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Abstract

Heart rate variability (HRV) reflects cardiac and autonomic nervous system

activity. It is usually measured over a relatively prolonged period and pre-

sented using multiple parameters. Here, we studied rapid HRV changes during

airway obstruction using a short (1 min) sampling window. Forty healthy vol-

unteers underwent a trial of obstructed breathing. Heart rate was recorded

during three consecutive sets comprised of 1-min control followed by 1 min

of obstructed breathing, with 1 min of rest between sets. Time and frequency

domain analysis were used to compare HRV during control versus obstructed

breathing. Compared with control, HRV intensely increased during obstructed

breathing: R-R intervals (time between consecutive R waves) standard devia-

tion increased from 65 to 108 msec (P < 0.0001), root mean square of succes-

sive R-R interval from 61 to 82 msec (P = 0.001), number of pairs of

successive R-R intervals that differ by more than 50 msec (NN50) from 16.5

to 25.3 events (P < 0.0001), and proportion of NN50 divided by total number

of R-R intervals from 26.6 to 35.1% (P = 0.001). Low frequency power

increased by more than fourfold (P < 0.0001), allowing 90% sensitivity and

75% specificity for identifying airway obstruction (ROC area 0.88,

P < 0.0001). We observed a rapid intense increase in HRV during obstructed

breathing, significant enough to detect during a short 1-min sampling win-

dow. These findings suggest that HRV may be useful for rapid detection of

airway obstruction, especially in situations where end-tidal CO2 monitoring is

not optimal, such as during partial airway obstruction.

Introduction

Airway obstruction, complete or partial, is a critical event

during sedation and anesthesia. It requires rapid identifi-

cation and intervention to avoid serious morbidity and

mortality. The current gold standard monitoring airway

patency is end-tidal CO2. This is useful, effective, and

reliable, and considered a standard of care during seda-

tion and anesthesia by many anesthesia societies (Whi-

taker and Benson 2016). However, end-tidal CO2 which

is accurate and reliable for identifying complete airway

obstruction and apnea, does not identify partial airway

obstruction, and may fail to identify respiratory adverse

events (Pekdemir et al. 2013; Ebert et al. 2017). This

could happen during sedation with spontaneous breath-

ing, as patients may switch between nasal and mouth

breathing, precluding reliable end-tidal CO2 monitoring

or causing multiple false alarms that interfere with effec-

tive monitoring. Moreover, this monitor is insensitive to

partial airway obstruction. Therefore, so far identifying
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partial airway obstruction remains a clinical diagnosis.

Airway obstruction during anesthesia may gradually

develop, and become apparent only when it is severe,

often causing a medical emergency that can rapidly dete-

riorate to a catastrophe. Any delay in its detection by cur-

rent clinical anesthesia monitors may result in a severe

outcome. Thus, adjuvant monitors that will identify air-

way obstruction early on, and will not be affected by the

same pitfalls as end-tidal CO2 may greatly improve the

patient’s safety, and provide a warning sign for the clini-

cian allowing early intervention and prevention of such

an event.

HRV is a mathematical measure of physiological activ-

ity variation derived from the time interval between

heartbeats which results from a delicate interplay of the

sympathetic and parasympathetic nervous systems. HRV

was shown to be affected by emotional states, cardiac

conditions, and other factors (Rajendra Acharya et al.

2006).

Heart rate variability (HRV) is modulated by the respi-

ratory system (Elghozi et al. 1991; Vidigal et al. 2016),

as the cardiac preload is modified via intrathoracic pres-

sure which is respiratory effort dependent. Pulmonary

disorders, such as asthma (Garrard et al. 1992; Gupta

et al. 2012) and obstructive sleep apnea (OSA) (Khoo

et al. 1999; Gula et al. 2003; Kufoy et al. 2012; Brzecka

et al. 2015) were shown to modulate HRV. Airway

obstruction leads to significant modulation of the intratho-

racic pressures in spontaneously breathing patients. It had

been previously shown that HRV was effected by airway

obstruction under anesthesia (Arai et al. 2007). Previous

guidelines recommended 5 min as a minimal electrocar-

diogram (ECG) recording time for short-term HRV mea-

surements (Task Force of the European Society of

Cardiology and the North American Society of Pacing

and Electrophysiology, 1996), a delay too long for timely

detection of airway obstruction.

In this work, we studied heart rate variability (HRV)

as an adjunct to end-tidal CO2 monitoring. This cheap,

simple, and noninvasive technique can be easily added

to a standard monitoring to help identifying critical air-

way events. We systematically evaluated the effect of

simulated severe airway obstruction on HRV parameters

calculated over 1-min interval. This was aimed to

set basis for rapid analysis and detection of airway

obstruction.

Materials and Methods

Following approval (0031-15-RMB; National Institutes of

Health trial number NCT03733704) by the Institutional

Review Board of Rambam Health Care Campus, Haifa,

Israel (Chairperson Prof N. Krivoy) on 29 March 2015,

the study was performed in a prospective cross-over, lon-

gitudinal cohort manner. Healthy volunteers aged

between 20 and 40 years were included in this study.

Each participant signed an informed consent. Exclusion

criteria were respiratory or cardiac pathology, diabetes, a

body mass index lower than 18 or higher than

26 kg m�2, chronic medical conditions with significant

involvement of the sympathetic or parasympathetic sys-

tems (e.g., diabetes), obstructive sleep apnea, use of medi-

cations with either cardiovascular or respiratory effects,

and ECG abnormalities including heart rate other than

sinus rhythm, atrioventricular conduction blocks, intrafas-

cicular conduction delays, or prolonged QT interval

(the time between consecutive Q and T waves on the

electrocardiogram).

Initially, each volunteer underwent an ultrasound eval-

uation (SonoSiteTM M-TurboTM ultrasound machine,

SonoSite, Bothell, WA) of the lungs using a high-fre-

quency linear probe at mid-clavicular lines to exclude

pneumothorax, an apical view of the heart using a curve-

linear probe to exclude pericardial effusion. A 12 lead

ECG was obtained and analyzed to exclude rate or con-

duction abnormalities. The ECG and ultrasound evalua-

tion were performed and interpreted by an

anesthesiologist from the study team (either A.L or N.G.).

Noninvasive blood pressure and oxygen saturation were

recorded in all subjects throughout the study to identify

and prevent any complication.

A three lead ECG and spirometry were obtained in

supine position with the upper body raised by 30 degrees.

Data were collected using a Datex AS/3 monitor (Datex

Ohmeda Medical Equipment, GE Healthcare). The data

were recorded using a digital to analog acquisition card

(NI-6008, National InstrumentsTM, Austin, TX) and a

Biosignal Logger of National InstrumentsTM Biomedical

Workbench TM at a sampling rate of 500 Hertz (Hz). All

experiments were performed at the same time of day

(early afternoon), and under the same conditions (same

place and experimental setup). Volunteers were instructed

to refrain from smoking for 4 hours prior to participating

in the study.

The airway obstruction was simulated by an 18 cm

long, 4 mm internal diameter endotracheal tube, con-

nected to a spirometry adaptor and an antimicrobial

filter. During the obstructed breathing phase, the volun-

teers were directed to seal their lips tightly around the fil-

ter to prevent air leak and encouraged to reach a peak

expiratory pressure of 30–40 cm H2O, using the instanta-

neous display on the spirometry monitor. Three sets were

recorded for each volunteer; each set was comprised of 1

min of normal unobstructed breathing that served as

control, immediately followed by 1 min of obstructed

breathing. Following each set, the volunteers were allowed
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at least 1 min of rest period to recover and return to their

baseline breathing before the next set (Fig 1A).

HRV analysis

A detailed description of the means to measure and eval-

uate the significance of HRV can be found in the Euro-

pean Society of Cardiology and the North American

Society of Pacing Electrophysiology Task Force on heart

rate variability, standards of measurement and physiologi-

cal interpretation and clinical use guidelines (Task Force

of the European Society of Cardiology and the North

American Society of Pacing and Electrophysiology, 1996).

Briefly, the raw ECG signal was preprocessed (including

high pass filtering to remove Baseline wandering and

ECG feature identification) and the R-R intervals were

extracted from the raw ECG signal using ECG Features

Extractor of National InstrumentsTM Biomedical

WorkbenchTM with threshold adjust factor of 0.1, a rough

highest heart rate of 60 beats min�1, R waves frequency

of 10–25 Hz and middle R waves onset and offset.

We evaluated HRV using time and frequency domain

methods. Time domain measures are based on the

statistical analysis of the time interval between two adja-

cent R waves on the electrocardiogram complexes,

referred to as R-R intervals (time between two consecu-

tive R waves on the electrocardiogram). R-R intervals

standard deviation (SD), root mean square of successive

differences (RMSSD) between adjacent R-R intervals,

number of pairs of successive R-R intervals that differ by

more than 50 msec (NN50) and proportion of NN50

divided by total number of R-R intervals (pNN50) are

routinely used to quantify HRV. Frequency domain

employ mathematical manipulation to the signal, such as

the fast Fourier transform (FFT), which converts the time

function into a sum of sine waves of different frequencies.

These are used to calculate the power spectral density in

very low (VLF), low (LF) and high frequency (HF) ranges

and provide a quantification of the physiological HRV-

related effects. In this report, we did not include the VLF,

as this value cannot be reliably measured with a brief

measurement window of 1 min. We normalized the HF

power and LF power to the total power that is,

LFnorm = (LF*100/LF + HF) and HFnorm = (HF*100/
LF + HF). The normalized values are referred to as

HFnorm and LFnorm.

HRV parameters were calculated over 1-min sampling

window using the Heart Rate Variability Analyzer of

National InstrumentsTM Biomedical WorkbenchTM. Fast

Fourier analysis was employed using a Hanning Window

of 1024 samples with a 50% overlap, and with a 2 Hz

interpolation rate and 1024 frequency bins. As suggested

in the literature for the power spectral density calculation,

HF was defined as 0.15–0.4 Hz, LF as 0.04–0.15 Hz, and

VLF as below 0.04 Hz (Task Force of the European

Society of Cardiology and the North American Society of

Pacing and Electrophysiology, 1996).

Respiratory rate calculation

To evaluate the changes in respiration during the

obstructed breathing, we calculated the respiratory rate

during the control and obstructed breathing periods. We

used the raw ECG traces to calculate the respiratory rate

(Sinnecker et al. 2014). This was done primarily based on

the R wave amplitude and calculating the number of local

peaks in the sampling window. To obtain meaningful

results, we chose the control and the obstructed breathing

segments with the most obvious changes in the R wave

amplitude. Using this methodology, we could reliably

evaluate the respiratory rate in 33 subjects.

Statistical analysis

Statistical analysis was conducted by SPSS version 21

(SPSS, IBM, Chicago, IL).

Figure 1. (A) Experimental paradigm. Each volunteer performed

three sets of 1 min of control (normal, unobstructed breathing)

marked by a blue dashed line, immediately followed by ‘1 min of

obstructed breathing, marked by a solid red line. Following each

set, the volunteers were allowed at least 1 min of rest, marked by

a widely dashed green line, to recover and return to their baseline

breathing before the next set. (B) An example of the change in R-R

intervals during 1 min of control (normal, unobstructed) breathing

immediately followed by 1 min of obstructed breathing. It can be

seen that during the obstructed breathing the heart rate variability

increases, and that the heart rate oscillates in synchrony with the

respiratory effort (i.e., with the intrathoracic pressure). C , control;

O, obstructed breathing; R, rest; R-R interval, time between two

consecutive R waves on the electrocardiogram.
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Descriptive statistics in terms of mean, standard devia-

tions, median, and percentiles were demonstrated to all

parameters in the study. Normal distributions of the

quantitative parameters were examined by Kolmogorov-

Smirnov test, and parametric or nonparametric tests were

used as appropriate (i.e., nonparametric tests were used

for variables with other than normal distribution).

Repeated measures analysis with Bonferroni adjustments

for multiple comparisons or nonparametric tests for

related samples by Friedman tests with controlling for

multiple comparisons were used for differences in the

measured variables at three repeats for each volunteer.

For each volunteer, the average value from the three

repeats was calculated.

Differences between normal and obstructed breathing

for each volunteer were tested by paired t-test or Wil-

coxon paired tests as appropriate. A value of P < 0.05

was considered as significant. For measures with signifi-

cant differences between normal and obstructed breath-

ing, we calculated the receiver operating characteristic

curve (ROC curve) using the ROC curve model of SPSS

and calculate the best cutoff using Youden index (Ruopp

et al. 2008) to evaluate the specificity and sensitivity of

this measure to identify obstructed breathing.

Results

Forty healthy volunteers were recruited, all of which suc-

cessfully completed all the tasks. Demographic and base-

line physiology data are presented in Table 1. ECG was

normal in all study subjects; ECG parameters are pre-

sented in Table 2. While breathing through a simulated

airway obstruction obstructed the respiratory rate dramat-

ically slowed – from 12.9 � 3.1 breaths min�1 during

control to 7.5 � 2.7 breaths min�1 during obstructed

breathing (P < 0.0001, paired t-test). The ratio of respira-

tory rate of control over obstructed breathing was

1.8 � 0.45.

A representative example of the R-R intervals dynamics

starting with normal unobstructed breathing and switch-

ing to breathing through a simulated airway obstruction

is presented in Figure 1B. When comparing each control

period (1 min of normal unobstructed breathing) to the

following obstructed breathing period (1 min of forced

breathing through a 4 mm internal diameter tube), a sig-

nificant difference can clearly be noticed (Fig. 1B).

In order to ascertain the robustness of the data, every

volunteer consecutively performed three such sets

(Fig. 1A). For each of the measured variables, we com-

pared the values obtained during the three sets to identify

any trend that could bias the repeated task (e.g., learning,

adaptation, or not enough time to recover between trials).

For most variables, no significant difference could be

found between the three sets, suggesting that the recovery

interval between trials was adequate, and that no signifi-

cant fatigue, learning, or adaptation occurred. The average

R-R interval SD of the third set was shorter than that of

the second (67.6 � 37.5 and 67.4 � 33.1 vs. 59.9 � 32.6,

first, second, and third sets, respectively, P = 0.041 for sec-

ond vs. third, nonsignificant values for first vs. second and

first vs. third, Bonferroni adjusted repeated measures anal-

ysis of variance). The pNN50 displayed a gradual decrease

with repeats from 29.3 � 22.5 on the first set to

26.8 � 20.1 on the second and 23.6 � 19.8 on the third

(P = 0.026 for first vs. third, nonsignificant values for first

vs. second and second vs. third, Bonferroni adjusted

repeated measures analysis of variance). Since only two

variables showed any significant differences between the

three sets and the differences were small and of a limited

clinical significance (especially compared to the changes

seen during obstructed breathing), we used the subjects’

average values for further analysis.

Table 1. Subjects demographic and baseline physiologic data.

Gender (Male/Female) 20/20

Age (year) 20–40

Body mass index (kg m�2) 23.0 (3.3)

Systolic blood pressure (mmHg) 122 (13)

Oxygen saturation (%) 99 (1)

Smoking history 12/361

Pack years (of volunteers with smoking history only) 6.4 (6.0)1

Routine participation in any physical activity 31/361

Routine participation in strenuous physical activity2 23/361

Time spent performing physical activity (hours week�1) 3.2 (2.6)1

Values are presented as either mean (SD) or portion, aside from

age which is presented as range.
1This data was available for only 36 volunteers.
2Strenuous physical activity defined as over 6 metabolic equiva-

lents (METs).

Table 2. Baseline electrocardiographic data.

Heart rate (BPM) 68.6 (10.4)

PR interval (msec) 148 (17)

QT interval (msec) 373 (28)

QTc interval (msec) 395 (19)

R waves width (msec) 89 (14)

Values are presented as mean (SD). BPM, beat per minute; PR

interval, time between consecutive P and R waves on the electro-

cardiogram; QT, interval –time between consecutive Q and T

waves on the electrocardiogram; QTc, corrected QT interval; R

waves width, time interval between the beginning and end of a R

waves complex on the electrocardiogram.
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Time domain analysis

The mean R-R interval decreased from 893 � 115 msec

during the control period to 827 � 100 msec during

obstructed breathing (P < 0.0001, paired t-test), demon-

strating a higher heart rate during obstructed breathing. The

average SD of R-R intervals in a single patient (that should

not be confused with the SD of the average R-R intervals cal-

culated across patients) increased by 66% during obstructed

breathing (P < 0.0001, paired t-test), and the RMSSD

increased by 34% (P = 0.001, paired t-test) during that per-

iod. NN50 almost doubled during obstructed breathing

(25.3 � 12.3) compared with control (16.5 � 11.6;

P < 0.0001, paired t-test) as did the pNN50: 35.1 � 18.8%

during obstructed breathing compared with 26.6 � 19.9%

during control (P = 0.001, paired t-test). Time domain val-

ues are detailed in Table 3. It can be seen that all time

domain variables significantly increased during obstructed

breathing, demonstrating the robustness of this finding.

Frequency domain analysis

Figure 2A shows an example of the FFT of the heart rate

during 1 min of control period and a consecutive

obstructed breathing period. The increase in the power

spectral density of the LF during obstructed breathing can

be easily identified. This effect was significant in both the

absolute power and the power ratio (the percentage of

power spectral density for LF out of the total power

spectral density).

State separation

For all measures with significant differences between nor-

mal and obstructed breathing we calculated the ROC

curves (see Methods). We evaluated the specificity and

sensitivity of each measure to identify obstructed breath-

ing using youden index (Ruopp et al. 2008). The area

under the ROC curve was significantly different from the

asymptote for most measure (all but HF). The area under

the curve, and the calculated sensitivity and specificity to

identify airway obstruction are detailed in tables 3 and 4.

It is worthwhile to note that the raw LF, LFnorm, and

HFnorm all yield sensitivity of 90% or more with a rea-

sonable specificity, suggesting that these measures would

be useful monitor to screen for airway obstruction.

Discussion

The primary aim of this study was to assess whether HRV

can identify airway obstruction accurately and rapidly

enough to be useful for monitoring purpose. To do this

we used a simulated acute airway obstruction model to

show acute changes in HRV in response to obstruction in

a controlled, reproducible way. To the best of our knowl-

edge, this has not been previously done. We demon-

strated a robust increase in HRV during airway

obstruction. The increase was rapid, easy to detect and

noteworthy even during a short, 1-min heart rate sam-

pling period immediately following the onset of the

obstruction.

Many factors modulate HRV: psychiatric (Servant et al.

2009), psychologic (Cohen et al. 1998; Vistisen et al.

2014), central nervous system (Kim et al. 2013), anesthe-

sia (Matchett and Wood 2014), body position (Montano

et al. 1994; Lowenstein et al. 2014), cardiac preload and

afterload, cardiovascular and pulmonary-respiratory ele-

ments, hormones and medications (Weissman et al. 2009;

Ulanovsky et al. 2014). HRV analysis was investigated for

diagnosis of myocardial ischemia (Goldkorn et al. 2015),

Table 3. Time domain values in normal and obstructed breathing.

Normal (n = 40) Obstructed (n = 40)

P value

(paired t-test) ROC area

Sensitivity

(to detect

obstruction) (%)

Specificity

(for obstruction) (%)

R-R interval (msec) 893 (115) 827 (100) <0.0001 0.672 53 80

R-R Standard Deviation (msec) 65 (32) 108 (41) <0.0001 0.803 72.5 77.5

RMSSD (msec) 61 (42) 82 (45) 0.001 0.661 50 80

NN50 (events) 16.5 (11.6) 25.3 (12.35) <0.0001 0.702 85 45

pNN50 (%) 26.6 (19.9) 35.1 (18.8) 0.001 0.631 82.5 43

Values are presented as mean (SD). Sensitivity and specificity were calculated choosing the optimal threshold according to youden model. R-R

interval, time between two consecutive R waves on the electrocardiogram; RMSSD, root mean square of successive differences between adja-

cent R-R intervals; NN50, number of pairs of successive R-R intervals that differ by more than 50 msec; pNN50 , proportion of NN50 divided

by total number of R-R intervals.
1P < 0.05 (asymptotic significance compared to x = y).
2P < 0.01 (asymptotic significance compared to x = y).
3P < 0.001 (asymptotic significance compared to x = y).
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and predicting survival in congestive heart failure (Ho

et al. 1997) and successful weaning from mechanical ven-

tilation (Huang et al. 2014). Previous studies suggested

that LF power of HRV reflects cardiac baroreflex function

(Moak et al. 2009; Rahman et al. 2011) and proposed

power is modulated by the sympathetic and parasympa-

thetic systems (Reyes del Paso et al. 2013).

The respiratory and cardiac systems are closely related.

The cardiorespiratory coupling involves reciprocal inter-

actions mediated partially via the autonomic nervous

system (Baselli et al. 1994; Dick et al. 2014; Vidigal et al.

2016). HRV is affected by the respiratory system

(Elghozi et al. 1991; Widjaja et al. 2014; Vidigal et al.

2016). Slow and controlled breathing increased the car-

diorespiratory coupling as well as LF power and LF/HF

ratio (Widjaja et al. 2014; Vidigal et al. 2016). During

the period of obstructed breathing, we noticed a slowing

of the respiratory rate in our subjects. This slowing of

the respiratory rate may modulate HRV. On the other

hand, this change is part of the physiologic response to

partial airway obstruction, and thus it is part of the

change we are trying to identify. In any case, the change

we observed in HRV (especially the change in the LF)

was dramatically larger than the effect previously

observed during slow breath byVidigal et al. (2016), sug-

gesting a separate effect of the obstruction. During

obstructed breathing we noticed an increase in some

HRV parameters that may be related to autonomic (va-

gal) activity (e.g., increased pNN50). However, it seems

that these changes were mostly related to the obstruction

and to the change in intrathoracic pressure, as can be

demonstrated by the increase in the heart rate that

would not happen has these changes been related to

increased vagal activity.

As HRV is influenced via the cardiorespiratory cou-

pling and thus by the respiratory system, it is not surpris-

ing that changes in HRV were found to be associated

with conditions that impact the airway, especially

Figure 2. Change in the frequency content of HRV during airway obstruction. A. An example of FFT of the R-R intervals over one minute of

control (solid line), and the immediately following obstructed breathing period (dashed line). The dramatic increase in the LF power can be

easily seen. B. The distribution of total LF power during normal breathing (left) and obstructed breathing (right). The horizontal line represents

the median; the boxes are the 25th – 75th percentiles. C. Receiver operating characteristic curve calculated for the LF power. Abbreviations:

msec– millisecond, Hz - Hertz. FFT – Fast Fourier transform, HRV - heart rate variability, LF – low frequency band (0.04-0.15 Hz)..

2019 | Vol. 7 | Iss. 1 | e13948
Page 6

ª 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.

Heart Rate Variability in Airway Obstruction A. Lehavi et al.



situations that obstruct the airway. During airway

obstruction, intrathoracic pressure rapidly rises and drops

as part of the respiratory efforts. This change in the

intrathoracic pressure modulates cardiac preload

(Konecny et al. 2014). Moreover, such conditions are

often accompanied by sympathetic activation which may

also impact HRV. Decreased LF and increased HF were

reported in asthma patients (Garrard et al. 1992; Gupta

et al. 2012) and correlated with the response to metha-

choline bronchial challenge (Pichon et al. 2005). HRV is

modulated by other disorders of dynamic airway obstruc-

tion such as OSA (Khoo et al. 1999; Gula et al. 2003;

Kufoy et al. 2012; Brzecka et al. 2015), and was even sug-

gested as a diagnostic tool for OSA (Atri and Mohebbi

2015). Recently, Arai et al. (2007) demonstrated that

HRV rapidly responds to airway obstruction and to air-

way opening maneuvers in anesthetized children, demon-

strating the potential diagnostic value of HRV for

monitoring and rapidly identifying critical airway events

under anesthesia. However, they used 5 min segment to

calculate HRV, which is too long for monitoring pur-

poses. Our results confirm that the changes in HRV dur-

ing airway obstruction occurred rapidly and could easily

be identified shortly after the airway became obstructed.

Moreover, HRV can identify the obstruction with good

sensitivity and reasonable specificity Combining the

results of Arai et al. (2007) with our study suggest that

such a monitoring approach would be highly effective.

To simulate airway obstruction, we used a fixed sym-

metric obstruction model (equal resistance to inspiration

and expiration). This does not necessarily represent all

types of airway obstructions, as some causes of obstruc-

tion involve a dynamic component, for example, asthma

(Lavoie et al. 2012). Our model reflects other common

causes encountered in the operating rooms and intensive

care units, for example, kinked and small diameter endo-

tracheal tube, or secretions clogging the airway or the

tube. Another weakness is that the volunteers were fully

awake and without any sedation or anesthesia. It was

shown that HRV is sensitive to cortical activity as

reflected by psychological conditions (Lane et al. 2009),

especially stress (Delaney and Brodie 2000; Hernando

et al. 2016; Verkuil et al. 2016). Thus, our airway

obstruction simulation could induce stress levels higher

than those encountered under deep sedation or anesthe-

sia. The mental effort of maintaining a tight seal of the

lips around the breathing tube during obstructed ventila-

tion may also contribute to HRV. However, we do not

believe that this is an issue, as none of our patients

reported any such stress, they were all aware of the tem-

porary nature of the obstruction and could abort the trail

at any time by simply opening their mouth. Moreover,

we noticed a fourfold increase in the LF power, which is

an order of magnitude larger than the increase reported

during stress (Delaney and Brodie 2000; Hernando et al.

2016). Thus, our results cannot be explained simply by

the stress response during the obstructed breathing. Fur-

ther study during anesthesia is required to fully evaluate

the contribution of stress response to the increase in LF

power. Another limitation is that the study was per-

formed on young healthy volunteers. Extrapolating from

this population to older, sicker populations, and especially

to patients with cardiac dysrhythmias may be problem-

atic, and will require further experiments.

HRV is usually evaluated over periods much longer

than 1 min. The task force of the European Society of

Cardiology and the North American Society of Pacing

and Electrophysiology recommended 5 min as a minimal

ECG recording time for short-term HRV measurements

(Task Force of the European Society of Cardiology and

the North American Society of Pacing and Electrophysiol-

ogy, 1996). However, they did allow the possibility for

shorter measurement times in the cases where the nature

of the study dictates it. We chose to investigate the effects

Table 4. Frequency domain values in normal and obstructed breathing.

Normal (n = 40) Obstructed (n = 40)

P value (Wilcoxon

paired test) ROC area

Sensitivity

(to detect

obstruction)

Specificity

(for obstruction)

LF power (msec2) 164.7 (99.7–314.5) 893.3 (518.3 –1700.0) <0.0001 0.881 90% 75%

LF norm 56.4 (45.7–74.9) 89.0 (78.0–92.9) <0.0001 0.851 92.5% 65%

HF power (msec2) 105.4 (38.6–251.7) 103.0 (44.8–250.7) 0.51 0.52 – –

HF norm 38.0 (21.4–48.7) 9.5 (5.1–20.1) <0.0001 0.861 92.5% 70%

Values are presented as median and 25–75th percentiles. Sensitivity and specificity were calculated choosing the optimal threshold according

to youden model. LF, low frequency (0.04-0.15 Hz); HF, high frequency (0.15–0.4 Hz); LF norm, Normalized LF power; HF norm, Normalized

HF power.
1P < 0.001 (asymptotic significance compared to x = y).
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of HRV during 1 min to test the use of this modality for

anesthesia and critical care patients, looking for critical

events of airway obstruction. These types of patients and

events require a monitor with fast response time (i.e.,

short data acquisition time) to convey the information

before major complications develop. Indeed, most HRV

parameters that were calculated using a brief ECG segment

of 1 min (including both time and frequency domain

parameters) were significantly affected by our acute airway

obstruction simulation. Airway obstruction seems to have

a dramatic effect on the HRV, enough to allow rapid detec-

tion within a shorter than standard sampling time. The

brief (1 min) sampling time also allowed us to study awake

volunteers, without having to worry about drop out due to

the unpleasant nature of breathing through an obstruction

for a longer period and raised CO2 levels.

We refrained from using VLF frequencies, as VLF

includes frequencies below 0.04 Hz, thus a sample of

1 min will include only two periods (or less) of the sam-

pled signal within this range, limiting the accuracy and

reliability of the measurements. However, we do believe

that the LF results are reliable, and that this frequency

range is usable for monitoring even for a short, 1-min

window. Indeed, 1 min includes only two cycles of the

lowest frequencies in this range. However, for most of the

range there is much more data (up to ten cycles), allow-

ing reliable calculation of the power. Moreover, in our

data the differences between the control and obstructed

breathing were clear and significant attesting to the use-

fulness of this measure.

We have shown that a brief period of HRV measure-

ment can be a useful indicator for airway obstruction.

This could be a useful addition to our armamentarium of

breathing monitors, as this is a cheap, noninvasive modal-

ity that can easily be implemented in all current monitors

and seems to have a high diagnostic yield. This monitor-

ing technique may be useful during sedation and anesthe-

sia, when spontaneous ventilation is employed. In such

cases, the end tidal CO2 sampling cannula may dislodge

and lead to false alarms. Moreover, this technique may

detect instances where air flow persists despite partial

obstruction, leading to increased work of breathing and

decreased ventilation with nothing to alarm the provider

(Ebert et al. 2017).

It has to be noticed however, that this was done in

healthy, awake, and spontaneously breathing volunteers.

To validate the effectiveness and usefulness of this tool

for intraoperative monitoring, further studies are

necessary. Such studies include assessment of HRV

changes in varying degrees and types of obstruction,

correlating the changes to the respiratory effort and

performing this under changing levels of anesthesia and

sedation.

In conclusion, the use of HRV analysis and especially the

LF power calculation from 1-min samples of raw ECG

recording may provide valuable information regarding the

respiratory effect on the cardiac cycle, and potentially iden-

tify significant airway obstruction. This measure can

become a useful adjunct to monitoring end tidal CO2.
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