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CX-5461 is a G-quadruplex stabilizer that exhibits synthetic lethality in homologous

recombination-deficient models. In this multicentre phase I trial in patients with solid tumors,

40 patients are treated across 10 dose levels (50–650mg/m2) to determine the recom-

mended phase II dose (primary outcome), and evaluate safety, tolerability, pharmacokinetics

(secondary outcomes). Defective homologous recombination is explored as a predictive

biomarker of response. CX-5461 is generally well tolerated, with a recommended phase II

dose of 475 mg/m2 days 1, 8 and 15 every 4 weeks, and dose limiting phototoxicity.

Responses are observed in 14% of patients, primarily in patients with defective homologous

recombination. Reversion mutations in PALB2 and BRCA2 are detected on progression fol-

lowing initial response in germline carriers, confirming the underlying synthetic lethal

mechanism. In vitro characterization of UV sensitization shows this toxicity is related to the

CX-5461 chemotype, independent of G-quadruplex synthetic lethality. These results establish

clinical proof-of-concept for this G-quadruplex stabilizer. Clinicaltrials.gov NCT02719977.
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G-quadruplexes (G4) are tertiary DNA structures, which
are believed to form at over 700,000 guanine-rich regions
of the genome1–4. Especially prevalent in telomeres, pro-

moters, and 5’-untranslated regions, neighboring guanine tetra-
mers can stack and form higher-order DNA complexes. The exact
function of G-quadruplexes in the human genome is unknown,
but these may function in telomere maintenance, gene regulation,
and chromatid pairing in meiosis1. In normal cells, G4 structures
are likely transient and easily resolved by helicases5; however,
when not properly resolved, G4 structures can cause replication
fork arrest or DNA breaks. These events require homologous
recombination repair (HR-repair) to resolve5,6. It has been shown
that G4 ligand tool compounds such as pyridostatin (PDS) are
synthetic lethal with loss of HR repair, suggesting a biomarker-
driven therapeutic hypothesis7.

Loss of HR repair, which is essential for error-free repair of
double-stranded DNA breaks, is a common finding in both
hereditary and sporadic malignancies, including a subset of
breast, ovarian, pancreatic, and prostate cancers8 and is a ther-
apeutic vulnerability. Most commonly, HR-repair deficiency
(HRD) involves homozygous inactivation of the BRCA1 and
BRCA2 genes, but this phenotype can also be observed with loss
of function of other proteins such as PALB2, ATM (in certain
contexts), and MRE119. Currently, Poly (ADP-ribose) poly-
merases (PARP) inhibitors and platinum-based chemotherapy
are used in this setting, as HRD confers sensitivity to these agents
by a synthetic lethal mechanism10,11. Overlapping hematologic
toxicities seen with such agents limits the development of ther-
apeutic combinations, and inevitable resistance to these classes of
drugs occurs, motivating the development of new treatment
options for this group of patients.

We have recently shown that CX-5461, a fluoroquinolone
ellipticine derivative of CX-354312, originally identified as an
RNA-Pol1 inhibitor with potential in hematologic cancers, is a
potent G4 binder and stabilizer in vitro and in vivo indepen-
dently of its RNA-Pol1 inhibitory activity. CX-5461 stabilizes
G4 in DNA, resulting in replication fork collapse and single-
stranded breaks, which convert to double-stranded DNA
breaks. CX-5461 was found to be synthetically lethal in BRCA2
and BRCA1-deficient tumor models both in vitro and in vivo,
independently of RNA polymerase 1 inhibition3.
G4 stabilization with CX-5461 could thus represent a novel
therapeutic strategy for cancers with germline or somatic
defects in HR-repair7.

In a prior study of CX-5461 in patients with hematologic
malignancies, 170 mg/m2 intravenously once every 3 weeks (q3w)
was recommended for further study, based on dose-limiting
toxicities palmar–plantar erythrodysesthesia and phototoxicity13.
Preclinical modeling and clinical pharmacokinetics suggested that
more frequent administration could be desirable in solid tumors.

To advance clinical evaluation of G4 stabilization in HRD
patient populations, we conducted a phase I biomarker-driven
clinical trial of CX-5461 in patients with solid tumors, exploring
alternative dosing schedules and preferentially enrolling patients
with HRD.

Here we show that CX-5461 is generally well-tolerated, with a
recommended phase II dose of 475 mg/m2 days 1, 8, and 15
every 4 weeks, and dose-limiting phototoxicity. Antitumor
activity is observed primarily in patients with HR-defective
tumors, and reversion mutations in PALB2 and BRCA2 are
observed in association with the development of acquired resis-
tance. Notably, the dose-limiting photosensitivity observed with
CX-5461 arises from a mechanism independent of its G4-
stabilizing effect. Altogether, we establish clinical proof-of-
concept for this synthetic lethal strategy for HR-deficient solid
tumors.

Results
Forty-one patients were enrolled between 13 June 2016 and 26
August 2019, one of whom was withdrawn prior to receiving
treatment (DL9). All treated patients were evaluable for toxicity
and response (1 patient had non-measurable disease only but was
considered evaluable for non-CR/non-PD and PD); 4 were not
reassessed after baseline and were thus inevaluable for response
(two patients discontinued therapy (symptomatic progression,
patient refusal) but died prior to reassessment, two patients dis-
continued CX-5461 (symptomatic progression, toxicity) and
started other therapies prior to reassessment). The most common
tumor type was breast (n= 19), followed by ovarian (n= 7) and
pancreatic (n= 3) cancers, and 78% of participants were female.
Based on clinical germline or tumor testing performed prior to
enrollment, 19 patients had a germline BRCA1 (n= 6) or BRCA2
(n= 13) mutation, and 1 had a germline PALB2 mutation; 2
patients had a BRCA2 variant of uncertain significance (VUS)
and 1 patient had a PALB2 VUS. Three others had somatic
BRCA1/2 (n= 3) mutations. The median number of prior lines of
therapy was 4. A summary of patient characteristics is presented
in Table 1.

Dose escalation and adverse events. Ten dose levels (DL0–9) and
2 schedules were explored in this study (Table 2). The median
number of cycles administered was two (range: 1–16). The most
common adverse events (AE) considered related to CX-5461 were
skin phototoxicity and nausea. The only grade 3 or 4 related AEs
were skin phototoxicity (15%), palmar–plantar erythrodysesthesia
syndrome (2.5%), and nausea (2.5%). Grade 1 or 2 mucositis,
palmar–plantar erythrodysesthesia syndrome, eye phototoxicity,
headache, and dry eyes were also reported (Tables 3–5). Skin
phototoxicity was observed at all dose levels but ocular photo-
toxicity appeared to be dose-related, occurring in one patient at
DL1 and then at DL6 and above.

Sixteen serious AEs (SAEs) were reported in 13 patients, 3 were
considered to be related to CX-5461 (grade 3 phototoxicity (DL0),
grade 2 phototoxicity of the eye (DL8), grade 3 phototoxicity
(DL8)). None of these 3 SAEs were considered DLT, as protocol-
specified maximal UV protection was not used. At DL9 (650 mg/
m2 d1, 8, 15), 1 patient had grade 3 skin phototoxicity; one
patient had grade 2 eye phototoxicity in cycle 2 and grade 2 skin
phototoxicity and grade 3 palmar–plantar erythrodysesthesia
during cycle 3; one patient had grade 2 eye phototoxicity and
grade 3 skin phototoxicity during cycle 1. After a review of the
data and discussion among investigators, this dose level was
considered the maximal administered dose (MAD), and DL8
(475 mg/m2 d1, 8, 15) was declared the recommended phase 2
dose (RP2D).

Pharmacokinetics. The mean CX-5461 concentration at each
dose level is shown in Fig. 1a. CX-5461 exposure, as measured by
maximum concentration (Cmax) and AUC0-72, increased with
each DL (Fig. 1). However, there was large inter- and intra-
subject variability, which, together with the small number of
patients treated at each DL, makes dose proportionality difficult
to assess. CX-5461 was eliminated slowly, supporting once-
weekly dosing. At the RP2D, the average day 1 Cmax was
1745 ± 801 ng/mL, and day 15 Cmax was 2872 ± 2307 ng/ml with
an elimination half-life (t1/2) of 61.5 ± 15.5 h and 59 ± 11.2 h,
respectively. The mean trough plasma level taken prior to cycle
2 day 1 (14 days after the prior dose) was 49.1 ± 34.5 ng/ml,
indicating minimal residual CX-5461.

Patient and tumor genotypes. Clinical testing reports for
germline pathogenic aberrations for BRCA1, BRCA2, PALB2 were
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available for 32 patients. These results were primarily from her-
editary cancer screening programs, and thus patients may have
had other aberrations not detailed in the clinical report. Alleles
classed by clinical testing as pathogenic, likely pathogenic, or
VUS, were coded for BRCA1, BRCA2, PALB2 (Fig. 2, Supple-
mentary Table 1). Cases/loci without allele information were
coded as not applicable (NA)/missing data. For the 20 patients
with available formalin-fixed paraffin-embedded (FFPE) tumor
material, whole-genome sequencing (WGS) was performed to
capture any additional pathogenic/likely pathogenic alleles, as
described in WGS methods (Fig. 2, Supplementary Table 1). For
14 cases with matched tumor-normal, germline and somatic
protein-coding mutations (SNV, indels) for BRCA1, BRCA2,
PALB2, and TP53, were coded as pathogenic/likely pathogenic
(Cosmic SNV/Indel pathogenic, ClinVar SNVs, SIFT-indel) and
for six tumors without matched normal, pathogenic/likely
pathogenic mutations in BRCA1, BRCA2, PALB2, TP53 were
coded as present, germline-somatic status unknown (Fig. 2).
WGS of normal tissue was performed in two additional patients,
without matched tumors. Pathogenic/likely pathogenic mutations
from WGS in other loci were sporadic/low frequency. Both
matched and unmatched samples sent for WGS identified to have
only reference alleles at the genes of interest were coded as
“Reference”.

Efficacy. Four patients had confirmed PR (3 patients with breast
and 1 with ovarian cancer) (ORR 4/40= 10%, 95% CI: 2.8–23.7);
all patients with PR had germline DNA-repair abnormalities (2
BRCA2, 1 PALB2, 1 TP53 (with a concurrent BRCA2 VUS)
(Figs. 2, 3). Among patients with tumor types where germline
alterations in HR genes (including BRCA1/BRCA2/PALB2) have
been shown to have a functional role (breast, ovarian, pancreas),
ORR was 14% (4/29, 95% CI: 3.9–31.7%); three responders had
pathogenic germline alterations in BRCA1/2 or PALB2, and the
4th had a pathogenic TP53 mutation and BRCA2 VUS. Of 11
patients who had a response of stable disease (SD), 4 were durable
(≥6 months), of whom three had germline or somatic BRCA2
aberrations (including one VUS, Fig. 2). The overall DCR was
20% (8/40, 95% CI: 9.1–35.7%). Two objective responses were
observed in patients who had received prior platinum (2/32)
(Supplementary Table 2). At the time of analysis, all responses
had ended, and all patients had discontinued study treatment.

Sequencing of post-progression biopsies reveals on-target
reversion mutations. Two patients in the study consented to
re-biopsy on disease progression after initial evidence of clinical

Table 2 Dose levels, schedule, and dose-limiting toxicity.

Dose level CX-5461 dose (mg/m2/dose) Schedule (Q4 weeks) Planned dose/week (mg/m2) Number enrolled Dose-limiting toxicities

0 50 Day 1 & 8 25 4
1 100 50 4
2 150 75 4
3 200 100 4
4 250 125 3
5 325 163 3
6 475 238 3
7 325 Day 1, 8 & 15 244 4
8 475* 356 6
9 650 488 5 2 **

*Includes 1 patient treated in the expansion phase.
**One occurred after cycle 1 (phototoxicity (skin and eye)).

Table 1 Patient characteristics.

Number %

Median age (range) 53 (25–73)
Sex Female 31 77.5

Male 9 22.5
Performance status (ECOG) 0 8 20

1 30 75
2 2 5

Malignancy type Breast 19 47.5
Ovary 7 17.5
Pancreas 3 7.5
Lung cancer: non-
small cell

2 5

Other* 9 22.5
Prior therapy Chemotherapy 40 100

Hormone therapy 14 35
Immunotherapy 8 20
Radiotherapy 24 60
PARP inhibitor** 8 20
Prior platinum 32 80
Other systemic
therapy

11 27.5

Other therapy 5 12.5
Number of prior lines of
therapy

1 4 10
2 4 10
3 11 27.5
≥4 21 52.5

Number of prior
chemotherapy
regimens–neoadjuvant

1 7 17.5
2 1 2.5

Number of prior
chemotherapy
regimens–adjuvant

1 14 35
2 1 2.5

Number of prior
chemotherapy
regimens–advanced/
metastatic disease

1 9 22.5
2 11 27.5
3 9 22.5
≥4 8 20

Mutation Status (known at
study enrollment)

Germline BRCA1 6 15
Germline
BRCA2***

13 33

Somatic BRCA1 or
2

3 8

PALB2 *** 1 2.5

Forty patients were enrolled and treated in the study.
*Other tumor type includes one of each: adrenal, anal, appendix, biliary, colon, head and neck,
small intestine, soft tissue sarcoma, and uterine sarcoma.
**Includes one patient treated on the blinded trial of PARP inhibitor (niraparib vs placebo) and
not unblinded.
***Two additional pts had BRCA2 VUS and 1 pt PALB2VUS.
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response or benefit, enabling the comparison of pre-study and
post-relapse tumor genotypes from targeted exome sequencing.

One participant with metastatic breast cancer and confirmed
PR had a known pathogenic germline PALB2 frameshift mutation
in exon 5, PALB2 c.2052delC (p.Arg686fs) diagnosed by clinical
targeted panel sequencing (Figs. 2, 4a). At the time of progression,
a biopsy of the growing target liver lesion revealed an additional
exon 5 deletion/insertion PALB2 c.1962_1988delinsA
(p.F655Hfs*51), which restores the reading frame of PALB2.
The appearance of a restoring frameshift is a typical resistance
mechanism for HRD pathway synthetic lethal drugs14.

A second participant with metastatic pancreas cancer and known
pathogenic BRCA2 germline mutation (c.5946delT;p.S1982fs;
rs80359550) had the best response of SD with evidence of clinical
benefit (reduction in tumor markers and improvement in
symptoms) (Figs. 2, 4b). At the time of disease progression, a
peritoneal biopsy was obtained and subjected to targeted NGS,
which revealed an acquired somatic reversion mutation, predicted
to restore the BRCA2 protein reading frame (c.5992_6011del-
CAAGTGTTTTCTGAAATAGA p.Q1998Rfs*2).

The detection of acquired mutations predicted to restore HR
function arising with the development of CX-5461 resistance in
these patients provides strong evidence to support HRD as the
mechanism underlying initial drug sensitivity.

UV photosensitization is independent of G4 binding activity.
Since UV sensitization was the dominant clinical adverse effect of
CX-5461, we investigated whether this is observed with all G4
ligands or is specific to CX-5461 and its chemotypes. In these
experiments, we used non-HR-deficient models, since the tissues
subject to clinical photosensitivity are not HR-deficient. Notably,
fluoroquinolones, a class related to CX-5461, are associated with

UV sensitization15. We evaluated the effects of CX-5461, its
precursor CX-3543 (quarfloxin), and four structurally unrelated
G4 binding small molecules, PDS, BRACO-19, TMPYP4, and
PhenDC3 on HCT116 cell viability (Fig. 5a–e), alone or in
combination with UV irradiation at 5 mJ/cm2 and 125 mJ/cm2.
Strong potentiation of UVA-induced cytotoxicity, even at low
UVA doses, was observed with CX-5461 and CX-3543 but not
with the unrelated G4 binding compounds (Fig. 5a–e). We
similarly assessed the formation of cyclobutane pyrimidine
dimers (CPD), the main UVA by-product, after 1 h compound
exposure and again observed strong potentiation with CX-5461
but not PDS (Fig. 5f, g). We note that DNA damage from PDS

Table 3 Select non-hematologic adverse events of any causality by dose level: all grades.

Dose (mg/m2) 50 100 150 200 250 325 475 325 475* 650

Schedule d1,8 d1,8 d1,8 d1,8 d1,8 d1,8 d1,8 d1,8,15 d1,8,15 d1,8,15
N patients 4 4 4 4 3 3 3 4 6 5
Dry eye 1 1 2 1 1 1
Eye phototoxicity 1 1 1 2 3
Diarrhea 2 1 1 2 1 1 1
Mucositis oral 2 1 1 1 2
Nausea 3 3 4 3 2 2 (1) 1 1 6 3
Fatigue 4 3 3 2 2 3 (1) 2 2 5 (2) 3 (1)
Headache 1 3 2 1 2 1
Palmar–plantar erythrodysesthesia syndrome 1 1 1 2 1 1 1 1 1 (1)
Phototoxicity 2 (1) 1 1 2 3 (1) 1 3 4 (1) 4 (2) 3 (1)

Forty patients were enrolled and treated with CX-5461.
*Includes one patient treated in the expansion phase.

Table 4 Hematology and biochemistry.

Dose (mg/m2) 50 100 150 200 250 325 475 325 475* 650

Schedule d1,8 d1,8 d1,8 d1,8 d1,8 d1,8 d1,8 d1,8,15 d1,8,15 d1,8,15
N pts 4 4 4 4 3 3 3 4 6 5
Alkaline phosphatase – – 1 – – – – – – 1
Bilirubin – – 1 – – – – – – –
AST – – 2 1 – – – 1 – –
ALT – – 2 1 – – – – – –
Anemia – – – 1 – – – – 2 –
Neutropenia – – 1 – – – – 1 – 2
Thrombocytopenia – – 1 – – – – – – –

Grade 3 or 4 by dose level. Forty patients were enrolled and treated with CX-5461.
*Includes 1 patient treated in the expansion phase.

Table 5 Treatment-related non-hematologic adverse events
were reported in ≥10% of patients treated with CX-5461 in
the study*.

Description Grade 1–2 Grade 3–4 Total

N % N % N %

Dry eye 4 1% 0 0% 4 10%
Eye phototoxicity 8 20% 0 0 % 8 20%
Headache 5 12.5% 0 0% 5 12.5%
Mucositis oral 6 15% 0 0% 6 15%
Nausea 17 42.5% 1 2.5% 18 45%
Palmar–plantar
erythrodysesthesia

8 20% 1 2.5% 9 22.5%

Phototoxicity (skin) 18 4% 6 15% 24 60%

Forty patients were enrolled and treated with CX-5461.
*There were no treatment-related grade 5 AEs.
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Fig. 1 Plasma pharmacokinetics of CX-5461 administration. a Day 1 CX-5461 concentration time-course from serial sampling for each dose level: 50mg/
m2 (n= 3), 100mg/m2 (n= 4), 150mg/m2 (n= 4), 200mg/m2 (n= 4), 250mg/m2 (n= 3), 325mg/m2 (n= 3), 475mg/m2 (n= 3), 650mg/m2

(n= 6), B:325 mg/m2 (n= 6), B:475mg/m2 (n= 4). b, c Cmax (mean, SD), and AUC (mean, SD) for each dose level, sampled on the days shown. PK was
performed on cycle 1 day 1 for all patients. Repeat samples were performed on cycle 1 day 8 for patients on a days 1, 8 schedule and on day 15 for those on a
days 1, 8, 15 schedule. Repeat sample size indicated as n= above each group. Source data are provided as a Source Data file.
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and CX-5461 is only visible after the longer time frames 4 h or
more as previously described. We tested whether CX-5461
potentiates UVA-induced cell death in HAP1 cells with a
knockout of XPA, a key mediator of CPD damage repair. In the
absence of UVA radiation, WT and XPA deficient HAP1 cells

exhibited similar sensitivity to CX-5461 (Fig. 5h). UVA radiation
dramatically increased the cytotoxicity of CX-5461 in both XPA
WT and knockout cells, to a greater extent in XPA knockout cells
(Fig. 5h). Since DNA damage and reactive oxygen species (ROS)
production are expected mediators of cell death following UVA
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damage, we also confirmed the pattern of CX-5461 UVA
potentiation. As expected, CX-5461, but not PDS or other
unrelated G4 ligands, markedly increased DNA damage (Sup-
plemental Figure 1a, b) and ROS (Supplemental Figure 1c) in the
presence of UVA. Taken together, these data show that poten-
tiation of UV-mediated DNA damage is not a general feature of
G4 ligands, but rather appears restricted to CX-5461 and its
precursor.

Discussion
CX-5461, initially developed as an RNA polymerase I inhibitor,
was recently tested in a clinical trial in hematologic malignancies,
where it was generally tolerated (with phototoxicity as the prin-
cipal toxicity) but exhibited modest antitumor activity when
administered to unselected patients at a maximum dose of
175 mg/m2 every 3 weeks13. We have recently shown through
biophysical and genetic studies that CX-5461 is a G4 binder and
stabilizer that induces DNA damage and is synthetic lethal with

loss of key DNA-repair mechanisms, including BRCA1/2-medi-
ated HR3. Furthermore, RNA-pol1 activity is not required for
synthetic lethality in HRD, as structurally unrelated RNA-pol1
inhibitors exhibit no lethality in HRD backgrounds. These data
and preclinical efficacy studies provided a strong rationale to
evaluate CX-5461 as a G4 stabilizer in HR-deficient solid tumors.
Non-clinical data, the potentially avoidable phototoxicity, and the
lack of other serious toxicity observed in the first-in-human study
supported the evaluation of more intensive dosing schedules.
Given potential differences in safety or tolerability in this patient
population, we set out to identify an RP2D using an intensified
treatment schedule and to test the hypothesis that this agent
would exhibit clinical activity in HRD-deficient cancers.

In our study, we were able to significantly escalate the dose of
CX-5461 beyond that achieved in the first-in-human study in
patients with hematologic cancers. The RP2D of 475 mg/m2 on
days 1, 8, and 15 of a 4-week cycle, was based on phototoxicity,
which occurred despite strict UV light avoidance protocols and in
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Fig. 3 Best response in target lesions for evaluable patients. Objective response (all PR) was observed in 4 of 32 evaluable patients treated with CX-
5461. Color bars indicate dose levels per key, numeric dose level above/below bars. Symbols denote germline and/or tumor somatic genotypes (star
BRCA2, circle BRCA1, hexagon PALB2, square TP53 (from WGS only)). Source data are provided as a Source Data file.
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the absence of other significant dose-related toxicities. It should
be noted that phototoxicity, including severe events, was observed
at all dose levels tested, despite increasingly stringent UV
avoidance recommendations. Ocular phototoxicity was observed
in one patient at DL1 (100 mg/m2) and then at doses 475 mg/m2

and above and was considered dose-limiting at the highest dose
level tested. Overall, phototoxicity was an important toxicity for
patients, and although it resulted in only one patient dis-
continuing therapy, it was responsible for dose omission in six
and dose reductions in two participants. Notably, 13 patients did
receive radiotherapy during or following treatment with CX-5461,
and no excess toxicity to ionizing radiation was noted.

Enrollment slowed during the course of the trial, mainly due to
concerns regarding phototoxicity and with alternative treatments
for this population, such as PARP inhibitors, becoming clinically
available in Canada, which limited the addition of trial sites. The
study closed before the planned expansion was completed.

Importantly, our co-clinical studies carried out to characterize
phototoxicity demonstrated UVA sensitization by CX-5461—but
not by other G4-stabilizing tool compounds—in vitro. These
findings suggest that the photosensitization observed is not
related to the mechanism-of-action, but is attributable rather to
the CX-5461 chemotype. Fluoroquinolones, to which CX-5461
and its precursor CX-3543 are related, are known UV sensitizers.

Fig. 4 Post-progression reversion mutations. a gPALB2 patient. Sequence alignment from the PALB2 locus comparing pre- (top) and post-treatment
(bottom) sequence in a responding patient (confirmed PR) with gPALB2-related breast cancer. Germline alteration is shown in red, and upstream acquired
somatic deletion is shown in green (upper panel). The secondary mutation is predicted to restore a near full-length PALB2 protein (lower panel). b gBRCA2
patient. Sequence alignment from the BRCA2 locus comparing pre- (top) and post-treatment (bottom) sequence in a patient with gBRCA2-related
pancreatic cancer, who experienced clinical benefit (best response SD; 13% shrinkage in target lesions, with improvement in tumor markers and disease-
related symptoms), followed by progression. Germline alteration is shown in red, and downstream acquired somatic deletion is shown in green (upper
panel). The secondary mutation is predicted to restore a near full-length BRCA2 protein (lower panel).
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Coupled with the absence of other significant toxicities observed
in this trial, the results of our clinical and non-clinical work raise
the possibility that alternative G4-stabilizers could exhibit a broad
therapeutic index.

Consistent with the results we previously reported in pre-
clinical models3, this trial demonstrates that CX-5461 is active in

patients with HR-deficient cancers. Four partial responses were
identified, including three in patients with breast cancer— all of
whom had germline DNA-repair abnormalities (2 BRCA2, 1
PALB2, 1 TP53). While the small number of responders limits the
available analyses, the detection of reversion mutations predicted
to restore HR capacity at the time of disease progression, in
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patients with both germline PALB2 and BRCA2 mutations, is
strong evidence for the synthetic lethal mechanism underlying
this therapeutic strategy14. Not all patients in our study with an
identified BRCA mutation responded to therapy. In some cases,
this is likely related to the absence of a true homologous
recombination deficiency phenotype (e.g., BRCA1 mutation in
small bowel adenocarcinoma)16. In other cases, prior therapy
with platinum or PARP inhibitors may have conferred cross-
resistance with CX-5461 via restoration of functional HR or
alternative mechanisms17. Our study was not designed or pow-
ered to fully address treatment sequencing with these agents, or to
precisely define the biomarker approach. Future clinical studies
should address these questions and could consider expansion of
selection biomarkers, based on additional synthetic lethal part-
ners recently described18.

Finally, our clinical results provide important context in light
of recent preclinical reports19,20 that CX-5461 (and other G4
ligands such as PDS) induces topoisomerase 2 (Topo2) trapping
as part of the mechanism leading to double-stranded breaks and
cytotoxicity21,22. In this study, CX-5461 had clinical activity
without evidence of the characteristic toxicities (e.g., myelosup-
pression and alopecia) of topoisomerase inhibitors. Furthermore,
the response associations and HRD gene reversions seen here
have not been reported clinically for topoisomerase inhibitors.
Thus, both the antitumor activity and toxicity profiles support the
notion that CX-5461 acts through a mechanism distinct from
existing topoisomerase therapies. Future mechanistic studies
should address whether and how G4 stabilization induces Topo2
trapping. Given our data suggesting that the dose-limiting UV
sensitization is secondary to the chemical structure of CX-5461,
our results could inform the development of future G4 therapies.
The absence of other toxicities and available predictive biomarker
strategy would enable rational development of both monotherapy
and combination strategies with such agents.

Methods
Study oversight. This study was performed in accordance with the Declaration of
Helsinki and the principles of Good Clinical Practice. The protocol was approved
by Health Canada and the research ethics board for each participating center, as
well as the Ontario Cancer Research Ethics Board and UBC BC Cancer Research
Ethics Board. Additional correlative studies were approved by the UHN research
ethics board (14-8358). All patients provided written informed consent before any
study procedures were performed. The study was designed, conducted, and
sponsored by the Canadian Cancer Trials Group (CCTG). Patients were accrued
between 13 June 2016 and 26 August 2019.

Study population. Patients provided written informed consent and were enrolled
at three CCTG centers in Canada. Eligible patients were ≥18 years old, had an
Eastern Cooperative Group (ECOG) performance status (PS) of 0–2, and had
incurable solid malignancies; there was no limit on prior systemic therapy,
including PARP inhibitors for the dose-escalation phase, or platinum-based che-
motherapy. We planned to enroll patients with breast cancer, known BRCA1/2
germline aberrations, or selected other HRD aberrations (e.g., PALB2), 1–3 prior
cytotoxic regimens for advanced disease, and RECIST 1.1 measurable disease23 into
an expansion phase at the RP2D.

Patients with asymptomatic brain/spinal cord metastasis not requiring therapy
were eligible. Patients with known photosensitivity, active infections, untreated/

uncontrolled cardiovascular conditions, and a history of other malignancies (except
adequately treated non-melanoma skin cancer or in-situ cancer) within 2 years
were not eligible. Full eligibility criteria can be found on clinicaltrials.gov
(NCT02719977).

Study objectives. The study was originally designed to identify an RP2D using a
day 1 and 8 schedule and then evaluate antitumor activity in patients with probable
HRD. As the dose-escalation phase was extended to evaluate much higher than
expected dose levels, the protocol was amended to focus on defining an optimal
biologic dose, with a small expansion at the RP2D. Secondary endpoints were to
establish the safety, tolerability, and pharmacokinetics of CX-5461. Exploratory
objectives included the evaluation of HRD aberrations (germline and tumor),
including ctDNA and skin biopsies as predictive biomarkers of efficacy and toxi-
city. Companion laboratory studies were conducted to evaluate the mechanisms
underlying the clinical observations.

Study design. Doses were escalated using a 3+ 3 design, which allowed 3 or 4
patients to be initially enrolled in each dose level. CX-5461 was administered as a
60-minute intravenous infusion on day 1 (d1) and 8 q4w in dose levels 0-6 and d1,
8, and 15 q4w for dose levels 7-9. The MAD was defined as the dose level at which
≥2/3 or ≥2/6 patients experienced dose-limiting toxicity. The RP2D was defined as
the next lower dose below the MAD.

DLT included the following drug-related AEs occurring during cycle 1: grade 3
phototoxicity or grade 2 phototoxicity with blistering lasting ≥7 days, if adequate
prevention was used; other grades 3 or 4 non-hematologic toxicity (excluding
inadequately managed nausea and vomiting, alopecia or grade 3 fatigue lasting
<7 days); grade 4 myelosuppression ≥7 days, febrile neutropenia or ≥grade 3
thrombocytopenic bleeding; or other toxicities of concern including those requiring
≥14 days delay in next cycle.

The starting dose was 50 mg/m2 d1 and 8. An expansion cohort at the RP2D of
10-20 patients with breast cancer and BRCA1/2 (germline) or relevant somatic
aberrations was planned.

Safety assessments. AEs were assessed according to National Cancer Institute
Common Terminology Criteria for Adverse Events (CTCAE) v4.0.

Statistical considerations. For the RP2D expansion, CX-5461 would be con-
sidered promising if two or more objective responses were observed from 10
patients. The true type I error of this design is 0.09 and the power is 76%. 95% exact
confidence intervals for proportion were calculated based on the method of
Clopper and Pearson.

Pharmacokinetic and correlative studies. PK was assessed on all patients in the
escalation phase. Venous blood samples were collected on treatment days 1, 8, and
15 (where applicable), and plasma CX-5461 was analyzed with HPLC-MS/MS
(schedule details in Supplementary Table 3). PK parameters were calculated with
non-compartmental methods. All patients had an available tissue block and pro-
vided consent for release. The protocol was amended to allow submission of a
ctDNA sample and in a further amendment, a mandatory skin biopsy (pre-treat-
ment and cycle 1 day 15) to study phototoxic effects. Fresh tumor biopsies were
optional.

Whole-genome sequencing
Sample processing and sequencing. FFPE tissue (either as 1.0 mm cores or
pathologist-identified tumor or morphologically-normal regions of macro-
dissected tissue sections) was first prepared using deparaffinization solution
(Qiagen) as per the manufacturer’s protocol. DNA was extracted using the
QIAamp® DNA FFPE Tissue kit (Qiagen) according to the manufacturer’s pro-
tocol. For fresh frozen (matched patient normal) skin samples, DNA was extracted
using the DNeasy® Blood & Tissue Kit (Qiagen) according to the manufacturer’s
protocol.

The library construction protocol used for FFPE genomic DNA sequencing is
described in detail24. Briefly, after mechanically shearing the DNA, FFPE lesions
were repaired and simultaneously end-repaired using the NEBNext FFPE End

Fig. 5 Comparison of G4 ligand photosensitization. HCT116 cells cytotoxicity (WST-1 assay) with (squares 5mJ/cm2, triangles 125mJ/cm2) and without
(circles) UVA radiation after exposure to different G4 ligands CX-5461 (a), CX-3543 (b), PDS (c), BRACO-19 (d), and PhenDC3 (e). a–e Representative
experiments from triplicate biological repeats are displayed as individual data points with fitted sigmoid curves. Vertical axis, fractional survival, horizontal axis
log10 drug concentration (M) (f) Representative images of CPD immunofluorescent staining under UV and drug treatment conditions for U2OS cells, quantified
from biological duplicates in (g) (h) Scale bar= 100um. U2OS cells were treated with drug or vehicle control, then immediately irradiated with UVA 125mJ/cm2;
and fixed 1 h later for immunofluorescence staining with CPD antibody. g Distribution of mean intensity of CPD level per cell (total n= in labels), with two
biological repeats per condition. Vertical axis, mean CPD intensity per cell, horizontal axis, conditions (h) WT or KO XPA HAP1 cells assayed for cytotoxicity.
Vertical axis, fractional survival (WST-1 assay). The horizontal axis, log10 drug concentration (M). Error bars= standard deviation of the mean. Three biological
repeats per condition.
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Repair reagent (New England Biolabs, NEB). Following A-tailing and adapter-
ligating using the NEB Paired-End Sample Prep Premix Kit–A Tail and the NEB
Paired-End Sample Prep Premix Kit–Ligation, respectively, the ligated products
were PCR-enriched and indexed. Amplified libraries were purified and sequenced
using an Illumina HiSeqX machine generating paired-end 150 bp reads. Sequenced
libraries were aligned to the Hg19 (GRCh37) reference genome assembly using the
BWA-mem version 0.7.6a aligner25. Aligned reads had a mean read depth of 43.33
(range 19.10 to 102.99).

Variant calling and interpretation. Strelka version 2.9.1026 and MutationSeq ver-
sion 4.3.727 were used with default parameters for the identification of single
nucleotide variants (SNVs) and indels. SNVs were identified from the intersection
of high-confidence SNVs called by MutationSeq (PR ≥ 0.85) and SNVs called by
Strelka. SNV position was used to annotate variants with information from
GENCODE version 1928 while position and sequence were used to annotate with
variant information from the Clinvar 20200206_data_release29, and COSMIC
version 9130. The effects of SNVs called by MutationSeq were predicted using
SnpEff version 4.331. Pipeline workflow with python 3.6.12, snakemake 3.13. For
statistical analysis R3.6.1 and GraphPad-PRISM v8 were used.

SNVs and indels of interest were identified as those matching variants with
Clinvar Clinical Significance terms including the words “pathogenic”, “likely
pathogenic”, or “pathogenic association”. Somatic SNVs annotated with COSMIC
records having FATHMM scores >0.5 were also identified as variants of interest.
Additional SNVs of interest were identified as those absent from reference datasets
but determined to have high potential impacts based on SnpEff predictions.

Indels lacking Clinvar or COSMIC annotations, but annotated with the
GENCODE features CDS or exon, were identified as variants of interest if they
resulted in stop codon insertion or deletion, or were called with a Strelka QSS score
>34 and resulted in a potential frameshift in known GENCODE protein-coding
gene and GENCODE known protein-coding transcript.

Phototoxicity assays. Human epidermal keratinocytes (HEKa) cells were sourced
from Thermo Fisher Scientific, and were grown in EpiLife™ Medium with HKGS.
HAP WT and XPA knockout cell lines (Horizon Discovery) were cultured in
IMDM, 10% FCS. Human HCT116 cells, U2OS cells (ATCC) were grown in
McCoy’s 5 A medium with 10% FBS and L-glutamine. All cell lines are myco-
plasma free and have been authenticated by STR or SNP profiling. CX-5461 was
provided by Senhwa Biosciences, Inc. PDS is from Sigma-Aldrich, BRACO-19 from
Alfa Chemistry, PhENDC3 is from Sigma-Aldrich, γ-H2AX antibody from Abcam
(1:1000 for IF) and CPD antibody (1:1500) from Cosmo Bio Ltd. (Catalog number:
CAC-NM-DAD-001). The WST-1 assay was performed as previously described3,
γH2AX foci staining was performed as previously described3. Immunofluorescence
staining of CPD was performed according to the protocol from the manufacturer
(Cosmo Bio Ltd).

ROS measurement with H2DCFDA: HCT116 cells were treated with vehicle,
CX-5461 0.1 μM or PDS 10 μM for 1 h, then were added with H2DCFDA for
45 min before initial fluorescence measurement. Cells were then irradiated with
UVA 125mJ/cm2, and immediately sent for a second fluorescent measurement.
The ratio of the second and the first fluorescent measurement was calculated as the
level of ROS induced by UVA. Assays were performed in the 1-hour time frame
within which UV damage manifests, in contrast to G4 ligand-induced damage
which takes 3–4 h to be measurable.

Efficacy assessment. Computed tomography of chest, abdomen, and pelvis was
performed at baseline and every 8 weeks and as clinically indicated. All patients
who had at least one post-baseline scan were included in efficacy analyses; patients
with the non-target disease only were assessed for non-CR/non-PD and PD.
Patients were evaluated for CR, PR, SD, or PD as defined by RECIST 1.123. The
objective response rate (ORR= CR+PR) and disease control rate
(DCR= CR+ PR+ SD ≥ 6 months) are reported. Duration of response was
defined as the time from when CR or PR was first documented until the first date
that progressive disease was objectively documented or the time of the last disease
assessment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
CCTG has a robust and compliant data sharing policy the details of which are available at
https://www.ctg.queensu.ca/docs/public/policies/DataSharingandAccessPolicy.pdf. The
data request form is available at https://www.ctg.queensu.ca/public/policies. Correlative
Data—Genome WGS sequencing: VCF files with identified sequence variants are
available via Zenodo at https://doi.org/10.5281/zenodo.6403006. BAM files
corresponding to the sequencing are available at the European Genotype Archive (EGA)
under accession #EGAS00001006173. Data are available under restricted access, the
policy is described at: https://www.ctg.queensu.ca/public/policies, access can be obtained
by contacting CCTG as described above for clinical data. Source data are provided in
this paper.
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