessels also innervate

the cortex. The responsive LGN regions appear to be closer to the

large vessels dorsal of the subcortex than the majority of responsive

SC regions due to the latter’s larger size. Thin penetrating vessels

are not as apparent in the LGN.

Discussion

Significant responses are observed in the SC and LGN following

visual stimulation. The SC BOLD signal is seen to rise faster and

settle slower than the LGN signal. These findings are independent

of the pulse sequence used. Using gradient-echo, the times to reach

50% of maximum BOLD response after onset of stimulation are

2.660.1 s for the SC and 2.960.2 s for the LGN. The times to

return to 50% of maximum response are 7.561.1 s for the SC and

6.161.2 s for the LGN. rAUS and fAUS for the SC are 0.860.1

and 4.561.5, respectively. The values for the LGN are 0.660.3

and 2.460.6, respectively. Using spin-echo, rAUS and fAUS for

the SC are 0.360.2 and 6.061.7, respectively. The values for the

LGN are 0.260.2 and 2.761.5, respectively. Together, these

parameters quantitatively show the SC BOLD signal rises faster

than that of the LGN but settles at a slower rate. A post-MION

FLASH image shows the entire LGN is relatively close to the large

vessels above the subcortex while most of the SC is further away

and supplied by thin penetrating vessels.

Visual fMRI studies
Previous rodent visual fMRI studies used block-design stimula-

tion paradigms to identify responsive regions [16,25,26]. Van

Camp et al. studied the responses of rats to monocular and

binocular stimulation. They observed activation in the VC, SC,

and flocculus-paraflocculus of the cerebellum [26]. However, their

study did not report on any LGN response. Pawela et al. observed

responses in various parts of the rat brain (SC, VC, dLGN, and

lateral posterior nucleus) to monocular and binocular stimulation.

The cortical responses observed in their study appear to span more

of the VC than those in this study. This difference may be related

to the choice of isofluorane rather than medetomidine anesthesia.

Also, the shimming volume in our study was chosen to cover the

subcortex and optimize signals from subcortical areas such as the

SC and LGN. In Pawela et al.’s results section, they noted ‘‘there

appeared to be a slightly longer delay in the BOLD impulse

response for the cortical regions compared to the subcortical

structures’’, but no temporal differences were reported between

the two subcortical structures SC and dLGN [25]. This

discrepancy with our results could be due to the longer stimulus

duration and significantly longer repetition time (TR) used in their

study. Also, the contrast to noise ratio of BOLD signals in their

study may be lower than in the present study because we average

the signals from multiple experiments. Note lateral posterior

nucleus responses may be present in slice 3 of Fig. 1a, but this

structure is in close proximity to the LGN and SC and thus,

responses may be affected by partial volume spillover. The

predominantly contralateral responses observed in this study are

expected as the vast majority of rat retinal projections target the

contralateral hemisphere [1].

In a human fMRI study, Wall et al. studied the responses of the

SC, LGN, and primary visual cortex to binocular stimulation.

They found the SC response was best fit with hemodynamic

response functions that peaked at 4 or 5 s after the onset of

Table 1. t50 and t150 measured from SC and LGN.

GE t50 (s) t150 (s)

SC 2.660.1 7.561.1

LGN 2.960.2 6.161.2

SC – LGN 20.260.2* 1.461.2*

Mean and standard deviation (across all animals scanned with GE) of time to
rise to 50% of PEAK (t50) and time to return to 50% of PEAK (t150) computed
from SC and LGN ROIs in Fig. 1a. The differences between measurements from
the SC and LGN are also shown.
*indicates statistical significance at the p,0.05 level (paired, two-tailed t-test).
doi:10.1371/journal.pone.0018914.t001

Table 2. rAUS and fAUS measured from SC and LGN using
GE.

GE rAUS fAUS

SC 0.860.1 4.561.5

LGN 0.660.3 2.460.6

SC – LGN 0.260.3* 2.061.5*

Mean and standard deviation (across all animals scanned with GE) of areas
under the rising (rAUS) and falling (fAUS) portions of the signal computed from
SC and LGN ROIs in Fig. 1a. The differences between measurements from the SC
and LGN are also shown.
*indicates statistical significance at the p,0.05 level.
doi:10.1371/journal.pone.0018914.t002

Table 3. rAUS and fAUS measured from SC and LGN using SE.

SE rAUS fAUS

SC 0.360.2 6.061.7

LGN 0.260.2 2.761.5

SC – LGN 0.160.1* 3.462.1**

Mean and standard deviation (across all animals scanned with SE) of rAUS and
fAUS computed from SC and LGN ROIs in Fig. 1b. The differences between
measurements from the SC and LGN are also shown.
* and ** indicate statistical significance at p,0.05 and 0.01 levels, respectively.
doi:10.1371/journal.pone.0018914.t003

BOLD Temporal Dynamics of SC and LGN
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stimulation while LGN and cortical responses were best fit with

hemodynamic response functions (HRFs) peaking at 6 s [18]. This

finding agrees with our results in that the SC HRF appears to rise

earlier than the LGN HRF. However, it is not clear if their

measured temporal differences can be quantitatively compared

with the present results as the authors used significantly different

processing steps due to a short inter-stimulus interval and the need

to assume HRF shapes.

Neuronal activity
The difference in temporal dynamics between BOLD signals

from the SC and LGN observed in this study reflects differences in

contributors to the BOLD signal. The increase in blood

oxygenation responsible for BOLD contrast is due to a small

increase in cerebral oxygen consumption accompanied by a larger

increase in cerebral blood flow following neuronal activity [27].

Therefore, the BOLD temporal differences may be due to

neuronal activity, neurovascular coupling, or hemodynamic

response differences between the SC and LGN. Several studies

had observed that neuronal activity in the SC affects activity in the

LGN. Molotchnikoff et al. placed electrodes in the SC and LGN of

rabbits and submitted them to flash visual stimulation [28]. First,

the SC electrode measured spontaneous neuronal firing. A spike

triggered the external flash after a set time delay and LGN firing

was recorded. The delay was varied to study changes in LGN

response with delay time. The authors found preceding SC activity

reduced the amplitude of subsequent LGN activity from 0 to

250 ms after the initial spike. They also stated the latency of

saccade is between 200–300 ms, suggesting the SC is involved

with saccadic motion. Note the above study used spontaneous SC

activation rather than stimulated activation. In a later set of

studies, the same group first used a conditioning stimulus to fire

SC neurons and followed after a set time delay with a test stimulus

to fire LGN neurons [29]. They found the amplitude of LGN

spikes changed after conditioning with the maximal change

occurring 200–300 ms after SC firing. Changes were observed

even when conditioning and test stimuli were presented simulta-

neously. Some of the spikes exhibited increased amplitude while a

slightly larger number had decreased amplitude. This modification

did not occur if the SC was inactivated by a localized injection of

cobalt ions or potassium chloride. Similar findings have been

observed in cats [30]. BOLD responses have been shown to

correlate with the spiking activity measured above [31], although

studies have shown BOLD is more closely correlated with low

frequency local field potentials [32,33]. In many experiments,

spiking activity and local field potential vary in a similar manner

[34]. Consequently, the BOLD temporal differences observed in

this study may reflect the impact of SC activation on subsequent

LGN activation. SC neuronal firing alters LGN firing in the

proceeding 0 to 300 ms, leading to differences between the

temporal dynamics and amplitudes of the BOLD signals. The

0.260.2 s t50 difference observed in this study is comparable to

the time scales observed above.

Vessel dilation rate
A second possible explanation of the findings of this study is

based on differences in vessel dilation rate between the SC and

LGN, independent of neuronal activation differences. During

activation, the cerebral blood flow and cerebral oxygen consump-

tion changes are followed by an increase in cerebral blood volume

[27]. These hemodynamic changes help meet the energy demands

of neuronal activity and have been related to the BOLD signal by

analytical models [35,36]. The models attribute the BOLD signal

to total deoxyhemoglobin and blood volume changes resulting

from expansion and relaxation of local blood vessels. Therefore,

differences in vessel dilation rates between the SC and LGN can

affect the temporal dynamics of their BOLD signals. Recently,

Tian et al. used two-photon microscopy to observe differences in

vessel dilation rates between the layers of the somatosensory cortex

following electrical stimulation [21]. They measured the dilation

rate of penetrating vessels that bring oxygen from surface vessels to

capillary beds in the cortical layers and observed that the delay in

vascular response decreased with depth down to the maximum

penetration depth of the microscope. Branches off the main vessel

trunks also dilated earlier at greater depths. The authors then

compared the optical images to BOLD results and found that

surface responses were delayed relative to responses from deeper

layers, which agrees with an earlier study [20]. Combining

measurements from the two modalities, the authors concluded

differences in BOLD temporal dynamics with depth were related

to differences in vessel dilation rates.

The vasculature pattern in the subcortex containing the SC and

LGN is similar to that in the cortex. In the cortex, the large middle

cerebral vessels lie on top (surface vessels above) while smaller

penetrating vessels (arterioles above) supply the cortical layers [37].

In the subcortex, large vessels such as the supracollicular network

lie dorsal of the SC and LGN while the different layers of the SC

are supplied by smaller penetrating vessels (Fig. 4). Therefore, it is

possible that neuronal activity in the subcortex will lead to a

spatiotemporal pattern of vessel dilation similar to that in the

cortex. The similarity between the BOLD signals in Figs. 2 and 3

of this study and signals from Tian’s study support this extension.

The LGN, which is closer to the dorsal vessels than most of the SC

(Fig. 4), BOLD signal rises slower and settles faster. Similarly,

BOLD signals from shallower cortical layers (Fig. 3 of Tian et al.)

rise slower and also appear to settle faster compared to deeper

layers [21]. We note that Tian et al. focused their study on the

temporal differences in the rising portion of the signal and did not

examine the return to baseline as closely. This similarity suggests

the relative temporal dynamics between SC and LGN BOLD

signals are related to depth dependent vessel dilation rate

heterogeneities in the subcortex similar to those in the cortex.

Figure 4. Post-MION FLASH images. Fast Low Angle SHot (FLASH) image (slices 1 to 4 arranged from left to right) acquired after intravenous
injection of monocrystalline iron oxide nanoparticles (MION). The locations of large blood vessels dorsal of the subcortex and penetrating vessels are
indicated. The periaquaductal gray (PAG) at the center of the midbrain is also indicated.
doi:10.1371/journal.pone.0018914.g004

BOLD Temporal Dynamics of SC and LGN
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The depth-dependent differences in vessel dilation rate may also

explain why BOLD signals measured with gradient-echo reach

PEAK later than those measured with spin-echo (Figs. 2 and 3).

Compared to GE, SE is more sensitive to changes in small

capillaries close to the site of neuronal activity and less to larger

vessels such as those above the subcortex [38,39]. As discussed

earlier, dorsal vessels dilate after the smaller penetrating vessels

and likely after the capillaries, meaning GE BOLD signals from a

large ROI are expected to trail SE signals.

Technical considerations
Mechanical ventilation is not performed in this study to permit

the animals to regulate their own blood gas levels at the expense of

an increased likelihood of fMRI baseline signal instability due to

physiological changes. These potential instabilities are not likely to

affect the findings as we closely monitor multiple vital signs to

detect large physiological changes. We note that some physiolog-

ical parameters, such as blood gas levels, are not directly sampled

by our setup and may impact fMRI signals. The averaging of

signals from multiple experiments on an animal helps reduce the

effects of any non-repetitive instabilities. Also, any remaining

signal instabilities are present in both SC and LGN BOLD signals.

There are two likely reasons for the apparent proximity of active

SC voxels in Fig. 1b to large vessels in Fig. 4. First, the superficial

SC layers (approximately top 0.5 mm in adult rats) receive the

majority of direct projections from the retina, as stated in the

introduction section. Therefore, the strongest BOLD responses

will likely be detected in these layers, which lie adjacent to the

large vessels. The data in Fig. 1b of this study show voxels with low

p values are concentrated in the superficial SC. Similar

observations can be made in Fig. 3b of [25] and Fig. 1a of [26].

Second, MION significantly reduces the T2
* of blood vessels and

surrounding tissue, which leads to darkening in FLASH images

within and near vessels [40]. Further, a voxel may contain both

vessels and tissue. The FLASH signal from such a voxel will also

be reduced after MION injection. Consequently, the darkened

regions in Fig. 4 may be larger than the actual blood vessels.

Together, these reasons likely explain the close proximity, and

possible overlap, of active SC voxels in Fig. 1b and dark areas in

Fig. 4.

Conclusion
BOLD fMRI with gradient-echo and spin-echo echo-planar

imaging sequences both observe that the SC BOLD response rises

faster and settles slower than the LGN signal following short

duration visual stimulation. Post-MION FLASH images show the

rat cortex and subcortex appear to share similar vasculature

patterns. The BOLD spatiotemporal heterogeneity observed in

this study is likely related to depth dependent differences in blood

vessel dilation rate similar to those in the somatosensory cortex

following electrical stimulation. However, other factors such as SC

neuronal activity influencing LGN activity may also play a role.

Materials and Methods

Animal preparation
All aspects of this study were approved by the Committee on the

Use of Live Animals inTeaching and Research (CULATR) of the

University of Hong Kong (CULATR Number: 2041-09). Sixteen

SD rats weighing between 250 and 300 g were used in this study.

Each animal was anesthetized with 4% isofluorane (mixed with

room air) for 5 minutes in a plastic anesthetizing box (Harvard

Apparatus, Holliston, MA). Controlled dosages were provided by

an isofluorane vaporizer (ISOTEC 4, SurgiVet, Waukesha, WI).

Anesthesia was maintained with 1% isofluorane throughout the

course of setup and scanning. Once sedated, animals were placed

in the prone position on an animal bed (Bruker BioSpin,

Germany) with a head restraint and tooth bar to restrict motion.

A receive-only quadrature surface coil (Bruker BioSpin, Germany)

was placed over the dorsal side of the head such that the coil was

centered between the two ears. The entire assembly was placed

inside a 7T MRI scanner (PharmaScan, Bruker BioSpin,

Germany) and warm water was circulated within the holder while

rectal temperature was monitored (SA Instruments, Stony Brook,

NY). Respiration rate was monitored with a pressure sensor (SA

Instruments, Stony Brook, NY) attached to the abdominal area.

Heart rate and saturation of peripheral oxygen were monitored

with a pulse oximeter (SA Instruments, Stony Brook, NY) attached

to one of the hind-paws. Vital sign measurements were monitored

in real time but were not available for post-processing.

MRI protocol
Once the animal was properly positioned in the scanner, scout

images were acquired to determine the coronal and sagittal planes.

Four parallel 1.0 mm thick slices, separated by 0.2 mm, were

oriented orthogonal to the sagittal plane as illustrated in Fig. 5(a)

overlaid on an anatomical image of the brain at midline.

According to the rat brain atlas of Paxinos and Watson [41],

this geometry covered the SC and LGN and is similar to those

employed in previous rodent fMRI studies [16,25,26].

An anatomical image was acquired from one animal with a Fast

Low Angle SHot (FLASH) sequence (3.2 cm63.2 cm, 2566256

voxels, TR = 250 ms, TE = 10 ms, a= 15u) after femoral vein

injection of 15 mg Fe/Kg Monocrystalline Iron Oxide Nanopar-

ticles (MION) [42,43]. Iron oxide particles enlarge susceptibility

differences between blood vessels and surrounding tissue, produc-

ing MRI contrast. For the BOLD experiments, the remaining

animals were divided into two groups scanned with gradient-echo

(GE, N = 7) and spin-echo (SE, N = 8) Echo-Planar Imaging (EPI)

sequences. One animal from each group was chosen as a template

for the group. Spin-echo sequences were used to complement the

gradient-echo results as the SE signal is more selective to capillary

responses close to the site of neuronal activity and less sensitive to

the responses of large vessels [38,39]. All animals were optically

stimulated with a short stimulus duration paradigm adapted from

rat somatosensory studies [44]. For gradient-echo, the paradigm

consisted of five sets of 1 s stimulation followed by 60 s rest (inter-

stimulus interval). An initial 10 s rest preceded the five sets. For

spin-echo, the paradigm consisted of ten sets of 1 s stimulation

with 25 s inter-stimulus interval. An initial 10 s rest also preceded

the ten sets. Visual stimulation was provided by an optical fiber

placed 1 cm from an eye. The opposite eye was covered with

opaque tape. All GE experiments stimulated the right eye along

with three of the eight SE experiments. The proximal end of the

fiber was illuminated by a green LED flashed at 10 Hz with a duty

cycle of 0.5. The LED was positioned outside of the MRI scanner.

Throughout an experiment, GE (3.2 cm63.2 cm, 64664 voxels,

TR = 1.0 s, TE = 18 ms, a= 56u) or SE (3.2 cm63.2 cm, 64664

voxels, TR = 1.0 s, TE = 43 ms) EPI scans were acquired. All LED

flashes and EPI scans were synchronized by triggers sent from a

custom LabVIEW setup (National Instruments, Austin, TX). The

experiment was repeated 10 to 15 times for each animal with

longer than two minutes rest in between. A total of 88 gradient-

echo experiments were conducted on seven rats and 120 spin-echo

experiments on eight rats. If vital signs changed significantly

during the course of an experiment, the experiment was stopped

and restarted after at least a two minute interval.
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Data analysis
The EPI images from each experiment were corrected for slice

timing differences using SPM5 and registered to the mean image

of the first experiment using the rigid-body transformation of

AIR5.2.5 [45]. All experiments from an animal were averaged to

form one data set. Images from each data set were normalized to

the mean image of the corresponding template rat using the affine

transformation of AIR. In the GE group, the data set from each

animal was analyzed using Analysis of Variance [23] to compute

the probability, expressed in p values, of a brain region responding

to the stimulus. Regions of Interest (ROIs) were drawn around the

contralateral (left) SC and LGN of the template animal using the

rat brain atlas (refer to Fig. 1a) and the average time series from all

enclosed voxels computed. Voxels wholly or partially enclosed by

the ROI boundaries were included in the average. In the SE

group, voxels from right eye stimulated rats were matched with the

corresponding voxel from left eye stimulated rats by flipping

images of the former about the midline of the brain. The data sets

from all animals were averaged and analyzed using Analysis of

Variance. ROIs were drawn around voxels with p = 0 (beyond

computer precision) in the contralateral (right) SC and LGN of the

average data set (refer to Fig. 1b). One SC and one LGN average

time series was computed for each animal by averaging time series

from voxels in the ROIs. For all animals, average time series were

transformed into BOLD signals (units of % BOLD) by averaging

the responses from 5 s before to 20 s after the start of each 1 s

stimulus and dividing by the amplitude from 5 s before to onset of

stimulation. A normalized BOLD signal was also computed from

each BOLD signal by dividing the amplitude at each time point by

the maximum response amplitude (PEAK).

The temporal properties of BOLD signals from the SC and

LGN of GE rats were quantified using strictly empirical measures

by determining the time to reach 50% of PEAK after onset of

stimulation (t50) and the time to return to 50% of PEAK (t150).

Linear interpolation to 0.1 s temporal resolution was applied for

these calculations. Temporal properties were also quantified by

integrating the normalized BOLD signals along the time domain.

The area under the rising portion of the signal (rAUS) was

computed by summing the time points of the signal from cessation

of stimulation to the time of PEAK. If a time point of either the SC

or LGN signals had a negative value, that time point was excluded

from the summation for both structures. Larger values of rAUS

indicated the signal rose faster. Similarly, the area under the falling

portion of the signal (fAUS) was computed by summing the data

points of the normalized signal from time of PEAK to 20 s after

onset of stimulation (5 s before the next 1 s stimulus). Larger

values of fAUS indicated the signal fell slower. The definitions of

all four parameters were illustrated in Fig. 5b. For SE rats, only

rAUS and fAUS were computed due to the lower contrast to noise

ratio of SE data [39]. Statistically significant differences between

SC and LGN parameters were determined using paired, two-

tailed t-tests. GE and SE animals were treated as two separate

groups when performing t-tests.
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