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Abstract

Forgiveness is a positive, prosocial manner of reacting to transgressions and is strongly associated with mental health and well-being. 
Despite recent studies exploring the neural mechanisms underlying forgiveness, a model capable of predicting trait forgiveness at 
the individual level has not been developed. Herein, we applied a machine-learning approach, connectome-based predictive modeling 
(CPM), with whole-brain resting-state functional connectivity (rsFC) to predict individual differences in trait forgiveness in a training 
set (dataset 1, N = 100, 35 men, 17–24 years). As a result, CPM successfully predicted individual trait forgiveness based on whole-brain 
rsFC, especially via the functional connectivity of the limbic, prefrontal and temporal areas, which are key contributors to the pre-
diction model comprising regions previously implicated in forgiveness. These regions include the retrosplenial cortex, temporal pole, 
dorsolateral prefrontal cortex (PFC), dorsal anterior cingulate cortex, precuneus and dorsal posterior cingulate cortex. Importantly, this 
predictive model could be successfully generalized to an independent sample (dataset 2, N = 71, 17 men, 16–25 years). These findings 
highlight the important roles of the limbic system, PFC and temporal region in trait forgiveness prediction and represent the initial 
steps toward establishing an individualized prediction model of forgiveness.
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Introduction
Forgiveness is a positive, prosocial manner of reacting to harm 
and reducing stress brought about by unforgiveness (i.e. anger, 
hostility, etc.); its process involves prosocial changes in emo-
tion, cognition and behavior (Toussaint and Friedman, 2008). Trait 
forgiveness is the disposition to forgive interpersonal transgres-
sions over time and across situations (Berry et al., 2005). Higher 
trait forgiveness levels indicate a greater tendency to respond 
to transgressions in a prosocial manner. Previous studies found 
that forgiveness had a significant negative association with neu-
roticism (Brose et al., 2005), depression (Gençoğlu et al., 2018) 
and rumination (Berry et al., 2005). Moreover, forgiveness strongly 
correlates with physical health; individuals with low levels of for-
giveness experience higher blood pressure, heart rate, perceived 
stress and loneliness (Lawler-Row et al., 2011). Exploring individual 
differences and their neural bases may help assess individu-
als confronting continuous negative emotions, further improving 
their mental health (Griffin et al., 2015).

Prior meta-analyses have proposed that forgiveness encom-
passes at least three psychological macro-processes that are 

supported by distinct brain networks involved in cognitive con-
trol, perspective taking and social valuation (Fourie et al., 2020). 

For example, imaging studies have revealed that reduced func-

tional connectivity between the medial prefrontal cortex (mPFC) 

and dorsal anterior cingulate cortex (dACC)—key nodes of cog-

nitive control—is associated with increased acceptance of unfair 

offers from transgressors, which indicates forgiveness (Fatfouta 
et al., 2016). Furthermore, the dorsolateral prefrontal cortex 

(dlPFC) plays an important role in inhibiting unwanted emo-
tional responses, which must be suppressed to act in an unfor-

giving manner (Maier et al., 2018, 2019). Perspective taking is 

crucial for victims to understand the wrongdoer’s behavior and 

intention and thus further consider forgiving the wrongdoer, 
and some studies have identified activation in areas associated 
with perspective taking, including the temporoparietal junction, 
mPFC, precuneus and posterior cingulate cortex (PCC) (Farrow 
et al., 2005; Ohtsubo et al., 2018), which also strongly corre-

late with forgiveness. Consistently, resting-state brain activity 
variation in mentalizing regions has been associated with indi-
vidual differences in the tendency to forgive (Li and Lu, 2017). 
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Ricciardi et al. (2013) found that forgiveness is associated with 
positive emotional states and the strength of the connection 
between the precuneus and inferior parietal lobule was signifi-
cantly correlated with participants’ subjective relief during for-
giveness. Lastly, when interacting with the potential harm inflic-
tor, people combine information about relationship values and 
exploitation risk with a harm inflictor to arrive at a decision (Bur-
nette et al., 2012; McCullough et al., 2013); this relies fundamen-
tally on the ventromedial PFC, including the anterior PFC, medial 
sector of the orbitofrontal cortex and subgenual ACC (Rudebeck 
et al., 2008).

Predicting individual mental traits and behavioral dispositions 
from brain imaging data through machine-learning methods [e.g. 
connectome-based predictive modeling (CPM)] is a rapidly evolv-
ing field in neuroscience and may provide the basis for more 
objective and valid assessments of personal aptitudes, attitudes 
and other mental characteristics (Eickhoff and Langner, 2019). 
CPM has been tested as a data-driven approach to account for 
interindividual variability in functional brain networks (Cai et al., 
2020; Rutherford et al., 2020; Yang et al., 2021). It can help 
develop prediction models of brain–behavior relationships that 
can detect individual variability more accurately. With the con-
tinuing increase in research using this method, researchers are 
increasingly advocating larger samples, external validation and 
the combination of multiple cross-validation (CV) methods to 
improve the generalizability of the model (Yeung et al., 2022).

Therefore, the current study aimed to present initial efforts 
in this direction by making individualized predictions of forgive-
ness from intrinsic whole-brain functional connectivity. CPM with 
multiple CV methods was implemented and tested on an exter-
nal dataset to predict individual trait forgiveness using whole-
brain resting-state functional connectivity (rsFC). Rather than 
testing a specific hypothesis, CPM can implement more holis-
tic measures with whole-brain analyses. Moreover, an inspection 
of the network neuroanatomy can aid the hypothesis genera-
tion in future studies (Ren et al., 2021). Hence, we inspected the 
rsFC of the connections that make up the ‘forgiveness connec-
tome’ to determine a framework for hypothesis testing in future 
research. Based on previous findings, we expected that individ-
ual differences in trait forgiveness would be predicted by func-
tional connectivity across distributed networks, particularly those 
implicated in cognitive control, perspective taking and social
valuation.

Materials and methods
Participants
As CPM is particularly informative when the predictive value 
of the findings from a discovery dataset can be tested on a 
separate dataset (Ren et al., 2021), two samples of partici-
pants were recruited from Southwest University in Chongqing, 
China. Dataset 1 was used as the discovery dataset and com-
prised 121 participants. Participants with missing imaging data, 
incomplete psychological assessment or excessive head motion 
(defined as >2.5 mm translation or >2.5∘ rotation during the 
run) were excluded. Finally, 100 participants were retained as 
the discovery dataset (35 men; 19.91 ± 1.38 years old, range: 
17–24 years). Dataset 2 was used as the external dataset and 
comprised 93 participants. Lastly, 71 additional participants were 
retained as the validation dataset for external validation (17 men; 
19.86 ± 2.02 years old, range: 16–25 years).

All participants were free of neurological impairments and 
psychiatric disabilities. The human procedures were approved 

by the Southwest University Brain Imaging Center Institutional 
Review Board. Participants provided written informed consent 
before the study and were paid after the experiment.

Assessment of trait forgiveness
Trait forgiveness was assessed in both samples using the Trait For-
giveness Scale (TFS; Berry et al., 2005). It consists of 10 items, and 
each item is scored on a five-point Likert scale ranging from 1 
(strongly disagree) to 5 (strongly agree). Items such as ‘People close 
to me probably think I hold a grudge too long’ and ‘I can forgive a 
friend for almost anything’ indicated the respondents’ proneness 
to forgive interpersonal transgressions. A higher score indicated a 
stronger tendency to forgive others. The Cronbach alpha value of 
the scale of the current research was 0.798 in dataset 1 and 0.633 
in dataset 2.

Functional magnetic resonance imaging image 
acquisition
Images were acquired using a 3 T Trio scanner (Siemens Med-
ical Systems, Erlangen, Germany) at the Southwest University 
Brain Imaging Center. Resting-state scanning consisted of 242 
gradient echo-planar imaging (EPI) volumes using the follow-
ing parameters: repetition time = 2000 ms; echo time = 30 ms; 
slices = 32; thickness = 3 mm; resolution matrix = 64 × 64; flip 
angle = 90∘; slice gap = 1 mm; field of view = 192 × 192 mm2 and 
voxel size = 3.4 × 3.4 × 3.4 mm3.

All participants underwent 8-min resting-state functional 
magnetic resonance imaging (fMRI) scan, during which they were 
required to remain still, close their eyes, remain awake and 
think of nothing specific. No participant reported sleeping during 
scanning.

fMRI pre-processing
The functional images were pre-processed in Data Process-
ing Assistant for Resting-State fMRI (DPARSF, http://rfmri.org/
DPARSF; Yan and Zang, 2010) on SPM 12 (Wellcome Department of 
Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm).

The 10 initial volumes were removed to ensure steady mag-
netization. Then, 232 volumes remained for the slice timing to 
correct for intra-volume acquisition delay. The images were fur-
ther realigned for head-motion correction. 14 participants were 
excluded from further analyses under the criteria of head motion 
exceeding 2.5 mm maximum translation and 2.5∘ rotation. The 
functional volumes were then normalized using EPI templates 
(voxel size was 3 × 3 × 3 mm3). Next, the images were spatially 
smoothed using a Gaussian filter to decrease spatial noise (4 × 4 × 4 
mm3 full width at half maximum). Subsequently, the linear 
trends of the time courses were removed, and band-pass filter-
ing (0.01–0.1 Hz) was applied to the time series of each voxel to 
reduce the effects of low-frequency drifts and high-frequency 
physiological noise. Finally, nuisance covariate regression (24 Fris-
ton parameters, white matter and cerebrospinal fluid) was also 
applied to the volumes.

Functional connectivity construction
To improve the reliability and sensitivity of the network analy-
ses, the static whole-brain rsFC was constructed using the Shen 
268-node brain atlas, derived from a graph-theory-based parcel-
lation algorithm with higher parcellation accuracy and spatial 
coherence (Shen et al., 2010, 2013). Consistent with previous stud-
ies (Beaty et al., 2018; Feng et al., 2019; Wang et al., 2021), this 
atlas divides the brain into 10 lobes containing 268 regions of 
interest (ROIs) to define network nodes, including the prefrontal 
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lobe (46 nodes), motor lobe (21 nodes), insular lobe (7 nodes), 
parietal lobe (27 nodes) and temporal lobe (39 nodes). For each 
participant, node-by-node pairwise correlations (Pearson’s r) were 
computed, and Fisher’s r-to-z transformation was implemented to 
improve the normality of the correlation coefficients, resulting in 
a 268 × 268 symmetric connectivity matrix in which each element 
represents the connectivity strength (sometimes referred to as an 
‘edge’) between two individual nodes.

Connectome-based predictive modeling
CPM was conducted to predict TFS scores using previously 
published MATLAB scripts, which are freely available online 
(https://www.nitrc.org/projects/bioimagesuite/), within the dis-
covery dataset of 100 participants (dataset 1). CPM contains the 
following main steps:

(i) Edge selection: with the rsFC matrixes and behavioral data 
as inputs, each edge in the rsFC matrixes correlated with the 
behavioral data (TFS) using Pearson’s correlation or partial Pear-
son’s correlation to avoid potential confounding effects. The most 
significantly correlated edges under an optimal threshold (see 
validation analyses) were selected as the predictive edges.

(ii) Network construction: a positive network was constructed 
using selected edges that were positively correlated with TFS 
(increased connectivity was associated with behavioral data); and 
a negative network was constructed using selected edges that 
were negatively correlated (decreased connectivity was associ-
ated with behavioral data).

(iii) Single-subject summary value: a single-subject summary 
value was obtained by summing the values of all edges in the 
rsFC matrix in the positive network and the negative network 
separately for each participant.

(iv) Model building: fitting the linear model between TFS scores 
and network strengths across the training set for both the pos-
itive and negative networks to build the positive and negative 
models, respectively. We subsequently used the two networks in 
combination to obtain a combined model.

(v) Model validation: to determine whether the predicted TFS 
scores generated by the previous step significantly predicted the 
observed scores.

Further details are provided in the following sections. For a 
more in-depth explanation of the CPM technique, refer to Shen 
et al. (2017).

Validation analyses
Feature selection threshold
Although we reported the main results with a threshold of P < 0.05, 
we also examined the results with five other thresholds (0.01, 
0.005, 0.001, 0.0005 and 0.0001). In terms of 10 simple rules for 
applying predictive modeling to rsFC data (Scheinost et al., 2019) 
and to be consistent with past work employing CPM (Beaty et al., 
2018; Jiang et al., 2018; Feng et al., 2019; Ren et al., 2021), leave-
one-out cross-validation (LOOCV) was used first. In the LOOCV 
process, N − 1 participants were used as the training set, and the 
remaining one was used as the validation sample, where N is the 
number of participants. In each iteration, 99 participants’ rsFC 
matrixes and TFS scores were used as inputs to perform the afore-
mentioned steps, resulting in a set of parameters and a model to 
predict the TFS score of one participant. The training and valida-
tion procedures were repeated N times such that each participant 
was used once as the validation participant.

The Pearson correlation coefficient (r) and mean squared error 
(MSE) between the actual and predicted TFS scores were used 

to evaluate the accuracy of the prediction. In order to deter-
mine whether the obtained metrics were significantly better than 
expected by chance, a permutation test was applied. To generate 
null distributions for significance testing, we randomly shuffled 
the correspondence between connectivity matrixes and behav-
ioral variables 5000 times and reran the CPM pipeline using the 
shuffled data. Based on the null distribution, the P value for the 
leave-one-out prediction was calculated as the proportion of sam-
pled permutations that were greater than or equal to the true 
prediction correlation, that is, the P value = the number of permu-
tations that generated correlation values greater than or equal to 
the true correlation values/5000. Statistical significance was set 
at P < 0.05.

Different CV schemes
However, the LOOCV strategy may generate biased estimates 
(Kohavi, 1995; Varoquaux et al., 2017), and different CV schemes 
were used to obtain more comprehensive and stable outcomes. 
Therefore, the main results were further validated using different 
CV schemes (i.e. 5-fold, 10-fold, and 20-fold). Taking the 10-fold as 
an example, all participants were grouped into 10 subsets; nine 
subsets were used as the training sets, and the remaining sub-
set was used as the validation set. This procedure was repeated 
10 times so that each subset was used as the validation set. 
Because the full dataset was randomly divided into 10 subsets, the 
performance might depend on the data division. Therefore, 10-
fold CV was repeated 100 times to obtain the average prediction 
performance.

Control analyses
Control analyses were conducted to avoid the potential confound-
ing effects of head motion, age and sex. We repeated our analyses 
by implementing scrubbing with the criterion of a frame-wise dis-
placement during scanning (FD) >0.2 mm (Jenkinson et al., 2002; 
Yan et al., 2013). In these analyses, edge selection was con-
ducted using partial Pearson correlation with the mean FD of head 
motion, age and sex as covariables separately.

External generalizability
CV is acceptable, but it should be noted that CV in small samples 
may render the models too optimistic and that external validation 
is the best practice (Whelan and Garavan, 2014; Yeung et al., 2022). 
To generate a final model for application to a completely indepen-
dent sample (dataset 2), we calculated the brain networks of TFS 
and the model parameters derived from dataset 1 to predict the 
TFS scores in the previously unseen dataset. In dataset 1, a total 
of 100 iterations were run to generate predicted TFS scores for 
a different left-out participant in that sample. We then took the 
average of the model parameters (i.e. the slopes and intercepts) 
to build the regression models that would predict TFS scores for 
dataset 2. The model performance predictive power in the exter-
nal dataset was assessed by correlating the model-predicted and 
actual TFS scores.

Results
Behavioral results
We first examined the distribution of TFS scores (M = 31.71, 
s.d. = 5.556), and the one-sample Kolmogorov–Smirnov (K–S) 
test showed that TFS scores were normally distributed (K–
S = 0.068, P = 0.200). The participants differed widely in their 
TFS scores (Figure 1A). No sex differences were found for TFS [t 
(98) = 0.182, P = 0.856]. TFS was not significantly correlated with 
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Fig. 1. Performance of the prediction model. (A) Scores of trait forgiveness across all participants. (B) Correlation between actual and predicted trait 
forgiveness scores using rsFC in the positive network. (C) Correlation between actual and predicted trait forgiveness scores on external dataset. (D) 
Permutation distribution of the correlation coefficient (r) for the prediction analysis.

participant age (r = 0.099, P = 0.325) or with head motion (FD) 
during scanning (r = 0.182, P = 0.070).

CPM results from dataset 1 (n = 100)
After the CPM process, we found that a positive network 
(r_pos = 0.230, P = 0.021, MSE = 31.55; Figure 1B and D), a nega-
tive network (r = 0.260, P = 0.009, MSE = 29.81) and a combined 
network (r = 0.312, P = 0.002, MSE = 29.92) could predict TFS 

scores at a threshold of 0.05; the results at the other thresh-
olds (0.01, 0.005, 0.001, 0.0005 and 0.0001) are displayed in
Table 1.

Contributing networks in the prediction of TFS 
scores
As suggested by previous studies, we applied a threshold (P < 0.05) 
and LOOCV to retain the most significant edges in the connectivity 
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Table 1. Results of different CV schemes

 Positive network  Negative network  Combined network

r P MSE r P MSE r P

Threshold
0.05 0.230 0.021 31.56 0.260 0.009 29.81 0.312 0.002
0.01 0.214 0.033 32.85 0.299 0.003 29.13 0.310 0.002
0.005 0.201 0.045 33.67 0.330 0.001 28.32 0.307 0.002
0.001 0.148 0.143 36.19 0.254 0.011 30.47 0.242 0.015
0.0005 0.141 0.162 36.19 0.246 0.014 30.86 0.233 0.020
0.0001 0.135 0.181 36.02 0.346 0.000 28.04 0.269 0.007

Abbreviations: r, Pearson correlation coefficient in network; P, probability value in network.
Note: this table shows the r, P and MSE in positive, negative and combined networks across different thresholds.

Fig. 2. Functional connections predicting trait forgiveness scores. The results were visualized using BioImage Suite (http://bioimagesuite.com/). (A) 
Positive networks selected by the model; increased edge weights predict higher trait forgiveness scores. (B) Connections plotted as the number of edges 
within and between each pair of canonical networks: in the left matrix, larger numbers in cells indicate a greater number of edges connecting nodes 
within and between each network; the connections are shown diagrammatically on the right.

matrixes for the following analyses. The total possible edges were 
defined by the atlas used in this work (Shen et al., 2013), which 
were (268×267) ÷ 2 = 35778. After LOOCV, there were 2804 edges 
in the positive network and 57 edges in the negative network that 
appeared in every iteration and were defined as the contributing 

network (Rosenberg et al., 2016) (Figure 2A). Because the limited 

number of edges in the negative network could not provide stable 
predictions, the following analyses focused on the positive net-
work (Feng et al., 2019). Figure 2B shows the connectivity based 
on the number of connections within and between canonical net-
works for the positive network: this positive network included 
default mode network (DMN), frontoparietal network (FPN), motor 

network and limbic network, which were highly involved in the 
prediction.

Additionally, the 20 most highly connected nodes were located 
in the right temporal pole, retrosplenial cortex, (dlPFC), dACC 
and dorsal PCC extending to the precuneus, indicating that these 
nodes play a critical role in predicting trait forgiveness (Table 2, 
Figure 3). 

Validation analyses
With different CV schemes, the performance of the predictive 
model was re-evaluated at the 0.05 threshold, and the results 
remained significant (Table 3). 

http://bioimagesuite.com/
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Table 2. The top 20 nodes with the most connections selected by the positive prediction model

No. Node  MNI coordinates (mm) Lobe Degree

51 Temporalpole (BA 38) 27.18 11.56 −39.16 R-temporal 110
227 AgrRetrolimb (BA 30) −7.47 −42.12 13.32 L-limbic 104
263 Thalamus −4.87 −10.34 5.83 L-subcortical 97
16 ParsOrbitalis (BA 47) 53.58 24.81 0.89 R-prefrontal 91
128 Thalamus 5.46 −9.67 5.24 R-subcortical 89
127 Thalamus 12.26 −27.74 13.5 R-subcortical 71
262 Thalamus −9.59 −25.43 −1.42 L-subcortical 69
63 SupTempGyrus (BA 22) 61.85 −23.77 −2.81 R-temporal 67
146 dlPFC (BA 9) −27.33 34.07 36.39 L-prefrontal 67
83 DorsalACC (BA 32) 7.84 34.68 17.09 R-limbic 64
33 PrimSensory (BA 1) 41.97 −23.38 53.41 R-motorstrip 63
225 DorsalPCC (BA 31) −6.5 −53.94 37.44 L-limbic 63
158 PrimMotor (BA 4) −41.59 −14.68 44.79 L-motorstrip 62
261 Putamen −24.78 5.62 −0.08 L-subcortical 62
9 AntPFC (BA 10) 28.88 51.14 18.68 R-prefrontal 60
22 Broca-Operc (BA 44) 39.98 17.61 29.19 R-prefrontal 60
139 AntPFC (BA 10) −18.21 56.99 −14.27 L-prefrontal 57
62 PrimAuditory (BA 41) 39.86 −25.56 14.38 R-temporal 56
155 Broca-Triang (BA 45) −32.45 22.12 5.84 L-prefrontal 54
172 PrimSensory (BA 1) −23.5 −31.62 63.61 L-parietal 54

Abbreviations: L, left; R, right; BA, Brodmann area; MNI, Montreal Neurological Institute.

Fig. 3. Connectivity patterns of the top 20 nodes with the most connections. Abbreviations: L, left; R, right; BA, Brodmann area; MNI, Montreal 
Neurological Institute.

Control analyses
After controlling for the potential confounding variables of head 
motion, sex and age, the predictive models remained statistically 
significant (Table 4). 

External generalizability on dataset 2 (N= 71)
We assessed whether the predictive model generated by the 
discovery dataset could be generalized to an independent and

external sample. In the independent external dataset,
we observed a significant prediction of TFS for the positive
(r = 0.262, P = 0.025, MSE = 28.33; Figure 1C), negative (r = 0.313,
P = 0.008, MSE = 15.71) and combined networks (r = 0.393,
P = 0.001, MSE = 23.69). These results suggest that the set of 
edges and parameters identified in the discovery dataset is 
especially robust in predicting individual differences in trait
forgiveness.
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Table 3. Results of different CV schemes at the threshold of 0.05

 Positive network  Negative network  Combined network

r P MSE r P MSE r P

LOOCV
0.230 0.021 31.56 0.260 0.009 29.81 0.312 0.002

K-fold
2 0.222 0.040 36.84 0.023 0.357 40.99 0.194 0.145
5 0.225 0.030 33.10 0.209 0.084 33.69 0.296 0.006
10 0.226 0.026 32.32 0.245 0.018 30.07 0.305 0.002
20 0.229 0.023 31.72 0.252 0.012 29.65 0.309 0.002

Abbreviations: r, Pearson correlation coefficient in network; P, probability value in network.
Note: this table shows r, P and MSE in positive, negative and combined networks across different CV schemes.

Table 4. Results of control analyses

 Positive network  Negative network  Combined network

Control variable r P MSE r P MSE r P

Age 0.224 0.025 31.35 0.254 0.011 29.97 0.306 0.002
Sex 0.231 0.021 31.46 0.259 0.009 29.81 0.312 0.002
FD 0.224 0.025 32.52 0.226 0.024 30.76 0.306 0.002
Scrubbing 0.231 0.021 31.62 0.241 0.016 30.21 0.298 0.003

Abbreviations: r, Pearson correlation coefficient in network; P, probability value in network.

Discussion
In this study, we aimed to predict trait forgiveness in healthy 
participants using whole-brain rsFC and connectome-based pre-
dictive models with different CV and control analyses. The results 
showed that individual differences in trait forgiveness could be 
robustly predicted by multiple brain systems, including DMN, 
FPN, motor network and limbic network, supporting that trait for-
giveness is highly associated with multiple brain regions. These 
findings firstly reveal that intrinsic functional connectivity across 
multiple neural systems contributes to the prediction of indi-
vidual differences in trait forgiveness. Specifically, interindivid-
ual variations in trait forgiveness were primarily accounted for 
by intrinsic connectivity within the limbic cortex and PFC, and 
connectivity with other networks, particularly the temporal and 
subcortical structures, which are neural underpinnings of cog-
nitive control and perspective taking involved in the process of 
forgiveness.

Among the top 20 key nodes, the DMN (including the retros-
plenial cortex, precuneus and the PCC) contributed the most to 
positive networks. Recent studies have suggested that the DMN 
is associated with the experience of the sense of self, and this 
reduced focus on perceived wrong with the self is the possible 
neuropsychological foundation of character traits (i.e. forgive-
ness) (Carhart-Harris, 2018; Johnstone et al., 2021). The retrosple-
nial cortex, which is involved in emotion and episodic memory, 
was observed to be a critical region contributing to the predictive 
model. Retrosplenial cortex activation is associated with nega-
tive self-referential scenarios, such as guilt, shame and empathy, 
which have been identified as moral emotions that may inform 
forgiveness (Tangney, 1999). In line with this study, guilt proneness 
is highly correlated with forgiveness, and individuals who tend to 
score high on perspective taking also tend to score high on guilt 
(Konstam, 2001). Although no direct link between the retrosple-
nial cortex and forgiveness has yet been discovered, the potential 
relationship between the retrosplenial cortex and perspective tak-
ing deserves more attention in future studies. Based on this result, 

we can hypothesize that the retrosplenial cortex plays a critical 
role in forgiveness mediated by guilt and empathy.

The other key nodes, including the precuneus and PCC in the 

DMN, were also associated with perspective taking. The PCC sup-

ports internally directed thoughts, and the precuneus is related 

to episodic memory retrieval, self-related mental representa-

tions and first-person perspective taking (Cavanna and Trimble, 
2006). From the perspective taking aspect, a greater disposition 

in perspective taking has been associated with a lower incidence 

of punishment behavior and a higher incidence of forgiveness 
toward transgressors (Will et al., 2015). Consistently, the retrosple-
nial cortex, the precuneus, the medial frontal gyrus, the posterior 
cingulate, the superior temporal sulcus and the inferior parietal 
lobe constitute the ‘moral brain’ (Greene and Haidt, 2002), which 
also implies that forgiveness is a complex social process involving 
moral judgment requiring the synergy of multiple brain regions. 

The temporal pole was observed as the highest degree node of 
the predictive model of forgiveness in light of perspective tak-

ing. Emotional processes implemented in the temporal pole are 

recruited during a successful understanding of another person’s 
mental state (Jimura et al., 2010). Studies have reported the acti-
vation of the temporal pole while inferring the emotional state 

of others (Farrow et al., 2001; Völlm et al., 2006). Compared to 
the neutral condition, Michl et al. (2014) found additional activa-
tion in the left superior temporal gyrus, which is a region relevant 
for perspective taking. Increased functional connectivity of these 
brain areas, which are highly associated with perspective taking, 
indicates that perspective-taking ability is necessary for forgive-
ness, and individual differences in this ability determine people’s 
different levels of forgiveness.

We also revealed that the dlPFC and dACC were key nodes 
in the prediction of trait forgiveness. The dACC signals internal 
conflict when one acts in a prosocial manner toward wrongdo-
ers (Moor et al., 2012). Dorsolateral and posterior portions of the 
PFC support explicit reappraisal of situations reflecting a more 
general, indirect mechanism to alter emotional associations.
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Further, enhanced recruitment of cognitive control is also pivotal 
when dealing with a transgression and experiencing conflicting 
desires (e.g. emotional ‘punish’ vs cognitive ‘forgive’) (Fourie et al., 
2020). Because forgiving others is a process involving cognitive, 
emotional and behavioral changes, prefrontal cognitive control 
areas are crucial in countering one’s own response tendencies 
and using cognitive strategies to regulate emotions. For exam-
ple, the lateral prefrontal areas are activated when they reap-
praise an emotive situation in a positive manner (Drabant et al., 
2009) and when they regulate a strong negative affect (Sebastian 
et al., 2011). A recent study (Maier et al., 2018) provided direct 
evidence supporting the importance of cognitive control in for-
giveness decisions, in which cognitive control was manipulated 
in real time through inhibitory continuous theta burst stimula-
tion (cTBS) of the dlPFC. Participants who received cTBS displayed 
significantly more revenge than forgiveness in a dictator game 
against previously unfair opponents. Consequently, in the present 
study, altered connectivity in the dlPFC and dACC was identified 
as potentially underlying or reflecting the variety of cognitive con-
trols, which brings about differences in individuals’ personality
forgiveness.

In the present study, the anterior PFC and precuneus were 
cooperatively used to predict the variation in trait forgiveness, 
which is consistent with a previous study wherein the anterior 
PFC, superior temporal sulcus and precuneus showed increased 
coupling in a functional connectivity analysis (Moll et al., 2008). 
People have the ability to evaluate future outcomes and consider 
altruistic actions, such as forgiveness (Moll et al., 2005). This inher-
ent difference may be associated with the anterior PFC and limbic 
regions, which represent social–emotional events linked to ‘moral 
sensitivity’ (Moll et al., 2008).

We also found that the areas of the thalamus comprised high-
degree nodes in the positive network. The thalamus is considered 
to provide a greater and more complex contribution toward cog-
nition rather than simply serving as a relay that transfers infor-
mation (Wolff and Vann, 2019). The thalamus has not previously 
been associated with the process of forgiveness; future research 
can further explore its more profound function in cognition and 
forgiveness.

Taken together, these findings provide evidence that forgive-
ness is a complex social-cognitive process that requires the coor-
dination of many different social-cognitive abilities, for which a 
whole-brain functional connectivity approach provides a more 
comprehensive measure. Consistent with previous studies, the 
functional connectomes of some networks involving cognitive 
control and perspective taking are significant predictors of an 
individual’s trait forgiveness among the general population. Some 
brain areas, such as the dlPFC, dACC and precuneus, have been 
widely associated with the forgiveness process (Ridderinkhof et al., 
2004; Li and Lu, 2017; Maier et al., 2018, 2021). Nevertheless, 
most of these findings are based on well-controlled designs, which 
allow flexibility at the analytical level to investigate variations in 
task-induced processes and representations (Tibon et al., 2022). 
The whole-brain rsFC networks used in the present study could 
explore individual differences in forgiveness, which is not related 
to a highly specific process. Furthermore, rsFC networks can elim-
inate the risk of overrepresentation of certain ROIs (Sprooten et al., 
2017). Thus, our findings provide complementary evidence for 
previous studies that general social-cognitive abilities, such as 
cognitive control, perspective taking, social evaluation and moral 
judgment, regardless of the situation, play a significant role in 
forgiveness.

The present study had several limitations. Although we tested 
the stability of the prediction results using various approaches, 
caution must be exercised when interpreting our findings. First, 
following the advice that a dataset of over 100 individuals should 
be used for the predictive modeling (Scheinost et al., 2019), but in 
comparison with other large, open and shared datasets (Human 
Connectome Project and The Adolescent Brain Cognitive Devel-
opment), our findings were based on a relatively small sample. 
Although we observed significant results in the independent and 
external datasets, the predictive accuracy might have been over-
estimated and the generalizability of our findings requires further 
validation using an independent and larger sample. Second, both 
positive and negative networks exhibited good predictive models, 
and the negative network resulted in greater prediction accuracy. 
However, few nodes in the negative network have high degrees, 
and most feature edges are in the positive network; therefore, the 
higher accuracy in negative networks might have resulted from 
underfitting. In particular, combining the two networks provided 
a much better predictive model, indicating that the negative net-
work also provides information for prediction. Previous studies 
have suggested that positive and negative networks represent dif-
ferent functions and are disproportionately located in different 
functional networks (Finn et al., 2015; Shen et al., 2017; Beaty et al., 
2018; Jiang et al., 2018; Feng et al., 2019). In this way, the predictive 
model should be explained based on both positive and negative 
networks to obtain a comprehensive understanding of the asso-
ciation between the brain and behavior and enhance the model’s 
interpretability. Third, we observed high-level nodes that had not 
been presented in previous forgiveness studies. This might have 
been due to most previous studies being small-scale, task-based 
studies with well-controlled designs. Although this study was 
based on resting-state fMRI, the connections or activity of some 
brain regions may only be observed in some offensive situations 
or in response to external stimuli. Moreover, the extent to which 
brain functional connectivity reflects transient states vs stable 
traits remains unknown (Suo et al., 2022).

Despite these limitations, to our knowledge, this study is 
the first to demonstrate that the functional connectivity of dis-
tributed networks effectively predicts trait forgiveness at the 
individual level. Notably, the nodes and edges of the predictive 
network are frequently implicated in cognitive control, perspec-
tive taking and moral judgment, which are strongly associated 
with forgiveness and are required for developing and maintaining 
social connections. The current study’s findings may have impor-
tant implications for characterizing the neural mechanisms of 
forgiveness.
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