
ORIGINAL RESEARCH
published: 03 May 2022

doi: 10.3389/fcvm.2022.831390

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 May 2022 | Volume 9 | Article 831390

Edited by:

Massimo Bonacchi,

University of Florence, Italy

Reviewed by:

Antonino S. Rubino,

University of Campania Luigi

Vanvitelli, Italy

Aleksander Dokollari,

St. Michael’s Hospital, Canada

*Correspondence:

Zhichao Jin

jinzhichao@smmu.edu.cn

Zhinong Wang

wangzn007@smmu.edu.cn

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Heart Surgery,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 08 December 2021

Accepted: 21 March 2022

Published: 03 May 2022

Citation:

Yu Y, Peng C, Zhang Z, Shen K,

Zhang Y, Xiao J, Xi W, Wang P, Rao J,

Jin Z and Wang Z (2022) Machine

Learning Methods for Predicting

Long-Term Mortality in Patients After

Cardiac Surgery.

Front. Cardiovasc. Med. 9:831390.

doi: 10.3389/fcvm.2022.831390

Machine Learning Methods for
Predicting Long-Term Mortality in
Patients After Cardiac Surgery

Yue Yu 1†, Chi Peng 2†, Zhiyuan Zhang 3†, Kejia Shen 4†, Yufeng Zhang 1, Jian Xiao 1,

Wang Xi 1, Pei Wang 1, Jin Rao 1, Zhichao Jin 2* and Zhinong Wang 1*

1Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China, 2Department of

Health Statistics, Naval Medical University, Shanghai, China, 3Department of Cardiothoracic Surgery, No. 988 Hospital of

Joint Logistic Support Force of PLA, Zhengzhou, China, 4Department of Personnel Administration, Second Affiliated Hospital

of Naval Medical University, Shanghai, China

Objective: This study aims to construct and validate several machine learning (ML)

algorithms to predict long-term mortality and identify risk factors in unselected patients

post-cardiac surgery.

Methods: The Medical Information Mart for Intensive Care (MIMIC-III) database was

used to perform a retrospective administrative database study. Candidate predictors

consisted of the demographics, comorbidity, vital signs, laboratory test results, scoring

systems, and treatment information on the first day of ICU admission. Four-year mortality

was set as the study outcome. We used the ML methods of logistic regression (LR),

artificial neural network (NNET), naïve bayes (NB), gradient boosting machine (GBM),

adapting boosting (Ada), random forest (RF), bagged trees (BT), and eXtreme Gradient

Boosting (XGB). The prognostic capacity and clinical utility of these ML models were

compared using the area under the receiver operating characteristic curves (AUC),

calibration curves, and decision curve analysis (DCA).

Results: Of 7,368 patients in MIMIC-III included in the final cohort, a total of 1,337

(18.15%) patients died during a 4-year follow-up. Among 65 variables extracted from

the database, a total of 25 predictors were selected using recursive feature elimination

and included in the subsequent analysis. The Ada model performed best among eight

models in both discriminatory ability with the highest AUC of 0.801 and goodness of

fit (visualized by calibration curve). Moreover, the DCA shows that the net benefit of the

RF, Ada, and BT models surpassed that of other ML models for almost all threshold

probability values. Additionally, through the Ada technique, we determined that red blood

cell distribution width (RDW), blood urea nitrogen (BUN), SAPS II, anion gap (AG), age,

urine output, chloride, creatinine, congestive heart failure, and SOFA were the Top 10

predictors in the feature importance rankings.

Conclusions: The Ada model performs best in predicting 4-year mortality after cardiac

surgery among the eight ML models, which might have significant application in the

development of early warning systems for patients following operations.
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INTRODUCTION

Every year, two million cardiac surgical procedures are being
performed around the world (1). Risk prediction models
of patients undergoing cardiac surgery might be helpful for
clinicians for alerting, judgment, and intervention to improve
postoperative survival (2). Some risk stratifications scores and
models have been created to aid clinical decision making
such as the original European System for Cardiac Operative
Risk Evaluation (EuroSCORE) (3), EuroSCORE II (4), and
the North American Society of Thoracic Surgeons (STS) (5–
7). The majority of attention in such models has, however,
been focused on those that predict short-term outcomes. There
has been much less attention paid to the prediction of long-
term outcomes, which are probably an equivalent indication of
surgeon performance and surgical treatment appropriateness.
Additionally, most of the prediction scores, using the traditional
logistic regression method, were developed assuming that the
predictors interact in a linear and additive way (8), despite
the reality that the interactions are often non-linear and
multifactorial (9). It might influence the predictive power of
these scores. Several studies have reported that some of these
scores overestimate the risk of mortality for patients with low
risk in actuality while underestimating the risk for high-risk
patients (10–15).

Machine learning (ML), a branch of artificial intelligence, is
a relatively new technique that arose from the development of
complicated algorithms and the analysis of enormous datasets
(16). ML has been applied in areas of medicine such as diagnosis,
interpretation of medical imaging, treatment strategies, and
outcome prediction (17). ML models can provide new insight
into complicated interactions, non-linearities, unrecognized
patterns and correlations, and the importance of trends in the
explanatory variables (18). There are a growing number of studies
that ML models could provide a more accurate risk prediction
compared to conventional statistical methods. Moreover, several
recent studies have applied ML to predict short-term mortality
in patients after cardiac surgery (19–21). However, to the best
of our knowledge, no predictive model for long-term mortality
has been constructed targeting unselected patients post-cardiac
surgery using ML techniques.

In the present study, we aimed to construct and validate
eight ML models using easily accessible, early-stage, and well-
generalized variables to predict long-term mortality and identify

Abbreviations: EuroSCORE, European System for Cardiac Operative Risk
Evaluation; STS, Society of Thoracic Surgeons; ML, machine learning; MIMIC,
Medical Information Mart for Intensive Care; ICU, intensive care units; CABG,
coronary artery bypass grafting; SBP, systolic blood pressure; DBP, diastolic blood
pressure; MBP, mean blood pressure; WBC, white blood cell; RBC, red blood cell;
RDW, red blood cell distribution width; PT, prothrombin time; INR, international
normalized ratio; BE, base excess; AG, anion gap; BUN, blood urea nitrogen; SOFA,
Sequential Organ Failure Assessment; qSOFA, quick Sequential Organ Failure
Assessment; SAPS II, Simplified Acute Physiology Score II; RRT, renal replacement
therapy; ECMO, extracorporeal membrane oxygenation; IQR, interquartile ranges;
RFE, recursive feature elimination; NNET, artificial neural network; NB, naïve
bayes; GBM, gradient boosting machine; Ada, adapting boosting; RF, random
forest; BT, bagged trees; XGB, eXtreme Gradient Boosting; LR, logistic regression;
AUC, area under the curve; DCA, decision curve analysis.

risk factors in patients after cardiac surgery during a 4-
year follow-up.

METHODS

Study Design and Data Resource
Based on the methods employed in our previous studies (22–
25), we conducted a retrospective analysis using all the relevant
data extracted from the Medical Information Mart for Intensive
Care (MIMIC-III) database. The MIMIC-III database is an
open and publicly available database that contains high-quality
data from over 50,000 patients admitted to intensive care units

FIGURE 1 | Overview of the methods used for data extraction, training, and

testing. MIMIC, Medical Information Mart for Intensive Care; ICU, intensive

care units; NNET, artificial neural network; NB, naïve bayes; GBM, gradient

boosting machine; Ada, adapting boosting; RF, random forest; BT, bagged

trees; XGB, eXtreme Gradient Boosting; LR, logistic regression.
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TABLE 1 | Baseline characteristics between survivors and non-survivors.

Characteristics Survivors (n = 6,301) Non-survivors (n = 1,337) P-value

Demographics

Age, year, median (IQR) 67.00 (58.00, 75.00) 75.00 (65.00, 81.00) <0.001

Gender, male, n (%) 4,337 (68.83) 811 (60.66) <0.001

Ethnicity, white, n (%) 4,551 (72.23) 933 (69.78) 0.077

Admission type, n (%) <0.001

Elective 2,886 (45.80) 367 (27.45)

Emergency 3,176 (50.40) 901 (67.39)

Urgent 239 (3.79) 69 (5.16)

Comorbidities, n (%)

Coronary artery disease 4,402 (69.86) 885 (66.19) 0.009

Congestive heart failure 1,611 (25.57) 673 (50.34) <0.001

Valvular disease 2,760 (43.80) 643 (48.09) 0.005

Active endocarditis 103 (1.63) 33 (2.47) 0.048

Cardiac arrhythmias 2,772 (43.99) 794 (59.39) <0.001

Hypertension 4,384 (69.58) 827 (61.85) <0.001

Pulmonary circulation disorders 445 (7.06) 161 (12.04) <0.001

Chronic pulmonary disease 898 (14.25) 296 (22.14) <0.001

Peripheral vascular disease 1,055 (16.74) 283 (21.17) <0.001

Stroke 441 (7.00) 115 (8.60) 0.047

Diabetes 1,909 (30.30) 454 (33.96) 0.009

Dyslipidemia 1,981 (31.44) 229 (17.13) <0.001

Anemia 1,069 (16.97) 245 (18.32) 0.248

Renal failure 488 (7.74) 258 (19.30) <0.001

Liver disease 109 (1.73) 109 (1.73) <0.001

Coagulopathy 464 (7.36) 175 (13.09) <0.001

Metastatic cancer 20 (0.32) 88 (6.58) <0.001

Solid tumor (without metastasis) 75 (1.19) 28 (2.09) 0.013

Hypothyroidism 553 (8.78) 118 (8.83) 0.996

Fluid and electrolyte disorders 711 (11.28) 291 (21.77) <0.001

Obesity 518 (8.22) 70 (5.24) <0.001

Weight loss 40 (0.63) 30 (2.24) <0.001

Alcohol abuse 147 (2.33) 33 (2.47) 0.844

Drug abuse 57 (0.90) 11 (0.82) 0.897

Smoker 3419 (54.26) 751 (56.17) 0.214

Vital signs, median (IQR)

SBP, mmHg 143.00 (133.00,154.00) 145.00 (132.00,158.00) 0.014

DBP, mmHg 75.00 (69.00,82.00) 75.00 (67.00,83.00) 0.261

MBP, mmHg 97.00 (90.00,105.00) 97.00 (89.00,107.00) 0.491

Heat rate, beats/min 97.00 (90.00,108.00) 99.00 (90.00,111.00) 0.010

Respiratory rate, beats/min 26.00 (23.00,30.00) 27.00 (24.00,31.00) 0.009

Temperature, ◦C 37.70 (37.20,38.00) 37.50 (37.10,38.00) <0.001

Urine output, ml 2100.00 (1520.00,2870.00) 1626.00 (1040.00,2457.00) <0.001

Laboratory findings, median (IQR)

WBC, 109/L 13.40 (10.70,16.80) 13.00 (9.70,16.90) 0.001

RBC, 109/L 3.80 (3.21,4.35) 3.71 (3.26,4.21) 0.010

Platelet, 109/L 191.00 (147.50,241.00) 204.00 (156.00,255.00) <0.001

RDW, % 13.60 (13.10,14.30) 14.20 (13.50,15.00) <0.001

Hematocrit, % 33.80 (28.60,38.40) 33.35 (29.20,37.40) 0.156

Hemoglobin, g/dL 11.50 (9.80,13.20) 11.20 (9.80,12.62) <0.001

BUN, mg/dL 17.00 (13.00,21.00) 20.00 (15.00,27.00) <0.001

Creatinine, mg/dL 0.90 (0.70,1.10) 1.00 (0.80,1.30) <0.001

(Continued)
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TABLE 1 | Continued

Characteristics Survivors (n = 6,301) Non-survivors (n = 1,337) P-value

Glucose, mg/dL 176.00 (155.00,200.00) 177.00 (149.00,205.00) 0.765

Calcium, mmol/L 8.60 (8.10,9.10) 8.70 (8.20,9.10) <0.001

Potassium, mmol/L 4.20 (3.90,4.50) 4.30 (3.90,4.60) <0.001

Sodium, mmol/L 139.00 (137.00,141.00) 138.00 (136.00,141.00) <0.001

Chloride, mmol/L 106.00 (103.00,110.00) 103.00 (100.00,107.00) <0.001

Magnesium, mmol/L 2.00 (1.90,2.20) 2.00 (1.80,2.30) 0.348

Phosphate, mmol/L 3.40 (2.90,3.90) 3.60 (3.00,4.10) <0.001

PT, s 13.80 (12.80,15.20) 13.80 (12.90,15.10) 0.673

INR, s 1.20 (1.10,1.40) 1.20 (1.10,1.40) 0.092

SpO2, % 100.00 (100.00,100.00) 100.00 (100.00,100.00) <0.001

pH 7.41 (7.38,7.44) 7.41 (7.37,7.44) 0.876

BE, mmol/L 1.00 (0.00,3.00) 1.00 (0.00,3.00) 0.082

AG, mmol/L 13.00 (11.00,14.00) 14.00 (12.00,16.00) <0.001

Bicarbonate, mmol/L 25.00 (23.00,27.00) 25.00 (22.00,27.00) 0.365

Prognostic scoring system, median (IQR)

SOFA 4.00 (3.00,6.00) 5.00 (3.00,7.00) <0.001

qSOFA 2.00 (2.00,2.00) 2.00 (2.00,2.00) 0.077

SAPS II 32.00 (26.00,40.00) 38.00 (31.00,47.00) <0.001

Surgical type, CABG, n (%) 3919 (62.20) 698 (52.21) <0.001

Treatment information, n (%)

Mechanical ventilation 5433 (86.22) 964 (72.10) <0.001

RRT 61 (0.97) 70 (5.24) <0.001

ECMO 8 (0.13) 25 (1.87) <0.001

CABG, coronary artery bypass grafting; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; WBC, white blood cell; RBC, red blood cell; RDW,

red blood cell distribution width; PT, prothrombin time; INR, international normalized ratio; BE, base excess; AG, anion gap; BUN, blood urea nitrogen; SOFA, Sequential Organ Failure

Assessment; qSOFA, quick Sequential Organ Failure Assessment; SAPS II, Simplified Acute Physiology Score II; RRT, renal replacement therapy; ECMO, extracorporeal membrane

oxygenation; IQR, interquartile ranges.

(ICU) at the Beth Israel Deaconess Medical Center (26). After
passing the “Protecting Human Research Participants” exam,
we were granted access to the dataset (authorization codes:
33281932 and 41657645). Since the study was an analysis of
a third-party anonymized publicly available database with pre-
existing institutional review board approval, the ethical approval
statement and the requirement for informed consent were
waived. In summary, this study conformed to the provisions
of the Declaration of Helsinki (as revised in Edinburgh 2000).
This study was reported according to the transparent reporting
of a multivariable prediction model for individual prognosis or
diagnosis (TRIPOD) guideline (27).

Patient Selection
Of all patients in the MIMIC-III database, we included patients
as follows: (1) age older than 18 years; (2) those who
underwent cardiac surgery including coronary artery bypass
grafting (CABG), valvular operation, revision procedures, and
some indicators of cardiac surgery. Patients were excluded if they
had: (1) multiple ICU admission; (2) a length of stay in the ICU
< 24 h; and (3) incomplete follow-up information.

Data Extraction and Processing
Demographics, vital signs, laboratory tests, scoring systems,
treatment information, and others were extracted from the

MIMIC-III database using structured query language with
PostgreSQL (version 9.4.6, www.postgresql.org). Only early-stage
clinical and laboratory variables that can be obtained on the first
day of ICU admission were incorporated in the predictionmodel.
If patients received vital signs measurement or laboratory tests
more than once on the first day of admission, only the initial
test results were considered for subsequent analyses. For privacy
considerations, the MIMIC-III database changes the date of birth
to exactly 300 years before admission for those patients over the
age of 89 at the time of admission. As a result, values of 300 for
“age” were reverted to 89.

The subject IDs were used to identify distinct adult patients.
The predictors included: (1) demographics: age, gender,
and ethnicity; (2) comorbidities: coronary artery disease,
congestive heart failure, valvular disease, active endocarditis,
cardiac arrhythmias, hypertension, pulmonary circulation
disorders, chronic pulmonary disease, peripheral vascular
disease, stroke, diabetes, dyslipidemia, anemia, renal failure, liver
disease, coagulopathy, metastatic cancer, solid tumor (without
metastasis), hypothyroidism, fluid and electrolyte disorders,
obesity, weight loss, alcohol abuse, drug abuse, and smoker; (3)
vital signs: systolic blood pressure (SBP), diastolic blood pressure
(DBP), mean blood pressure (MBP), heart rate, respiratory
rate, temperature, and urine output; (4) Laboratory findings:
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white blood cell (WBC), red blood cell (RBC), platelet, red
blood cell distribution width (RDW), hematocrit, hemoglobin,
sodium, potassium, calcium, magnesium, chloride, phosphate,
prothrombin time (PT), international normalized ratio (INR),
SpO2, pH, base excess (BE), anion gap (AG), bicarbonate,
glucose, blood urea nitrogen (BUN), and creatinine; (5)
prognostic scoring system: Sequential Organ Failure Assessment
(SOFA), quick Sequential Organ Failure Assessment (qSOFA),
and Simplified Acute Physiology Score II (SAPS II); (6)
Treatment information: surgical type, mechanical ventilation,
renal replacement therapy (RRT), and extracorporeal membrane
oxygenation (ECMO). Finally, 4-year mortality was set as the
study outcome.

Management of Missing Data
As extensive missing data might lead to bias, variables with
over 20% missing values were excluded. Correspondingly,
multivariable imputation was applied for variables with fewer
than 20% missing values (28). Additionally, the extreme and
error values were not omitted and treated as missing data for
imputation. Variables for which multivariable imputation was
adopted were listed in Supplementary Table 1.

Statistical Analysis
Values were presented as total numbers with percentages for
categorical variables and the means with standard deviations (if
normal) or medians with interquartile ranges (IQR) (if non-
normal) for continuous variables. Proportions were compared
using χ² test or Fisher exact tests while continuous variables were

FIGURE 2 | Association between the numbers of variables allowed to be

considered at each split and the prediction accuracy in the REF algorithm.

REF, recursive feature elimination.

compared using the Student t-test, or Wilcoxon rank-sum test,
as appropriate.

In this study, the data were divided at random, with 70%
utilized for training and 30% for testing. The most relevant
variables were selected using recursive feature elimination (RFE)
as a feature selection approach. In short, RFE recursively fits a
model based on smaller feature sets until a specified termination
criterion is reached. In each loop, in the trained model, features
are ranked based on their importance. Finally, dependency and
collinearity were eliminated. Features were then considered in
groups of 5/15/25/35/45/55/ALL (ALL= 65 variables) organized
by the ranks obtained after the feature selection method. To
find the optimal hyperparameters, 5-fold cross-validation was
used as a resampling method. In each iteration, every 9 folds
are used as a training subset, and the remaining 1 fold was
processed to tune the hyperparameters. This training-testing
process was repeated thirty times. And in this way, each
sample would be involved in the training model, and also
participate in the testing model, so that all data were used to
the greatest extent. In this study, we employed multiple diverse
ML algorithms to develop models, containing artificial neural
network (NNET), naïve bayes (NB), gradient boosting machine
(GBM), adapting boosting (Ada), random forest (RF), bagged
trees (BT), eXtreme Gradient Boosting (XGB), and logistic
regression (LR). Initially, we conducted internal validation on
the development sets to quantify optimism in the predictive
performance and evaluate the stability of the prediction model.
We use the Cross-validation technique with 30 repeats of 5-fold
cross-validation to evaluate the internal validity of each model.
All the models were assessed in multiple dimensions regarding
their model performance. The median and 95% confidence
intervals of the area under the receiver operating characteristic
curves (AUC) were calculated, where an AUC value of 1.0 means
perfect discrimination and 0.5 represents no discrimination. And
the accuracy, sensitivity, specificity, negative predictive value,
and positive predictive value were also calculated. Calibration
plots were drawn to visualize the prediction abilities of the
models. To determine the clinical usefulness of the included
variables by quantifying the net benefit at different threshold
probabilities, we conducted the decision curve analysis (DCA)
(19). For the best-performing model, the significance of the
model parameters was identified and reported. Finally, the
“Shiny” package in the R was used to construct a visual data
analysis platform.

All analyses were performed by the statistical software
packages R version 4.0.2 (http://www.R-project.org, The R
Foundation). In our study, we used the “Caret” R packages to
achieve the process. P < 0.05 (two-sided test) were considered
statistically significant.

RESULT

Baseline Characteristics
In total, 7,368 patients fulfilled the selection criteria and
comprised the final study cohort (Figure 1). The mortality rate of
the cohort was 18.15% (6,301 survivors and 1,337 non-survivors)
during a 4-year follow-up. The comparison of characteristics
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FIGURE 3 | Variable importance in different models. NNET, artificial neural network; NB, naïve bayes; GBM, gradient boosting machine; Ada, adapting boosting; RF,

random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting; LR, logistic regression; RDW, red blood cell distribution width; BUN, blood urea nitrogen; SAPS II,

Simplified Acute Physiology Score II; AG, anion gap; SOFA, Sequential Organ Failure Assessment; SBP, systolic blood pressure; RRT, renal replacement therapy;

RBC, red blood cell; ECMO, extracorporeal membrane oxygenation; BE, base excess; DBP, diastolic blood pressure.

between the survivors and the non-survivors is reported in
Table 1. Non-survivors were older (P < 0.001) and tended to
be female (P < 0.001) with the medical history of congestive
heart failure (P < 0.001), valvular disease (P = 0.005), active
endocarditis (P = 0.048), cardiac arrhythmias (P < 0.001),
pulmonary circulation disorders (P < 0.001), chronic pulmonary
disease (P < 0.001), peripheral vascular disease (P < 0.001),
stroke (P= 0.047), diabetes (P= 0.009), renal failure (P < 0.001),
liver disease (P < 0.001), coagulopathy (P < 0.001), metastatic
cancer (P < 0.001), solid tumor (P = 0.013), fluid and electrolyte
disorders (P < 0.001), and weight loss (P < 0.001). Regarding
vital signs and laboratory findings, non-survivors were more
likely to have higher SBP (P = 0.014), higher heart rate (P =

0.010), higher respiratory rate (P = 0.009), lower temperature
(P < 0.001), lower urine output (P < 0.001), higher anion gap
(P < 0.001), lower RBC (P = 0.010), higher platelet (P < 0.001),
higher RDW (P < 0.001), lower hemoglobin (P < 0.001), BUN
(P < 0.001), higher creatinine (P < 0.001), higher calcium (P <

0.001), higher potassium (P < 0.001), lower sodium (P < 0.001),
higher phosphate (P < 0.001), lower chloride (P < 0.001), higher
SOFA (P < 0.001), and higher SAPS II (P < 0.001). Moreover,
patients who died during follow-up were also more likely to
receive RRT (P < 0.001) and ECMO (P < 0.001).

Variable Importance
A total of 65 predictors were extracted from the database.
Finally, 25 important predictors were selected by the RFE
algorithm, including metastatic cancer, urine output, ECMO,
RDW, AG, congestive heart failure, mechanical ventilation,
sodium, SBP, bicarbonate, DBP, RBC, hemoglobin, age,
BUN, chloride, SAPS II, creatinine, RRT, BE, renal failure,
dyslipidemia, platelet, SOFA, and glucose (Figure 2). Then,
these variables were used in all the subsequent analyses for
all models in both training and testing sets. Each variable
included in the study had varying importance over 4-year
mortality relying on the ML approach (Figure 3). In the
Ada model, we determined that RDW, BUN, SAPS II, AG,
age, urine output, chloride, creatinine, congestive heart
failure, and SOFA were the Top 10 predictors in the feature
importance rankings.

Evaluation of Model Performance
The discriminatory abilities of all models for the prediction
of mortality are in Figure 4, Table 2. Within the training set,
the NNET, NB, LR, GBM, Ada, RF, BT, and XGB models
were established, and the testing set obtained AUCs of 0.790,
0.786, 0.797, 0.748, 0.801, 0.789, 0.752, and 0.781, respectively.
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Comparatively, the Ada model had the highest predictive
performance among these eight models (AUC 0.801, 95% CI:
0.784–0.817). Calibration plots of the eight models are presented
in Figure 5. The calibration curves of NNET and Ada performed
better than the other models. The decision curve compared the
net benefit of the best model and alternative approaches for
clinical decision making. As is shown in Figure 6, the net benefit
of the RF, Ada, and BTmodels surpassed that of otherMLmodels
for almost all threshold values, showing that these three models
were more superior in predicting the risk of 4-year deaths in
this cohort.

FIGURE 4 | Area under the curve of receiver operating characteristic curve by

machine learning models in the validation cohort. ROC, receiver operate

characteristics; NNET, artificial neural network; NB, naïve bayes; GBM,

gradient boosting machine; Ada, adapting boosting; RF, random forest; BT,

bagged trees; XGB, eXtreme Gradient Boosting; LR, logistic regression.

Development of Webservers for
Convenient Clinical Use
Wenext used the Shiny to illustrate the impacts of key features on
the death prediction model in individual patients. One visualized
and publicly accessible online calculator based on the Ada model
was built (https://pengchi2009.shinyapps.io/cardic/) (Figure 7).
The webservers may generate an estimated survival probability
by entering the covariates.

DISCUSSION

Long-term mortality risk prediction tools for cardiac surgery
can play an important role in enhancing continuity of
care and planning resource allocation appropriately. With
the advancement of electronic medical records and artificial
intelligence, ML algorithms have become more widely utilized in
individualized medicine to assist clinical decision-making (29).
In this study, several ML algorithms (NNET, NB, GBM, Ada, RF,
BT, LR, and XGB) were developed and validated to predict 4-year
mortality of patients undergoing cardiac surgery. Concerning the
predictive performance, the Ada model exhibited the greatest
AUC and outperformed the remaining ML models. Moreover, to
help surgeons use the model, a visualized and publicly accessible
online calculator was developed, which provided a user-friendly
interface. This study was the first to establish a long-term
prediction model after cardiac surgery using early-stage and
easily obtained variables based on ML methods. It is worth
noting that early and accurate prediction of long-term mortality
in patients post-cardiac surgery could provide more time for
clinicians to offer individualized treatment strategies.

Cardiac surgery, as a unique operation type, had a significant
impact on circulation and physiology, as well as posing significant
hurdles in terms of lowering mortality (30). In the field of
cardiac surgery, there has been an increasing interest in risk
prediction models for clinical use. Various risk stratification
methods were cited in European guidelines for decision making,
even though these scores cannot replace clinical judgment and
multidisciplinary dialogue (31). Among the many scores that
have been proposed, the original EuroSCORE, EuroSCORE II
and STS scores are the most widely used to predict mortality after

TABLE 2 | Prediction performance of the machine learning models in the test set.

Model Accuracy Sensitivity Specificity PPV NPV AUC 95%CI

NNET 0.830 0.773 0.673 0.334 0.933 0.790 (0.772–0.806)

NB 0.829 0.825 0.596 0.302 0.941 0.786 (0.768–0.802)

LR 0.835 0.738 0.731 0.368 0.929 0.797 (0.780–0.814)

GBM 0.824 0.678 0.710 0.332 0.912 0.748 (0.729–0.765)

Ada 0.834 0.793 0.673 0.340 0.938 0.801 (0.784–0.817)

RF 0.841 0.781 0.677 0.339 0.938 0.789 (0.772–0.806)

BT 0.833 0.783 0.589 0.288 0.928 0.752 (0.734–0.770)

XGB 0.833 0.706 0.735 0.361 0.922 0.781 (0.763–0.798)

NNET, artificial neural network; NB, naïve bayes; GBM, gradient boosting machine; Ada, adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting; LR,

logistic regression; AUC, area under the curve; PPV, positive predictive values; NPV, negative predictive values, AUC, area under the curve; CI, confifidence interval.
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FIGURE 5 | Calibration plots of the eight models. NNET, artificial neural network; NB, naïve bayes; GBM, gradient boosting machine; Ada, adapting boosting; RF,

random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting; LR, logistic regression.

cardiac surgery. However, several studies have reported that these
scores have limitations in some surgeries or patient subgroups
(11–13). Recently, a growing number of studies have focused
on mid-term or long-term mortality after cardiac surgery (32–
36). For example, Wu et al. (37) created a risk score predicting
long-term mortality following isolated CABG surgery with the
C-statistics ranging from 0.768 to 0.783 for mortality at 1, 3,
5, and 7 years of follow-up. Due to the need for more precise
prediction models, the application of ML approaches has been
increasingly studied. A recent meta-analysis using 15 studies
showed that when compared with LR, ML models provide better
discrimination in operative mortality prediction after cardiac
surgery (38). In the present study, the Ada model had a better
performance in both discriminatory ability with the higher AUC
of 0.804 and goodness of fit (visualized by calibration curve)
compared to the traditional LR methods.

The potential advantage of ML models is their capacity to
capture nonlinearity and the interactions among features without
the need for the modeler to manually specify all interactions, as
needed with LR. Moreover, compared with traditional statistical
methods,ML algorithms can handlemissing datamore efficiently
because they do not rely on data distribution assumptions
and are capable of more complex calculations. Clinical models
constructed by ML have been used to predict short-term
mortality in cardiac surgery with the performance regarding
AUC ranging from 0.77 to 0.92 (19, 20, 39–47). Zhou et al. (39)
and Ong et al. (40). Found that the RF models predict short-term

FIGURE 6 | Decision curve analysis of the eight models. NNET, artificial neural

network; NB, naïve bayes; GBM, gradient boosting machine; Ada, adapting

boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient

Boosting; LR, logistic regression.
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FIGURE 7 | Interface of website usage. RDW, red blood cell distribution width; BUN, blood urea nitrogen; SAPS II, Simplified Acute Physiology Score II; AG, anion

gap; SOFA, Sequential Organ Failure Assessment; SBP, systolic blood pressure; RRT, renal replacement therapy; RBC, red blood cell; ECMO, extracorporeal

membrane oxygenation; BE, base excess; DBP, diastolic blood pressure.

mortality better than othermodels in cardiac surgical procedures.
Additionally, several studies showed that the XGBoost method
performed better in predicting operative or in-hospital mortality
than the other ML methods (19, 20, 41–43). In our study, the
study outcomewas set as long-termmortality, and the Adamodel
performed better than the RF and XGBoost model. This also
supports the so-called No Free-Lunch theorem inML (48), which
shows that there is no one model that works best for every
problem or every dataset. Therefore, it is necessary to try and
evaluate multiple ML models to determine which one performs
best for a specific problem or study cohort. Actually, The Ada
model is a technique that is gaining increasing application in
clinical research (49–51). Our study is the first to apply the Ada
model in the context of cardiac surgery.

Through sophisticated ML methods, we determined that
RDW, BUN, SAPS II, AG, age, urine output, chloride, creatinine,
congestive heart failure, and SOFA were the Top 10 predictors
in the feature importance rankings. In general, the predictors for
long-term mortality identified in the Ada model in this study are
consistent with other studies. RDW is a simple measure of the
broadness of erythrocyte size distribution, conventionally called
anisocytosis (52). A growing body of evidence demonstrated
that higher RDW is strong correlation with a higher mortality
rate in widespread cardiovascular diseases such as cardiac

surgery, heart failure, and acute coronary syndrome (53–56).
However, there is less research available about whether RDW
affects long-term outcomes after cardiac surgery, for which our
study is a novel contribution to the published literature. The
SAPS II, based on a large international sample of patients,
provides an estimate of the risk of death without having to
specify a primary diagnosis (57). According to our findings,
the SAPS II score seems to be more important than the SOFA
score in the feature importance rankings of the Ada model.
Similar to our findings, Schoe et al. (58) found that the SOFA
score used as a mortality prediction model underperformed
compared to the SAPS-II score in this large cohort of cardiac
surgery patients. Urine output, BUN, and creatinine were
all Top 10 important variables. Lassnigg et al. (59) reported
that even a slight increase in serum creatinine is correlated
with a considerable increase in 30-day mortality following
cardiac surgery. Tseng et al. (60) developed and validated ML
algorithms using 94 preoperative and intraoperative features to
predict cardiac surgery-associated acute kidney injury, which
is closely associated with increased morbidity and mortality.
In their model, the importance matrix plot reveals that the
most important variables contributing to the model were
intraoperative urine output. Our results also underline the
importance of detecting, evaluating, and improving preoperative
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renal function in patients requiring cardiac surgery, which might
serve as a target for improving outcomes.

There are several strengths of our study. Firstly, this is the
first study that established advancedML death prediction models
focusing on the long-term mortality of patients undergoing
all types of cardiovascular surgery. Given the heterogeneity
of patients on ICU admission, our findings can be used to
identify patients at high-risk for death, and determine which
patients would benefit most from cardiac surgery. Providers can
then offer targeted individualized care such as more extensive
evaluation, post-discharge home visits, closer surveillance by
primary care physician, or earlier post-operative follow-up
appointments for these patients, actions that might mitigate
future adverse outcomes. Secondly, we used MIMIC-III, a high-
quality database with large sample size and extensive clinical data.
Thirdly, we utilized advanced statistical methods, including eight
ML models. To evaluate the performance of these models, the
AUCs, calibration curves, and DCA were calculated and plotted,
representing the discrimination, goodness of fit, and clinical
application, respectively. Fourthly, themodels were created based
on the data readily available collected within the first 24 h after
patients’ admission. It is worth noting that early and accurate
prediction of mortality can provide more time for clinicians
to adjust corresponding treatment strategies. Finally, to help
surgeons use themodel at the bedside, a calculator was developed,
which provided a user-friendly interface.

Our study had several limitations. Firstly, we used data from a
single academic medical center in the USA, with the earliest cases
from almost 20 years ago, when care may have been inconsistent
with currently accepted standards. Therefore, a multicenter
registry, prospective studies are needed to confirm these findings.
Secondly, derived from the ICU adult participants, the results
of our study cannot be generalized to other populations such
as children and non-ICU patients. Thirdly, we did not obtain
information including laboratory testing and interventions
before ICU admission, which may cause confounders to
some extent. Fourthly, restricted by the contents of the
MIMIC-III database, some important information, including
preoperative data (i.e., lactate, left ventricular ejection fraction,
NYHA functional class, EuroSCORE score, and STS score),
intraoperative data (i.e., intraoperative hypotension, vasopressor-
inotropes and cardiopulmonary bypass time), and postoperative
data (i.e., complications, late extubation, and length of ICU stay)
were recorded incompletely and not included in the analysis.
Fifthly, although we included patients in the database with the
primary diagnosis of receiving cardiac surgery, it cannot be ruled
out that some patients were admitted to treating other diseases.
Finally, although our study deeply explored 4-year mortality in
the ICU settings, other outcomes, such as acute kidney injury
incidence, are also needed for further investigation.

CONCLUSIONS

The Ada model performs better than the LR, NNET, NB,
GBM, RF, BT, and XGB models in predicting long-term
mortality after cardiac surgery. Our results suggest that RDW,
BUN, SAPS II, AG, age, urine output, chloride, creatinine,
congestive heart failure, and SOFA might be closely associated
with 4-year mortality after cardiac surgery. We anticipate that
this new risk model can become a handy risk stratification
tool that can be used by clinicians and patients in the
choice of treatment for cardiac disease. However, further
external validations are warranted to test the generalization of
our models.
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