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odification and catalytic reaction
mechanism in the reaction of cyclohexene
hydration†

Hui Tian, * Shuai Liu and Qing Liu

This study investigated a three-phase (liquid–liquid–solid) reaction system of cyclohexene hydration where

the catalyst was hydrophilic at the bottom of the water phase. Cyclohexene conversion was low since it was

difficult for it to come into contact with the oil. The HCl-OTS-HZSM-5 catalyst was prepared by acid and

alkylation modification, then subsequently characterized. Acid modification enabled HZSM-5 zeolite to

remove some aluminum atoms, increasing specific surface area, pore volume, and acid sites. N-

octyltrimethoxysilane (OTS) was grafted onto the HZSM-5 zeolite surface, i.e., alkylation modification, to

improve the contact area between immiscible reactants. Consequently, cyclohexene conversion reached

24.07%. Cyclohexene hydration was calculated using the 34T cluster model, and bridging hydroxyl and

water molecule adsorption sites were explored. Simulations confirmed that the reaction energy barrier

for the HCl-OTS-HZSM-5 catalyzed hydration reaction ¼ 46.67 kJ mol�1, considerably less than that

with HZSM-5 zeolite (73.78 kJ mol�1). The theoretical results reasonably explain the experiments and

provide guidance to prepare catalysts with high catalytic activity.
1 Introduction

The Si/Al ratio is particularly critical to the catalyst acidity. The
presence of aluminum atoms creates a negative charge in the
framework that is compensated by hydrogen ions.1,2 Hydrogen
protons generate strong electrostatic elds enabling strong
interactions with polar molecules, but zeolites’ inherent
hydrophilicity limits their application.3–5

Zeolite alkylation modication by organic alkylation
reagents can substantially increase catalyst hydrophobicity.6

Adsorption of organic groups on HZSM-5 zeolites can improve
hydrophobicity, but also signicantly reduces specic surface
area and pore volume. The alkylating agent adsorbs onto the
zeolite surface to form a multi-layer porous material, blocking
catalyst pores. Li et al.7 modied HZSM-5 zeolite by CLD sali-
nization to not only passivate external surface acidity, but also
reduce pore size. Increased active sites can signicantly
improve olen conversion efficiency, but this was hindered for
alkylation modied microporous zeolite materials.8

Previous studies have shown that acid modication can lead
to pore expansion. Chen et al.9 modied zeolite by HCl,
increasing specic surface area and pore volume, by reducing
silanol groups, and hence reduced zeolite surface affinity for
water. Acid modication could improve pore structure and
ering, Yantai University, Yantai 264005,
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provide more framework acid sites, providing favorable condi-
tions for molecular reactions.10,11

HZSM-5 zeolite has excellent catalytic performance for
several reactions, including isomerization, alkylation, and
aromatization. It also exhibits enhanced aromatic selectivity
and organic liquid product yield compared with other cata-
lysts.12,13 Density functional theory (DFT) has been widely used
to study factors affecting catalytic reaction mechanisms,
including adsorption conguration, Gibbs reaction energy
barrier, reaction transition state, etc.14–21 Fu et al.22 used DFT for
8T and 48T models with the mGGA-M06-L function to study
mono-branched alkanes in HY and HZSM-5 adsorption ener-
gies. They concluded that pore connement was critical to
adsorbate stability. Rosenbach23 and Mullen24 showed that
carbocations occurred in the zeolite channel in the alkoxy group
conguration using HZSM-5 catalyst. Carbocation was conned
to near the oxygen atom, and the central carbon atom was
connected with the oxygen atom on the zeolite framework by
covalent bonds.25,26

MFI zeolite has been widely to study catalysis. This paper
modied HZSM-5 zeolite by acid and alkylation to obtain HCl-
OTS-HZSM-5 zeolite catalyst, then subsequently investigated
catalyst acid sites and hydrophobic properties to explore
optimal cyclohexene conversion. The catalytic cracking mech-
anism for HZSM-5 zeolite was investigated using DFT, calcu-
lating elementary reaction Gibbs energy barriers through
simulation. The theoretical calculation results reasonably
explain experimental outcomes and provide guidance to
prepare of catalysts with high catalytic activity.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Diagram of cyclohexene hydration reaction device. 1. Inlet
valve. 2. Pressure gauge. 3. Thermocouple. 4. Reactor. 5. Oil bath. 6.
Temperature display controller. 7. Outlet valve.
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2 Materials and methods
2.1 Catalyst preparation

HZSM-5 zeolite was obtained from Nankai University, China.
We chose HZSM-5 zeolite with Si/Al¼ 25 because it offered high
acid site density to better promote cyclohexene hydration.
(Octyl)-trimethoxysilane (OTS) was obtained from MACKLIN.
Methylbenzene, ethyl alcohol, and carbon tetrachloride were
provided by SINOPHARM. HCl acid was obtained from Yantai
San he Chemical Reagent Co., Ltd. The specic preparation
steps have been described in previous work.27,28 The best HCl-
HZSM-5 was selected for 25% alkylation modication27

(hydrochloric acid modication concentration ¼ 4 mol L�1).28

The HCl-OTS-HZSM-5 catalyst was prepared by acid and alkyl-
ation modication.
2.2 Catalyst evaluation

The reactants were added to the reaction kettle for reaction, and
the products were separated for quantitative analysis by gas
chromatography aer reaction. The main product was cyclo-
hexanol, which the by-products were small amounts of meth-
ylcyclopentene and methylcyclopentanol. The calculation
formulas of cyclohexene conversion and cyclohexanol selectivity
were as follows:
Cyclohexene conversion ¼ Mass of cyclohexene before reaction�Mass of cyclohexene after reaction

Mass of cyclohexene before reaction
� 100% (1)
Cyclohexanol selectivity

¼ Reaction to produce cyclohexanol mass� 82:15

Cyclohexene conversion quality� 100:16
� 100% (2)
© 2022 The Author(s). Published by the Royal Society of Chemistry
The catalyst evaluation device was shown in Fig. 1. The
reactants were added to the autoclave and replaced with
nitrogen for 3–5 times. Aer the temperature of the reaction
kettle rises to a certain temperature, the timing was started, and
the reaction was completed for a period of time. The reaction
kettle was immediately quenched in a cold-water bath, and the
reaction solution was poured into a centrifuge tube. Solid–
liquid separation was performed by centrifugation, and the
catalyst was recovered. The water–oil biphasic product was
separated using a separating funnel, and the aqueous phase
was extracted with 1,2-dichloroethane. The obtained extract
phase and oil phase were added with internal standard ethanol,
respectively, and analyzed by gas chromatography.

2.3 HZSM-5 model

Fig. 2 shows the 34T cluster model employed to represent the
HZSM-5 zeolite, following previous studies.29 ZSM-5 zeolite
comprised two intersecting 10-ring channels forming sinu-
soidal channels moving along the crystal a-axis and straight
channels along the crystal b-axis, with corresponding 5.5 � 5.1
and 5.3 � 5.6 Å pore sizes, respectively. The 10-ring channel
comprised 10 T atoms, where T represents Si or Al. Replacing
T12(Si) with Al reduced steric hindrance for larger intermedi-
ates in the framework (see Fig. 2(a) and (b)). Articially cutting
the Si–O bond caused the boundary atoms to produce unreal-
istic dangling bonds, with consequential boundary effects. The
boundary effect was reduced by adding hydrogen atoms since H
and Si have similar same electrical properties and the Si–H
bond direction was consistent with the Si–O bond direction in
the periodic model. Replacing a silicon atom by an aluminum
atom cased the zeolite framework to become negatively
charged, which was added to the zeolite by introducing
hydrogen protons to maintain the structure’s electroneutrality,
and also forming a Brønsted acid site.30 Fig. 2(c) shows the
(SiO)3–Si–OH–Al–(OSi)3 8T structure was relaxed to reduce the
calculation overhead and prevent the structure from collapsing
during geometry optimization, and the remaining part was xed
on crystal coordinates.

3 Catalyst results and discussion
3.1 HCl-OTS-HZSM-5 zeolite characterization

3.1.1 XRD. Fig. 3 shows typical XRD patterns for HZSM-5,
HCl-HZSM-5, and HCl-OTS-HZSM-5 exhibit characteristic MFI
zeolite diffraction peaks at 23–30�. The crystal was reduced at
(400) for HCl-HZSM-5 and HCl-OTS-HZSM-5, mainly due to
removing some Al atoms aer acid modication, hence
reducing the crystal. No characteristic OTS peaks occurred for
the HCl-OTS-HZSM-5 zeolite, indicated that alkylation
RSC Adv., 2022, 12, 24654–24669 | 24655



Fig. 2 a) and (b) are HZSM-5 zeolite 34T cluster models: O atoms are red, Si atoms are yellow, H atoms are white, and the aluminum atom at the
T12 position is purple. (c) Is 8T structure.

Fig. 3 XRD patterns of HZSM-5, HCl-HZSM-5 and HCl-OTS-HZSM-5 zeolites.
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modication did not change the crystal structure. Thus,
deposited alkylating agent (OTS) was highly dispersed, i.e.,
amorphous phase, during alkylation modication.
Fig. 4 FT-IR spectra of HZSM-5, HCl-HZSM-5 and HCl-OTS-HZSM-5
zeolites.

24656 | RSC Adv., 2022, 12, 24654–24669
3.1.2 FT-IR. Fig. 4 shows FT-IR spectra for HZSM-5, HCl-
HZSM-5, and HCl-OTS-HZSM-5 exhibit characteristic absorp-
tion near 450, 550, 840, 1095, 1220 and 1633 cm�1 peaks, con-
rming that all three catalysts were MFI-type zeolites. The peak
around 3450 cm�1 was ascribed to terminal hydroxyl group and
hydrogen-bonded adjacent hydroxyl group stretching vibra-
tions.33 Absorption peak intensities for the HCl-HZSM-5 and
HCl-OTS-HZSM-5 hydroxyl groups reduced compared with
HZSM-5. Surface wettability could have changed from hydro-
philic to hydrophobic and the modied catalyst characteristic
peak at 3610 cm�1 intensity decreased due to Al atom removal
reducing Si–OH–Al groups. The HCl-OTS-HZSM-5 sample
exhibits an infrared absorption peak �3000 cm�1, mainly due
to C–H stretching vibration in the CH3-group. The OTS C8
hydrophobic chain was successfully adsorbed on the zeolite
surfaces, forming a densely packed alkyl chain layer.

3.1.3 TPD and pyridine-IR. Fig. 5 shows NH3-TPD
(Ammonia adsorption curve) for HZSM-5, HCl-HZSM-5, and
HCl-OTS-HZSM-5 all exhibit two absorption peaks: a weak acid
center in the low temperature region (about 150 �C) and strong
acid center in the high temperature region (about 400 �C). The
low temperature peak was mainly due to the weak acid center
for the external skeleton Al, and the high temperature peak
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 TPD profile of HZSM-5, HCl-HZSM-5 and HCl-OTS-HZSM-5
zeolites.

Fig. 6 Pyridine-IR spectra of HZSM-5, HCl-HZSM-5 and HCl-OTS-
HZSM-5 zeolites at 200 �C and atmospheric pressure.

Fig. 7 N2 adsorption and desorption isotherms and pore diameter
distribution of HZSM-5, HCl-HZSM-5 and HCl-OTS-HZSM-5 zeolites
(adsorption isotherms for nitrogen at 77 K).
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mainly due to the strong acid center for the internal skeleton
Al.34 The weak acid center peak shied forward aer acid
modication. It was difficult for OTS molecules to enter zeolite
Table 1 Calculated acid of HZSM-5, HCl-HZSM-5 and HCl-OTS-
HZSM-5 zeolites

Sample

Acid area

Acid
amount
(mmol
g�1)

Total acid (mmol
g�1)

Brønsted
Lewis

Brønsted
Lewis

HZSM-5 8.71 1.36 348 41 389
HCl-HZSM-5 8.34 1.07 338 33 371
HCl-OTS-HZSM-5 7.00 1.01 279 31 310

© 2022 The Author(s). Published by the Royal Society of Chemistry
channel interiors due to zeolite’s relatively small size; but they
covered the outer surface, hence covering acid sites on the outer
surface.

Fig. 6 and Table 1 show zeolite B and L acid regions distin-
guished by Py-IR adsorption infrared spectroscopy. B and L acid
centers occurred in all samples, with B acid content decreasing
slightly aer acid modication, from 348 to 338 mmol g�1;
whereas L acid content decreased signicantly, from 41 to
33 mmol g�1. This was mainly due weak Al acidity, hence
removing Al reduced weak acid content, and retained B acid
enhanced olen hydration. In contrast, the OTS-HCl-HZSM-5
zeolite exhibits considerably different strong and weak acid
reductions, mainly because OTS was graed on the catalyst
surface, covering some acid sites and hence reducing acid
content. Physical OTS adsorption bridged hydroxyl groups,
causing pore blockages and hence reducing Brønsted and Lewis
acid sites.

3.1.4 Nitrogen adsorption and desorption. Fig. 7 shows N2

adsorption isotherms of all catalyst samples in the IV micro-
porous materials. Table 2 shows structural parameters for the
three catalysts. HCl-OTS-HZSM-5 zeolites increased from 264 to
280 m2 g�1; HCl-OTS HZSM-5 reduced to 232 m2 g�1, and total
Table 2 The BET surface area, pore diameter and pore volume of
HZSM-5, HCl-HZSM-5 and HCl-OTS-HZSM-5 zeolites

Sample SBET
a (m2 g�1)

Pore volume (cm3 g�1)

Vtotal
b Vmicro

c Vmeso
d

HZSM-5 264 0.16 0.11 0.05
HCl-HZSM-5 280 0.17 0.11 0.06
HCl-OTS-HZSM-5 232 0.14 0.11 0.03

a Specic surface area (SBET), estimated by N2 adsorption at 77 K using
BETmethod. b Total pore volume (Vtotal), calculated form the adsorption
capacity at P/P0 ¼ 0.95. c Microporous volume (Vmicro), determined by t-
plot method. d Microporous volume (Vmeso), Vmeso ¼ Vtotal – Vmicro.

RSC Adv., 2022, 12, 24654–24669 | 24657



Fig. 8 Contact angle variation on (a) HZSM-5, (b) HCl-HZSM-5 and (c) HCl-OTS-HZSM-5 zeolite.
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pore volume reduced to 0.14 cm3 g�1. The alkylating agent
(OTS) had difficulty entering the zeolite interior and connecting
with hydroxyl groups through the “Si–O–Si” bond. Thus, OTS
deposited on the outer catalyst surface, forming a thick hydro-
phobic layer, effectively reducing the porosity and increasing
surface resistance to N2. The plugged mesoporous structure
changed intergranular pore size, hence greatly increasing
catalyst specic surface area and pore volume compared with
previous studies.25

3.1.5 Contact angle. Fig. 8 shows contact angle (CA), to
investigate sample wettability. Unmodied samples exhibit
good hydrophilicity with CA# 20�. Al atoms were removed from
the zeolite framework by acid modication, destroying Al–O
bonds and enhancing Si–O bonds. Since the Si–O–Al bond was
more polar than Si–O–Si (the covalent bond had higher binding
energy), the zeolite became less polar and more hydrophobic.
Thus, HCl-OTS-HZSM-5 zeolite CA ¼ 122.6� was modied by
alkylation to determine the hydrophobicity. Acid modication
enlarges pore volume, exposing more hydroxyl groups and
hence OTS molecules became more easily adsorbed on the
zeolite surface. Therefore, we achieved signicant CA improve-
ment compared with previous studies.25 Acid modication
increases hydrophobicity by removing aluminum atoms and
reducing the polarity of molecular sieves; while alkylation
modication increases hydrophobicity by adsorbing C8
Fig. 9 Thermogravimetric curves of HZSM-5, HCl-HZSM-5 and HCl-
OTS-HZSM-5 zeolites. Left axis: weight (%).

24658 | RSC Adv., 2022, 12, 24654–24669
hydrophobic chains on the surface of molecular sieves through
“Si–O–Si” bonds. From the macroscopic observation, the
modication effect of molecular sieve alkylation is more
obvious.

3.1.6 TGA. Fig. 9 shows TGA proles to assess sample
stability. Mass loss from 0 to 150 �C was mainly attributed
physiosorbed water removal. The HZSM-5 sample with lower Si/
Al ratio adsorbed more water, conrming enhanced hydrophi-
licity, and adsorbed up to 8 wt% water; whereas HCl-HZSM-5
and OTS-HCl-HZSM-5 samples with higher Si/Al ratio adsor-
bed only 6 and 5 wt% water, respectively. Thus, acid and
alkylation modied samples were more hydrophobic. Catalyst
mass for HZSM-5 and HCl-HZSM-5 no longer changed with
increasing temperature aer physiosorbed water desorption.
However, OTS-HCl-HZSM-5 suffered serious mass loss, mainly
due to n-octyltrimethylsilane (OTS) detachment from the zeolite
surface at high temperature.

3.1.7 XPS. Fig. 10 shows elemental spectra from C1s, O1s,
Al2p, Si2s and Si2p XPS proles over binding energy ranges
from 0 to 1250 eV; and Table 3 shows corresponding calculated
elemental contents. Acid modication effectively removed Al.
Efficient OTS coverage increased carbon signal; whereas effec-
tive organosilanes coverage strongly enhanced the carbon
signal and decreased both silicon and oxygen signal intensities.
Fig. 10 XPS survey scan spectra of HZSM-5, HCl-HZSM-5 and HCl-
OTS-HZSM-5 zeolites.

© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 3 Calculated surface composition of HZSM-5, HCl-HZSM-5
and HCl-OTS-HZSM-5 zeolites

Samples

Concentration of elements (%)

O Si C Al

HZSM-5 60.52 27.76 9.92 1.79
HCl-HZSM-5 60.15 27.93 10.25 1.66
HCl-OTS-HZSM-5 49.03 24.18 25.27 1.51

Paper RSC Advances
Thus, XPS results conrm n-octyltrimethoxysilane was cova-
lently bonded to HZSM-5 zeolite surface, consistent with FT-IR
outcomes (Fig. 4).
Fig. 11 Cyclohexene conversion of the HCl-OTS-HZSM-5 zeolite. (a) The
(b) the different water/cyclohexene molar ratios (3, 4, 5, 6, 7); (c) the diff
catalyst (5%, 7.5%, 10%, 12.5%,15%); (e) catalyst recycles (1, 2, 3, 4, 5). O
cyclohexene molar ratios ¼ 6, reaction time ¼ 4 h, catalyst dosage ¼ 10

© 2022 The Author(s). Published by the Royal Society of Chemistry
3.2 HCl-OTS-HZSM-5 catalytic activity

Previous studies evaluated catalysts under static conditions,
whereas the current study considered dynamic temperature,
water-ene molar ratio, reaction time, catalyst dosage, and
catalyst recycling.

Forward reaction rate increased and equilibrium shied
toward the forward reaction direction with increasing temper-
ature since olen hydration is reversible exothermic. Cyclo-
hexanol selectivity decreased signicantly as temperature was
raised further, probably due to by-products caused by the high
temperature. Optimum reaction temperature ¼ 130 �C.

Excess water was selected to participate in the reaction due to
high cyclohexene raw material prices. Cyclohexene conversion
rst increased and then decreased with increasing water molar
different reaction temperature (100 �C, 110 �C, 120 �C, 130 �C, 140 �C);
erent reaction time (2 h, 3 h, 4 h, 5 h, 6 h); (d) the different amount of
ptimum reaction conditions: reaction temperature ¼ 130 �C, water/
.5%.

RSC Adv., 2022, 12, 24654–24669 | 24659



Fig. 12 Cyclohexene and optimized geometries of adsorbed molecules on the Brønsted site of the HZSM-5.
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ratio, whereas selectivity remained above 99%. Optimum water
to ene molar ratio ¼ 6. The reaction tends to balance with
increasing reaction time, and conversion rate was not signi-
cantly improved by extending the reaction time. Thus, optimal
reaction time ¼ 4 h.

Cyclohexene hydration was acid-catalyzed, and increasing
centers provided stronger catalytic activity. However, the
conversion rate did not increase signicantly once sufficient
catalyst was present, and excess catalyst tended to cause sepa-
ration difficulty. Thus, optimum catalyst dosage ¼ 1.65 g, i.e.,
10 wt% relative to water mass.

Fig. 11 shows repeated catalyst cycling in the reaction kettle.
Cyclohexene conversion decreased somewhat aer 5 cycles, but
cyclohexanol selectivity did not change signicantly. This may be
because more organic matter adhered to the catalyst surface,
covering some acid centers and hence affecting catalyst activity.
Thus, catalyst regeneration was required. Organic material was
washed away using ethanol and suction ltration, then dried at
120 �C for 12 h to restore catalyst activity. Optimal reaction
conditions for cyclohexene hydration were reaction temperature¼
130 �C, water to ene molar ratio ¼ 6, reaction time ¼ 4 h, and
catalyst dosage¼ 1.65 g (10 wt% relative to watermass). Maximum
conversion rate ¼ 24.07%, and selectivity remained at 99%.

4 Simulation
4.1 Cyclohexene and water molecule adsorption

We calculated cyclohexene reaction energy barriers and
compared with kinetic parameters to verify parameter selec-
tions and calculated results rationality. Activation energy for
HZSM-5 catalyzed cyclohexene hydration reaction ¼
77.69 kJ mol�135 from estimated kinetic model parameters;
whereas simulations predicted energy barrier ¼ 73.78 kJ mol�1.
Thus, the model and parameter settings were conrmed to be
reliable.

Fig. 12 shows stable adsorption congurations for cyclo-
hexene and water molecules on the HZSM-5 cluster model, with
corresponding atoms marked. Cyclohexene molecules mainly
24660 | RSC Adv., 2022, 12, 24654–24669
cluster at straight sinusoidal and sinusoidal channel intersec-
tions due to connement effects from the pores.

Tables S1 and S2† summarize Mulliken electron layouts and
atomic distances before and aer adsorption. Oxygen atom (OA)
Mulliken charge on the acidic site reduced from �1.192 to
�1.237 eV aer olen molecule adsorption, with H atom charge
increasing to 0.616 eV, and OA–H bond length increasing from
0.978 to 0.997 Å, due to forming p–H bonds between cyclo-
hexene molecules and HCl-HZSM-5 zeolite. The C2 atom on the
cyclohexene molecule lost electrons, and hence C1–C2 bond
length increased from 1.331 to 1.498 Å. OA–H bond length on
the zeolite increased from 0.978 to 0.997 Å, and both Al–OA and
Si–OA bond lengths shortened due to the C]C double bond
inuence; and H+ tended to be protonated at the acidic site.
Some electrons transferred from hydrogen atoms to the double-
bonded carbon atoms, hence double-bonded C atom electron
density increased and OA–H bond length increased. A hydrogen
bond formed between the cyclohexene molecule and bridging
hydroxyl group, allowing electron ow from the cyclohexene
molecule to the zeolite model, increasing cyclohexene molecule
positive charge.36
4.2 Electron density distribution and LUMO and HOMO

Fig. 13 shows electron density for cyclohexene and zeolites.
Electron density was lowest at the carbon–carbon double bond
for cyclohexene, and highest at the hydrogen proton for zeolite.

The cyclohexene molecule will be repelled due to electro-
static repulsion when its high electron density region was close
to the zeolite framework. Stabilizing effects from channel
connement were also weak at this time, hence the zeolite
framework separated from the adsorbate. Only there was
a certain distance between the zeolite framework and the
adsorbate, the carbon–carbon double bond of cyclohexene was
close to the hydrogen proton. The low electron density region
occupied the channel, and the stabilization effect produced by
the channel connement effect was the strongest. This made
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 13 Electron density distribution and LUMO and HOMO orbitals.
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the smaller pore size HZSM-5 zeolite, which could stabilize the
cyclohexene molecules in the pores by electrostatic action.37

Highest occupied orbital (HOMO) and lowest unoccupied
orbital (LUMO) for the reactant molecule are key to determining
the chemical reaction system. Zeolite catalyst HOMO orbitals
were mainly distributed on the oxygen atoms adjacent to the Al
phase, whereas cyclohexene LUMO orbitals were mainly
distributed on the double-bonded carbon atoms (Fig. 12). Thus,
catalyst hydrogen proton HOMO matched cyclohexane LUMO
symmetry, enabling electron transfer from the HOMO to
symmetry-matched LUMO orbitals (see number of electrons in
Table 3). Therefore, high energy HOMO orbitals in the zeolite
channel indicates strong electron donation in the reaction, and
H+ was preferentially transferred to the double-bonded carbon
atoms.
4.3 Molecular adsorption site

4.3.1 Bridging hydroxyl protonation sites. Fig. 14 shows the
bridged hydroxyl group protonation position comprises two
reaction paths: cyclohexene protonation produced carboca-
tions, and water molecule protonation formed hydronium ions.

Fig. 14(a) and (b) show reaction product and optimized
product stability, with calculated reaction energy barrier ¼
© 2022 The Author(s). Published by the Royal Society of Chemistry
73.78 kJ mol�1. The transition state search was performed on
the reactants and produced to explore the highest reaction
energy barrier.

Fig. 14(c) shows optimal hydronium ion reaction production,
decomposing hydronium ions into water molecules and
hydrogen ions once the reaction completes, and transferring
hydrogen ions to oxygen atoms to form bridging hydroxyl
groups, as shown in Fig. 14(d). Thus, hydronium ions were
unstable when alkenes occurred and hydrogen protons trans-
ferred to the zeolite framework to reform B acid sites. Joshi
et al.38 conrmed hydronium ion instability under low water
loading by RMD simulation, showing difficulty to form water
clusters, hence proton transfer stalled and the protons eventu-
ally returned to the zeolite catalyst, retaining zeolite acidity. Liu
et al.39 showed that hydronium ions exhibited higher barrier to
alkene protonation than bridging hydroxyl protonation, which
preferentially underwent bridging hydroxyl protonation. Thus,
bridging hydroxyl groups preferentially protonated the alkene
during cyclohexene hydration at low water loading (Fig. 14(a)
and (b)).

4.3.2 Water molecule adsorption sites. Bridging hydroxyl
groups in the zeolite framework were strongly acidic and
protons (H+) were exchanged on adjacent oxygen atoms in
HZSM-5 to maintain charge neutrality.40,41 Water molecules are
RSC Adv., 2022, 12, 24654–24669 | 24661



Fig. 14 Bridged hydroxyl protonation site.

Fig. 15 Water adsorption site.

RSC Advances Paper
strongly adsorbed near these acidic centers to form protonated
water clusters at higher water loadings; whereas water mole-
cules formed hydrogen-bonds with HCl-HZSM-5 zeolite at low
water loading. Fig. 15 shows that the reaction region can be
Fig. 16 OA–H bond lengths of water molecules in a, b and c regions.

24662 | RSC Adv., 2022, 12, 24654–24669
divided into a, b, c and d regions due to the presence of water
molecules.

Consequently, we investigated interaction between water
molecules and Si–OH–Al sites during hydration by adding
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 17 Energy barriers for cyclohexene hydration catalyzed by HZSM-5 in a, b and c regions.
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a single water molecule to identied regions, and calculating
OA–H bond lengths, as shown in Fig. 16. Distance between
framework oxygen and hydrogen atoms ¼ 0.995 Å in the
absence of adsorbed water molecules; whereas OA–H bond
lengths ¼ 0.997, 0.998, and 0.991 in the a, b, and c regions,
respectively, when water molecules were adsorbed on the zeolite
framework.

Acidic zeolite catalytic sites changed with the presence of
water molecules, and changing OA–H bond length changed
Brønsted acid site properties. Bridging hydroxyl groups were
stable under low water loading, and OA–H bond lengths
lengthened in the a and b regions due to OA–H bond interaction
with hydrogen bonding of water molecules. Rapid proton
Fig. 18 Schematic diagram of adsorption in region b.

© 2022 The Author(s). Published by the Royal Society of Chemistry
exchange between bridging hydroxyl groups and water mole-
cules occurred when water molecules were in the a and
b regions, increasing zeolite acidity. However OA–H distance
and proton mobility did increase signicantly when a single
water molecule was in the c region.

Fig. 17 shows calculated energy barriers for cyclohexene
hydration reactions with water molecules in the three regions
>88.78, 75.85, and 73.78 kJ mol�1 for regions c, b, and a,
respectively. This ordering may be due to OA–H bond length was
only 0.991 Å in the c region, and weak B acid strength made
proton transfer difficult. Thus, the rst step energy barrier for
acid catalysis reaction was high (88.78 kJ mol�1, Fig. 17(c)). The
reaction energy barrier for dehydrogenation in the b region was
RSC Adv., 2022, 12, 24654–24669 | 24663



Fig. 19 The mechanism of cyclohexene hydration reaction.

Fig. 20 Schematic diagram of the hydration mechanism of cyclohexene catalyzed by HZSM-5.
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as high as 192.20 kJ mol�1, which may be due to steric
hindrance making dehydrogenation difficult, as shown in
Fig. 18(c) and (d). Wang et al.18 showed that 29Si resonance in
analyzed 29SiNMR spectra produced larger downeld shiwhen
interacting with protons, resulting in less shielding relative to
trivalent Al ions displacing nearby Si atoms, and hence making
it easier to adsorb near Al atoms. This result is consistent with
Fig. 21 Configuration diagram of adsorption of cyclohexene and water

24664 | RSC Adv., 2022, 12, 24654–24669
the theoretical calculation data: reaction energy barrier for
water molecules was smallest in the a region (73.78 kJ mol�1),
and hence the reaction proceeded easily.

4.4 HZSM-5 zeolite reaction path

Fig. 19 shows the cyclohexene hydration reaction route olen
hydration mechanism can be divided into three stages:
molecules in the pores of HZSM-5 zeolite.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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1. The proton on the acidic catalyst was added to the double-
bonded carbon atom, generating intermediate carbocation;

2. Intermediate carbocations reacted with water molecules to
form protonated alcohols;

3. Protonated alcohol lost protons to form cyclohexanol.
Olenmolecule adsorption on HZSM-5 zeolite generated van

der Waals forces within the zeolite framework, the olen
molecule had p electrons, and the B acid centers generated
electron induction. Thus, olen molecules and B acid centers
formed a p–H bond. Thus, cyclohexene molecules were
protonated by Brønsted acid centers before cleavage reaction,
transferring protons to the cyclohexene double-bonded carbon
atom. This reaction is consistent with previously observed free
fatty acid protonation,23 as shown in Fig. 20 and 21. Cyclo-
hexene molecules were protonated by acidic H+ to form
adsorption intermediates (carbocations), and the TS-1 transi-
tion state (Fig. 21), where C1–H and C2–H distances were
transformed to (2.694, 1.968) and (2.085, 1.149) Å, respectively.
OA–H bond distance extended from 0.977 to 1.769 Å, whereas
C1–C2 bond length increased to (1.331, 1.393) Å. Thus, acidic
protons in zeolite moved towards the cyclohexene C1–C2 bond,
forming carbocations (C1–H–C2). Fig. 22 shows Gibbs activation
energy ¼ 73.78 kJ mol�1 for cyclohexene protonation from
simulation.

The adsorbed carbocation was unstable and highly reac-
tive,15,16 and hence can decompose with only small activation
energy. Thus it could difficult to locate this intermediate
Fig. 22 1–41HZSM-5 catalyzed cyclohexene hydration energy barrier.

Fig. 23 Mechanism of zeolite alkylation modification.

© 2022 The Author(s). Published by the Royal Society of Chemistry
experimentally. Fig. 22 shows that lower activation energies
were required for carbocations to generate protonated alcohols
and cyclohexanol. Water molecules participated throughout the
reaction (Fig. 20(b)–(d)). First, water molecules combined with
carbocations to form protonated alcohols with low reaction
energy barrier ¼ 33.03 kJ mol�1 (Fig. 22). C1–H2O bond length
reduced to 1.529 Å during this process, and C1–C2 and C2–H
distances reduced to (1.331, 1.498) and (1.149, 1.085) Å,
respectively. Thus, water molecules were adsorbed on the car-
bocation to form protonated alcohols (Fig. 20(b) and (c)).
Protonated alcohols were extremely unstable in the unsaturated
cluster model and tended to undergo hydrogen transfer.
Experimental results also conrmed activation energy for
proton transfer reaction was very small ¼ 23.24 kJ mol�1

(Fig. 21, TS-3). C1–OH bond length gradually decreased from
1.529 to 1.453 Å, and free protons transferred to the 34T OA

atom as OA–H bond gradually reduced from 1.632 to 1.033 Å
(Fig. 20(c) and (d)). Thus, the proton transfer mechanism can be
understood through structural parameter variations.
Fig. 24 Zeolite alkylation reaction energy barrier.
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Fig. 25 Configuration diagram of adsorption of cyclohexene and water molecules in the pores of HCl-OTS-HZSM-5 zeolite.
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4.5 HZSM-5 zeolite alkylation modication mechanism and
reaction path

4.5.1 HCl-HZSM-5 alkylation modication. Fig. 23 shows
the zeolite alkylation modication route. The hydroxyl group is
cleaved on the surface of the zeolite, then the methyl group
(CH3–) in n-octyltrimethoxysilane (OTS) is cleaved, and the two
molecules are subsequently connected by Si–O–Si to complete
the alkylation modication, producing HCl-OTS-HZSM-5
zeolite. DPT calculations shows the alkylation modication
reaction energy barrier ¼ 189.27 kJ mol�1 (Fig. 24).

4.5.2 HCl-OTS-HZSM-5 reaction path. Fig. 25 shows the
cyclohexene molecule is protonated by the Brønsted acid center,
transferring the proton to the cyclohexene double bond C atom.
Fig. 26 HCl-OTS-HZSM-5 catalyzed cyclohexene hydration energy
barrier.
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Adsorbed cyclohexene molecules are protonated by acidic H+ to
form adsorption intermediates (carbocations) (transition state
TS-1, Fig. 25). C1–H and C2–H bond lengths change to (2.482,
1.947) and (1.871, 1.179) Å, respectively, OA–H bond length
increases from 1.006 to 1.619 Å, and C1–C2 bond length
increases to (1.334, 1.385) Å. Thus, acidic protons in zeolite
moved towards the cyclohexene C1–C2 bond, forming the C1–H–

C2 carbocation. Fig. 26 shows DPT simulation with reaction
energy barrier ¼ 46.47 kJ mol�1 (Fig. 26).

Fig. 26 shows adsorbed carbocations combine with water
molecules in the zeolite channels to form protonated alcohols
(Fig. 25(b) and (c)), with low reaction energy barrier ¼
22.62 kJ mol�1, C1–H2O bond reduces to 1.556 Å, and C1–C2 and
C2–H bond lengths change to (1.385, 1.493) and (1.179, 1.086) Å.
Thus, water molecules are adsorbed on the carbocation to form
protonated alcohols, which are extremely unstable in the
unsaturated cluster model. Dehydrogenation subsequently
occurs with Gibbs energy barrier for proton transfer ¼
32.5 kJ mol�1, C1–OH bond length gradually decreases from
1.556 to 1.454 Å, and free protons transfer to the HCl-OTS-
HZSM-5 zeolite OA atom as OA–H bond length reduces to
1.030 Å (Fig. 25(c) and (d)).

Gibbs activation energy for cyclohexene protonation ¼
73.78 kJ mol�1 during unmodied HZSM-5 catalytic reaction
(Fig. 21); whereas Gibbs activation energy for protonated
cyclohexene ¼ 46.47 kJ mol�1 aer alkylation modication
during the HCl-OTS-HZSM-5 catalytic reaction (Fig. 26). Thus,
the reaction energy barrier was greatly reduced aer alkylation
modication.

Fig. 27 shows OA–H bond lengths ¼ 0.997 and 1.006 Å;
whereas C2–H bond length ¼ 2.360 and 1.871 Å before and aer
adsorption, respectively. Thus, two-phase reactant contact was
macroscopically enhanced aer alkylation modication.
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 27 OA–H bond length after adsorption of HZSM-5 and HCl-OTS-HZSM-5.
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Microscopically, water molecules were more likely to activate
hydrogen protons, increasing OA–H bond length and B acid
strength, and hence reducing the reaction energy barrier to
more easily form carbocations. This is consistent with experi-
mental outcomes, and hence the reaction conversion rate was
greatly improved aer alkylation modication.
5 Conclusion

This paper prepared HCl-OTS-HZSM-5 zeolite catalyst by acid
and alkylation modication and investigated olen hydration
reaction effects. Acid modication removes some HZSM-5
zeolite aluminum atoms, increasing specic surface area, pore
volume, and acidic active sites. Acid-modied catalyst exhibited
good hydrothermal stability and congurational stability for
hydrothermal processes, enhancing cyclohexene hydration
reactions. We graed n-octyltrimethoxysilane (OTS) onto the
HZSM-5 catalyst surface to improve interfacial mass transfer
limitations for the two-phase reaction, forming Pickering
emulsion which improved contact between immiscible reac-
tants. Consequently, cyclohexene conversion reached 24.07%,
with relatively stable selectivity close to 100%.

We constructed a 34T cluster model using the mGGA-M06-L
function for DFT calculations to represent the zeolite channel
structure, and investigated reaction activation energy for
cyclohexene hydration in HZSM-5 and HCl-OTS-HZSM-5 zeolite
channels. Simulations conrmed that bridging hydroxyl groups
preferentially protonated alkenes at low water loadings, and
water molecules were more easily adsorbed near less shielded Al
atoms. The highest reaction energy barrier for HCl-OTS-HZSM-5
zeolite catalyzed by cyclohexene hydration reaction was only
46.67 kJ mol�1, which greatly reduced the reaction energy
barrier. Simulations also conrmed alkylation modication
feasibility.
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