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Type II collagen fibril diameters in cartilage are beneath the diffraction limit

of optical microscopy, which makes the assessment of collagen organization

very challenging. In this work we use polarization sensitive second harmo-

nic generation (P-SHG) imaging to map collagen organization in articular

cartilage, addressing in particular its behaviour under strain and changes

which occur in osteoarthritis. P-SHG yields two parameters, molecular

order and orientation, which provide measures of the degree of organiz-

ation both at the molecular scale (below the diffraction limit) and above a

few hundred nanometres (at the image pixel size). P-SHG clearly demon-

strates the zonal collagen architecture and reveals differences in the

structure of the fibrils around chondrocytes. P-SHG also reveals sub-

micron scale fibril re-organization in cartilage strips exposed to tensile

loading, with an increase in local organization in the superficial zone

which weakly correlates with tensile modulus. Finally, P-SHG is used to

investigate osteoarthritic cartilage from total knee replacement surgery,

and reveals widespread heterogeneity across samples both microscale

fibril orientations and their sub-micron organization. By addressing col-

lagen fibril structure on scales intermediate between conventional light

and electron microscopy, this study provides new insights into collagen

micromechanics and mechanisms of degradation.
1. Background
Articular cartilage covers the ends of the long bones in synovial joints where it

acts as a low friction bearing and shock absorber which is essential to the

smooth articulation of the joint [1]. Cartilage has a low cellular content, typi-

cally around 1–10%, and the extracellular matrix which fulfils the tissue’s

mechanical role is composed of approximately 20% type II collagen, 8% proteo-

glycans and 70% water. The collagen fibril arrangement changes with depth

into the tissue as schematically depicted in figure 1, and can be divided into

three zones. In the superficial zone the fibrils are arranged predominantly par-

allel to the articular surface, in the deep zone they are arranged perpendicular

to the articular surface and the bone cartilage interface and between these two

zones there is a transitional zone with less clearly defined collagen fibril orien-

tation. The type II collagen fibrils are typically 30–200 nm in diameter [2] and

therefore just below the diffraction limit for conventional light microscopy.

The mechanical properties of cartilage are highly dependent on the organiz-

ation of the collagen fibrils. Under tensile load the cartilage is much stiffer in the

superficial zone compared to the deep zone [3,4], additionally it is much stiffer

in the direction parallel to the split lines [4,5] (an indication of the preferred
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Figure 1. Collagen fibre arrangements in cartilage showing the zonal structure of articular cartilage. (Online version in colour.)
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collagen fibril direction in the superficial zone). The tensile

modulus also varies between high and low weight bearing

regions [6] and decreases with osteoarthritic degeneration

and age [7].

The mechanical properties of cartilage on a much smaller

scale are central to the processes of mechanotransduction to

the embedded chondrocytes that maintain matrix homeostasis

and are strongly implicated in the development of osteo-

arthritis (OA). However, recent work has revealed that on

the microscale the mechanical response of articular cartilage

to tensile loads is more heterogeneous than previously appreci-

ated and the relationship to collagen architecture is extremely

complex [8,9]. On a still smaller scale it has been shown that

the intrafibrillar organization of cartilage collagen varies

between zones and, importantly, changes under mechanical

loads. Electron microscopy has provided vital information on

the sub-micron organization of cartilage collagen and has

revealed structural changes associated with the development

of OA [10–13]. It has also shown differences in structure

between mechanically loaded and unloaded cartilage [11],

but it cannot be used to follow the dynamics of mechanical

loading as required to understand the mechanical implications

of degenerative changes. The aim of the present work was to

bridge the gap between classical light microscopy and electron

microscopy, using an extension of multiphoton microscopy

that exploits the polarization-sensitivity of the signal to pro-

vide resolution beyond the diffraction limit and enables us to

explore cartilage collagen morphology and organization in

intact tissues on a sub-micron scale.

The birefringence of collagen has long been recognized

and was the basis of Bennighoff’s classical studies on cartilage

structure. However, although polarized light microscopy

reveals fibril organization with a sub-micron lateral resolution

it relies on optical measurements through sections of tissues in

which the information is averaged over the whole thickness,

which makes it insensitive to volumetric organization and

unsuited to quantitative analysis of responses to mechanical

loads [14,15]. Polarized optical coherence tomography

(OCT) allows the analysis of specific image planes but it

suffers from a poor axial resolution of a few tens of

microns [16,17].
In contrast, second harmonic generation (SHG) which

exploits the non-centrosymmetric, tightly packed arrange-

ment of amino acids in collagen to provide label-free

imaging has sub-micrometre 3D sectioning capability and

in-depth penetration in tissues up to a few hundreds of

micrometres using infrared excitation and has become a

gold standard technique for imaging collagen in tissues

[18,19]. SHG imaging can also reveal collagen orientation,

by the analysis of 3D volumetric images to extract direc-

tional information using gradient, FFT or variance

analysis. This approach however requires high contrast

images over small length scales and depends strongly on

the choice of the analysis parameters [20–22], which

makes it challenging to apply to type II collagen tissues

such as cartilage [23]. An alternative solution to image

fine type II collagen fibrils has been proposed to be analysis

of the ratio between forward scattered and backward

emitted SHG which is sensitive to collagen fibrils size and

density, however the measurements are only qualitatively

related to organization and therefore also unsuited to our

present purpose [23,24].

In this work, we exploit the polarization sensitivity of

SHG at scales below the optical diffraction limit (typically

350 nm lateral and 1 mm axial) to assess collagen organiz-

ation in cartilage. The intensity of SHG from a collagen

fibre is dependent on the polarization of the laser source

with respect to the axis of the fibre [25–27]. Measuring

SHG intensity as a function of the incident laser polarization

angle yields a modulated response where the phase deter-

mines the principal direction of collagen fibrils averaged

within the focal volume, and the amplitude is related to the

degree of alignment of the collagen fibrils within this focal

volume. This modulation permits quantification of collagen

angular disorder at the molecular scale [28–34], which

cannot be determined by pure morphological observations,

which only report orientation at a scale above the diffraction

limit size. Polarization sensitive SHG (P-SHG) has previously

been used to quantify collagen order in tendons [27,35] and

other connective tissues [32,36] has revealed variations of col-

lagen order during ageing [37], and in pathologies including

cancer [18,38,39]. Very few studies, however, address changes
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in P-SHG from collagen under strain [40], or in cartilage

[41,42]. Importantly, P-SHG provides information on col-

lagen fibril organization on a scale intermediate between

those of conventional light and electron microscopy, which

is particularly relevant in cartilage where collagen II forms

fibrils of small scales that result in poorly defined structures

in an optical image. By adding P-SHG as an additional

modality to SHG imaging, we show that it is possible to deci-

pher molecular organization in collagen networks even

though the structures are not well defined from the pure

SHG image.

In this paper, we use P- SHG to investigate differences in

submicron scale collagen fibril organization between the deep

and superficial zones of articular cartilage. We moreover

report variations of collagen organization in the matrix sur-

rounding the chondrocytes both in healthy bovine cartilage

and in human knee cartilage removed during arthroplasty.

Finally, we show that tensile strain applied to the cartilage

gives rise to changes in the submicron organization of the

fibrils, particularly in the superficial zone.
20180611
2. Material and methods
2.1. Sample preparation
Bovine cartilage was taken from the metacarpophalangeal joint

of nine bovine forelimbs collected from the local abattoir with

an age range of 24–30 months. The cartilage was harvested

immediately and stored at 2208C prior to use. Human cartilage

samples were collected from patients undergoing total knee

replacement surgery. Potential participants were initially ident-

ified during routine clinical practice, and subsequently

recruited to the Royal Devon and Exeter Tissue Bank (RDETB).

The RDETB is an ethically approved tissue bank (REC no.:

16//SC/0162) set up to collect ‘spare’ tissue at the time of rou-

tine clinical procedures. The total knee replacement tissue

collection specific to this project was subject to review and

approval by the RDETB Scientific Steering Committee as part

of the overarching RDETB ethical approval. Recruitment and

sample/data collection was carried out by the RDETB team.

Anonymized samples and associated data are then provided to

the research team via a standard material transfer agreement.

The samples were assessed and graded for OA on the Outer-

bridge scale [43] by the surgeon and stored at 2808C prior to

analysis. For both bovine and human samples enface slices of

deep and superficial zone cartilage were removed from the

bone using a scalpel blade and full depth sections were prepared

using a purpose made cutter.
2.2. Multiphoton microscopy
SHG imaging was carried out using a modified confocal micro-

scope (Olympus Fluoview 300 BX51). The SHG was excited

with the 810 nm output of a 100 fs pulsed Ti:sapphire laser

(Coherent MIRA 900). The light was focused on the sample

using a long working distance 1.05 NA water immersion lens

(Olympus XLPLN25XWMP), giving an expected minimum

focal spot diameter of 350 nm. The laser power in the focal

plane was 30 mW. SHG and TPF were collected from the samples

in the backscattered direction. The signal was separated from the

laser fundamental by a long pass dichroic filter (670dcxr Chroma

technologies) and a blue green colour glass filter (CG-BG-39 CVI

laser) and the SHG and TPF were directed onto two separate

photomultiplier tubes (PMTs) (R3896 Hamamatsu Japan) by a

long pass dichroic filter (Semrock Di02-R405). Additional filters,
(Semrock FF01-405/10) and (Semrock FF01-520/70) respectively,

were placed in front of the SHG and TPF PMTs.

To perform polarization dependent SHG (P-SHG) imaging, a

half wave plate (WPH05M-488, Thorlabs, Newton, NJ) was

placed in a motorized rotating mount (PR50CC, Newport,

Irvine, CA) before the entrance to the scan unit. The polarization

of the incident laser beam was rotated from 08 to 1628 in 188 steps

and an SHG image was taken at each rotation angle. The image

sizes were 512 � 512 pixels. When establishing the measure-

ments the polarization of the laser beam was carefully checked

in the position of the microscope objective, here we found that

no noticeable ellipticity or diattenuation had been introduced

by the microscope optics at any incident polarization angle.

2.3. Polarization sensitivity analysis
The SHG intensity depends on the fourth power of the incident

field E(a), whose coordinates are (cos a, sin a) in the (X,Y )

sample plane, where a is the angle of the linear polarization

with respect to the horizontal axis X. As a first approximation,

the longitudinal polarization contribution of the focused beam

is considered negligible since the fibrils lie principally in the

sample plane and in-plane nonlinear coupling is predominant

[30]. The nonlinear coupling of SHG leads to a fourth order

dependence of the intensity I(a) on a, written as [30]:

I(a) ¼ a0 þ a2 cos 2aþ b2 sin 2aþ a4 cos 4aþ b4 sin 4a: ð2:1Þ

I(a) is analysed for each pixel of the SHG image by calculating

the coefficients (a0, a2, b2, a4, b4) by projection on their corre-

sponding circular functions [30]. These coefficients can be

grouped into second and fourth order responses by rewriting

the I(a) dependence into:

I(a) ¼ a0 þ I2 cos (2(a� f2))þ I4 cos (4(a� f4)) ð2:2Þ

with:

I2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 þ b2
2

q
a0

, ð2:3aÞ

I4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4 þ b2
4

q
a0

, ð2:3bÞ

w2 ¼ 0:5 tan�1 b2

a2

� �
ð2:3cÞ

and

w4 ¼ 0:25 tan�1 b4

a4

� �
: ð2:3dÞ

The second order parameters (I2, w2) represent the magnitude

and orientation of the anisotropic contribution to the polarization

response I(a), which quantify the depth of modulation of the

polarization SHG response (I2) and its phase (w2). (I4, w4) are

the magnitude and orientation signatures of its more complex

fourth order dependence. These parameters can be related to

the angular distribution of the nonlinear induced dipoles in the

sample plane [30,34,37], which is directly related to the orienta-

tional organization of collagen fibres. Alternatively, they can be

related to the partial determination of the nonlinear tensor at the

origin of the SHG signal [26,27,31–33,40]. However since the

exact model for the collagen fibril distribution in the cartilage tis-

sues is not known, we focus in this study on the changes and

variations in I2 and w2. These parameters are generic indicators

of the preferred collagen fibril alignment (w2) and the degree of

order of the individual collagen fibrils within the focal spot (I2),

without the need to invoke a specific model for their angular dis-

tribution. Higher values of I2 indicate, in particular, a tighter

alignment of the nonlinear induced dipole sources of SHG,

presumed to reflect the distribution of peptide bonds along the

protein backbones of the collagen fibrils [44] (see electronic
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supplementary material 1). Imaging the (I2, w2) parameters there-

fore permits mapping not only the local molecular organization

within collagen fibrils assemblies, but also their microscopic

scale orientation. Note that the I4 parameter gives more refined

information on the angular distribution experienced by the non-

linear induced dipoles in the focal spot: in particular it

discriminates between distribution shapes such as Gaussian,

cone or cone surface [30] (see electronic supplementary material

1). The w4 angle finally identifies possible deviations from a

cylindrical symmetric response, which can occur when the inci-

dent polarization is affected by the birefringence of the medium

(see electronic supplementary material 2).

The spatial distributions of the parameters (I2, w2) that rep-

resent collagen fibril organization are presented below as an

overlay as shown in figure 2, where the total SHG intensity

(sum over all polarization angles) is shown as a grey-scale back-

ground. The direction of the lines in the overlay represents the

angle w2 and the colour of the lines represents the value of I2

as shown in the colour bar scale (all lines are of equal length).

I2 and w2 are calculated for each pixel, however in the overlay

only the nth lines are plotted to allow easier visualization and

separation between individual lines.

2.3.1. Sensitivity to birefringence
As mentioned above, the presence of birefringence in the sample

can lead to distortions of the incident polarization and therefore

to a bias of the parameters determined from a P-SHG polariz-

ation modulation measurement. In collagen-rich tissues, an

anisotropic organization imposes a preferential optical axis

along which the refractive index is larger, yielding a birefrin-

gence effect that has been used as a read-out for collagen
organization. When propagating through thin depths this bi-

refringence is, however, not dominant and the measured SHG

polarization response is not sensitive to index change, but

rather to the fine details of collagen orientation. At large

depth however, birefringence can not only distort the incident

polarization but also lead to large errors in the determined

orientation parameters, in particular when the birefringence

axis is rotating throughout the depth of propagation. To avoid

such birefringence effects the measurements were restricted to

the top 15 mm of the cartilage depth, where birefringence was

found to have only a minimal effect on the polarization and

SHG polarization sensitivity (see electronic supplementary

material 2).

2.3.2. Sensitivity to out-of-plane orientation
Working under high numerical aperture (NA) excitation and col-

lection is known to introduce extra polarization coupling

contributions from out of plane components of the dipole orien-

tations [36,45]. In a typical regime of cylindrical symmetry with

tensorial components similar to those measured in collagen tis-

sues, this coupling is, however, negligible until off-plane tilt

orientations of the collagen fibrils around 508 (see electronic sup-

plementary material 3). Quantitative analysis of collagen

organization using P-SHG can thus be done only in situations

where the fibres are known to lie in the sample plane within

this angular range.

2.4. Tensile loading
Cartilage strips were exposed to tensile loading in a rig designed

to fit onto the stage of the multiphoton microscope, which is
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described in [9]. Strips of cartilage 200–500 mm thick (10 mm �
1 mm) were cut parallel to the articular surface, and attached

with cyanoacrylate adhesive (Loctite) to two metal paddles.

Strain (Dl/l0 where l0 is the initial free length of cartilage between

the paddles) was applied in 4% steps using a pair or micrometre

controlled stages (Thorlabs). The load was continuously moni-

tored via a 5 N force transducer (Model 31, RDP Electronics)

from these measurements the stress (F/A) was calculated

where F is the force measured after the sample has reached

equilibrium and A is the cross-sectional area of the unstrained

strip. After force equilibration at each strain a set of polarization

sensitive SHG measurements were taken.
3. Results
3.1. Collagen architecture
P-SHG analysis was first performed on full depth sections

from young bovine cartilage in order to investigate the

depth dependence of collagen organization. The (I2, w2)

maps reproduce the well-established arcade structure of the

fibrils as demonstrated in figure 3. The averaged orientation

of collagen fibrils (w2) follows a radial direction in the deep

zone. This angle progressively realigns from perpendicular

in the deep zone through the transitional zone, to parallel

to the surface in the superficial zone. Interestingly, the mol-

ecular-scale order (I2) is lowest in the transitional zone,

which can be attributed to a larger mixing of different fibrils

directions, including out-of-plane for this specific geometry.
In both the superficial and deep zone, the molecular-scale

order parameter I2 indicates tight organization of collagen

fibrils within the size of the focal spot (approx. 350 nm).

The I2 values measured span between approximately 0.05

in the transition zone, to 0.2–0.3 in the superficial zone and

0.3–0.4 in the middle of the deep zone. These values can be

translated into nonlinear tensorial ratio values, where the

nonlinear ratio coefficient x(2)
zzz=x

(2)
zxx is often used as a

read-out, supposing the collagen arrangement of cylindrical

symmetry with z the main fibril direction and x its perpen-

dicular direction [32,36,41]. In particular values I2 between

0.1 and 0.4 correspond to x(2)
zzz=x

(2)
zxx ratios between 1.2 and

1.65 (see electronic supplementary material 1). This can be

compared to values typically measured in collagen type I in

tendon where I2� 0.3 ðx(2)
zzz=x

(2)
zxx ¼ 1:4 Þ has been measured

at the surface of rat tail tendon tissues (see electronic

supplementary material 4).

In enface cartilage slices P-SHG measurements reveal

differences in the 2D collagen organization between the

deep and the superficial zone, where the collagen fibrils are

mainly perpendicular to the image plane and parallel to the

image plane respectively (figure 4a,b). As expected, the

molecular-scale order values (I2) are very low in the deep

zone (figure 4c), since the fibril distribution points perpendi-

cularly to the sample plane where the polarization is rotated.

The measured values are therefore underestimated since they

are biased by their 2D projection in the polarization-rotation

plane. Nevertheless, even in this deep zone where the col-

lagen fibril alignment is predominantly perpendicular to
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the imaging plane there is still clearly a component of the

fibril orientation within this plane and additionally when

analysing the distribution of w2 there is a preferred direction

for this component of fibril orientation (figure 4d ). As

expected from the enface measurements (figure 4), the values

of I2 are higher in the superficial zone (figure 4b) compared

to the deep zone, with a more heterogeneous distribution of

I2 in the superficial zone. The obtained averaged value at the

superficial zone I2 � 0.2 (corresponding to x(2)
zzz=x

(2)
zxx � 1:3)

reflects a less tight order of individual fibrils than in

collagen I tendons (see electronic supplementary material 4)

in agreement with values reported in the literature [41].

To investigate the organization of collagen as a function of

depth, P-SHG stacks were taken. Example stacks for the deep

and superficial zone are included in the electronic sup-

plementary material (see electronic supplementary material

5). In the superficial zone, the values of I2 are highest at the

articular surface, and then decrease with depth into the

tissue, while in the deep zone I2 is constant with depth. In

both zones, there is a slight rotation (168–188) in the angle

w2 with depth. Note that while I2 values can be used for

quantitative analysis only when the collagen distribution

lies in the sample plane, e.g. in the superficial zone, the

angle w2 always reports a reliable projection orientation of

the collagen fibrils in the measurement plane.

Figure 4 also shows variations in collagen organization in

proximity to chondrocytes, in particular in the deep zone
where the organization of collagen appears relatively more

ordered, demonstrating in-plane re-organization of fibrils

around the cells. Representative images of individual chon-

drocytes from the deep and superficial zone are shown in

figure 5 (in this case I2 and w2 are plotted at a higher density

to increase resolution). In the columns of chondrocytes within

the deep zone the collagen separating the cells is aligned

radially (figure 5a). In the enface view of the deep zone chon-

drocyte there is some tangential alignment of the collagen

(figure 5b). The pattern of alignment around groups of cells

is more complex in the superficial zone, when imaged in

the plane parallel to the articular surface (figure 5d ), but

most fibrils are roughly parallel to the articular surface

(figure 5c).

The values of I2 and w2 were compared for a 5 mm thick

shell around the periphery of the cells, to those remote from

the cells, for all en-face bovine samples imaged at zero strain

(example images from one specimen are shown in figure 6).

I2 is consistently greater in the territorial matrix of the deep

zone chondrocytes compared to the rest of the extracellular

matrix ðDI2 ¼ ðI2(territorial) � I2(bulk)Þ ¼ 0:022 + 0:011, n ¼ 6Þ,
as also visible in figure 4. This shift in order is above the

expected noise variations which lie close to 0.01. The differ-

ences in I2 between the territorial and extracellular matrix in

the deep zone may reflect differences in the number of fibrils

aligned in the image plane, with more fibrils in plane close

to the cells. In the superficial zone, on the contrary, there is
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no significant difference ðDI2 ¼ 0:006 + 0:021, n ¼ 5Þ. The

distribution of w2 also differs between the territorial and

bulk matrix by up to 208, but there is no consistent pattern.
3.2. Osteoarthritis cartilage
In OA, the changes in collagen organization are extensive,

vary with the degree of degeneration and are heterogeneous

on several length scales. This initial survey of submicron

changes was undertaken on two samples from the lateral

and medial femoral chondyle of patients undergoing knee

replacement surgery with OA grading between 3 and 4 on

the Outerbridge scale. Regions were selected in which

there were no gross surface changes and full cartilage thick-

ness was maintained. SHG shows a variety of patterns of

collagen organization, often within a single section.

Figure 7 illustrates this variability, with three regions

selected from a total of 10 which were analysed to highlight

the different structures that can be observed. Region a
shows relatively low I2 values (0.18+ 0.1) and a wide

range of fibril angles, region b shows a highly disordered

area with intermediate I2 values (0.29+ 0.15), and region c
shows highly parallel collagen fibrils with high I2 values

(0.325+ 0.07).
3.3. Collagen fibril reorganization with tensile load
Figure 8 shows representative results in the superficial zone

of a specimen exposed to steps of strain up to 16%. As the

strain increases w2 rotates towards the direction of applied

strain (x-axis) and the value of I2 increases (as shown by an

increase in the number of red and yellow lines in the colour

coded image).

Eleven samples were tensile loaded (five from the super-

ficial zone, three from the deep zone of bovine cartilage and

three from human OA cartilage). The P-SHG changes vary

between cartilage zones and also depend on the initial orien-

tation of fibrils with respect to the applied strain. Figure 9
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shows the changes in three specimens which illustrate most

of the behaviour noted throughout the whole group.

Figure 9a shows the sample used in figure 8, in which the pre-

ferred collagen direction is initially approximately parallel

with the applied strain. As the strain increases the mean w2

moves towards 08 and the distribution of fibril angles

becomes tighter: at the same time the values of I2 increase.

Figure 9b shows a specimen from the superficial zone with

a bimodal fibril distribution in the relaxed state with peaks

at 158 and 808. As the strain increases from 0 to 8% the

peak at 808 is lost and the other peak shifts towards 08,
with a slight decrease in I2. At strains between 8 and 12%

I2 then starts to increase more rapidly and w2 becomes more

tightly centred around the direction of applied strain.

Lastly, figure 9c shows a sample from the deep zone in

which w2 is initially distributed around a peak perpendicular

to the direction of applied strain and as the strain increases

this peak disappears and a new peak of similar width

emerges parallel to the direction of applied strain and there

is no increase in I2 with strain.

In order to establish the relationship between macroscopic

strain applied to cartilage and the sub-micron response of the
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collagen fibrils we compared the changes in I2 and w2 to the

stress–strain curves for each cartilage specimen (figure 10).

The macroscopic stress–strain curves show the expected pat-

tern, tensile moduli in the surface zone being 2.5–11-fold

higher than those in the deep zone [5]. In the superficial

zone I2 increases with strain and the magnitude of the

change in the five bovine samples is greater the higher the

elastic modulus, but in the deep zone there is no significant

change in I2 with strain. In the superficial zone only there is

a decrease in the spread of w2 as illustrated in figures 9a,b.

Finally, we investigated the behaviour of osteoarthritic

cartilage under strain. The stress–strain curves are shown

in figure 10 and indicate lower strain moduli than bovine car-

tilage, particularly in the superficial zone. These differences

are consistent with our own observations on a larger group

of specimens (J Mansfield, V Mandalia, A Toms, CP Winlove

2017, unpublished data) and other studies [4,6,7]. However,

the strain fields in osteoarthritic tissue are extremely hetero-

geneous within each field of view and different regions

show different patterns of fibril re-orientation as indicated

in figure 11. Here in region 1, selected as showing higher I2

and initial fibril angles around 308 the fibrils realign towards

the direction of applied strain with a modest increase in I2. In
region 2, approximately 120 mm away, the preferred direction

of w2 is initially approximately 708 to the applied strain and as

the strain increases it slowly rotates towards the direction of

applied strain, while I2 actually decreases with strain.
4. Discussion
The diameter of collagen fibrils is below the diffraction limit

for light microscopy and polarized light microscopy has,

since Bennighoff’s classical description of the collagen archi-

tecture, been a powerful tool for cartilage research [15],

although for quantitative analysis it is restricted to specimens

of known optical thickness. More recently SHG, exploiting

symmetry breaking within the fibril structure, provides

label free visualization of collagen fibrils and has paved the

way for numerous studies of the role of collagen fibrils in

tissue mechanics [8,9,47,48]. Analysis of the polarization of

the SHG signal should provide further insights into the struc-

ture of type II collagen and its changes with mechanical load

and disease.

In interpreting our observations, it is important to con-

sider the scale of the measurements. The type II collagen
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fibril is a hierarchical structure with molecules 300 � 2 nm

stacked laterally and longitudinally into arrays 20–100 nm

in diameter and without detectable ends in cartilage. The

SHG signal is presumed to arise from dipoles associated

with the regular peptide bond structure of the collagen mol-

ecule. In our current system, the P-SHG for each pixel arises

from a volume approximately 0.1 fl and therefore will be an

average value from multiple fibrils transecting this volume.

Accessing finer scales is possible only using non-optical

methods such as X-ray scattering, which are difficult both

to implement and analyse.

The scale of our measurements lies between those of con-

ventional light microscopy and electron microscopy. TEM

remains one of the best ways to visualize individual fibrils
in cartilage, however due to the requirement for very thin

slices and the small fields of view it is less suitable for map-

ping larger scale variations in fibril architecture. Additionally

in mechanical loading experiments it can only provide a snap

shot of fibril organizations [49] whereas P-SHG allows us to

track changes in the collagen fibril distribution at the molecu-

lar scale. Detailed insights into the intrafibrillar structure of

collagen and its response to mechanical loads on even smaller

scales have emerged from studies on the thicker fibres of type

I collagen which have used a combination of wide and small

angle X-ray scattering to determine molecular packing and

alignment within fibres [50,51]. X-ray scattering has also

been used to investigate cartilage collagen [52–55] including

how this changes under compressive loads [53,54]. Most
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recently, this approach has revealed differences in the

d-spacing with depth [53], which might be related to the

differences we observed in the present study. Further work

might exploit the complementarity between the two

approaches.

The present work reveals aspects of collagen organization

that can be related to previous studies in electron microscopy.

Our observations show a visibly tighter collagen alignment

along the deep zone as compared to the transition and

even superficial zone, which resembles bundled structures

observed in this region using EM [56]. We also observe a

clear re-orientation of collagen fibrils along the diameter of

the chondrocytes, with tighter sub-micrometric scale organiz-

ation in a direction perpendicular to the main collagen

direction of the deep zone. Electron microscopy of the col-

lagen in the pericellular matrix of chondrocytes shows a

basket-like structure around the cells [57]. Collagen polarity

has been also observed to vary strongly in the proximity of

these regions [42], which is consistent with this more complex

organization. The true pericellular matrix could not be

resolved in the present work, and whether this was because

of collagens such as type VI are weak generators of SHG or

because of the geometrical complexity of the cell boundary

must be established in future work. However, P-SHG

showed that the direction of the collagen was disturbed

around the cells over rather larger distances and the biome-

chanical implications of these variations will require

consideration in tracking the exchange of mechanical signals

between chondrocytes and the bulk matrix.

P-SHG provides a new perspective on the response of the

collagen fibrils to mechanical load. As might be expected, as

the strain increases the average value of w2 aligns towards

the direction of applied strain. However, an interesting situ-

ation arises for fibrils perpendicular to the direction of

applied load, because two scenarios can be envisioned: (i)

the peak w2 progressively shifts towards the direction of

applied strain but remains approximately constant in

height; this cooperative behaviour would be indicative of

tissue reorganization on a length scale greater than the

field of view or (ii) the peak in w2 perpendicular to the

strain direction decreases in intensity and a separate peak

in w2 emerges parallel to the direction of applied strain, indi-

cating re-organization on a shorter length scale. In figure 9b
and c the latter pattern was prevalent. Unravelling the pro-

cesses of mechanotransduction in a cell interacting with

fibrils of different initial orientations is a challenge for the

future.

More generally, in exploring correlations between the

macroscopic mechanical properties of the tissue and the

micro-structural behaviour of the collagen fibrils it is impor-

tant to recognize that P-SHG provides information on two

length scales. Changes in w2 reflect the reorientation of col-

lagen fibrils on a relatively large scale, as discussed above,

and these data could provide inputs for structurally based

finite element models relating tissue mechanics to fibril

organization [58]. In addition, changes in I2 indicate changes

in fibril structure on the submicron length scale. The most sig-

nificant changes in I2 were observed in the superficial zone,

however this is mostly attributed to the limitation of the tech-

nique is that P-SHG can only measure the organization of

fibrils aligned in the image plane. In the deep zone this

was, with the geometry employed in the present investi-

gation, true for only a minority of fibrils, although these

were the ones bearing the applied load. Figure 10 shows

that, in the small number of samples studied, there is a

rough correlation between the increase in I2 under tensile

loading and the tensile modulus of the sample, particularly

in the superficial zone, perhaps indicating that higher forces

are required to generate these changes. Recent work on

X-ray scattering in cartilage has shown changes in d-spacing

in collagen fibrils under mechanical load [53]. Future work

might establish the relationships between these observations,

but it is clear that mechanical forces are transmitted down to

the lowest levels of collagen structure.

The changes to the collagen matrix, which occur in OA,

are complicated and include softening (loosening of the col-

lagen II matrix), fibrillation and replacement of the type II

collagen with type I collagen. The small number of osteoar-

thritic cartilage samples included in this study were

representative of the spectrum of changes reported in the lit-

erature [10] and we found them to be they associated with

fibril re-organization on a sub-micron scale, reflected in

both I2 and w2. Whether these small scale changes are conse-

quences of the larger-scale changes, for example a release in

fibril tension following alterations in the overall force balance

in the tissue, or indicate the effects of specific processes, such
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as matrix proteolysis, that initiate the macroscopic changes of

OA remains to be established.

5. Conclusion
This paper reports techniques of P-SHG that are directly

applicable to investigating the microstructural response to

mechanical loading in collagen-rich tissues. We demonstrate

regional and local patterns in the sub-micron scale organiz-

ation of articular collagen and that this organization is

responsive to changes in mechanical loading. A more exten-

sive study on the polarization properties of degenerate and

ageing cartilage collagen should reveal the mechanisms of

sub-micron scale remodelling and their role in the pro-

gression of disease. This may further demonstrate the

potential of P-SHG as a diagnostic tool for assessing cartilage

quality in early OA.
Data accessibility. The raw image and load cell data collected for this
publication are available at https://doi.org/10.24378/exe.603 along
with the MATLAB code required to perform the polarization
sensitivity analysis.

Authors’ contributions. S.B. modified the microscope to allow polarization
sensitive measurements and wrote the codes in MatLab to analyse
the polarization data. J.C.M. was responsible for the experimental
work and data analysis. J.C.M., C.P.W. and S.B. drafted the manu-
script. A.T. and V.M. helped with the human cartilage samples and
advised on clinical aspects of OA. All authors gave final approval
for publication.

Competing interests. The authors have no competing interests.

Funding. This work was funded by Arthritis Research UK grant no.
20714 and by a Leverhulme Trust Visiting Professorship (S.B.)
grant no. VP2-2015-025.

Acknowledgements. The collection and storage of human cartilage
samples from total knee replacement surgery was carried out by
the RD&E Tissue Bank, part of the NIHR Exeter Clinical Research
Facility.
rface
16:20
References
180611
1. Stockwell RA. 1979 Biology of cartilage cells.
Cambridge, UK: Cambridge University Press.

2. Eyre D. 2002 Collagen of articular cartilage. Arthritis
Res. 4, 30 – 35. (doi:10.1186/ar380)

3. Huang CY, Stankiewicz A, Ateshian GA, Mow VC.
2005 Anisotropy, inhomogeneity, and tension –
compression nonlinearity of human glenohumeral
cartilage in finite deformation. J. Biomech. 38,
799 – 809. (doi:10.1016/j.jbiomech.2004.05.006)

4. Kempson G, Freeman M, Swanson S. 1968 Tensile
properties of articular cartilage. Nature 220,
1127 – 1128. (doi:10.1038/2201127b0)

5. Woo SLY, Akeson W, Jemmott G. 1976
Measurements of nonhomogeneous, directional
mechanical properties of articular cartilage in
tension. J. Biomech. 9, 785 – 791. (doi:10.1016/
0021-9290(76)90186-X)

6. Akizuki S, Mow V, Müller F, Pita J, Howell D,
Manicourt D. 1986 Tensile properties of human knee
joint cartilage: I. Influence of ionic conditions,
weight bearing, and fibrillation on the tensile
modulus. J. Orthop. Res. 4, 379 – 392. (doi:10.1002/
jor.1100040401)

7. Kempson G. 1982 Relationship between the
tensile properties of articular cartilage from the
human knee and age. Ann. Rheum. Dis.
41, 508 – 511.

8. Bell JS, Christmas J, Mansfield JC, Everson RM,
Winlove CP. 2014 Micromechanical response of
articular cartilage to tensile load measured using
nonlinear microscopy. Acta Biomater. 10,
2574 – 2581. (doi:10.1016/j.actbio.2014.02.008)

9. Mansfield JC, Bell JS, Winlove CP. 2015 The
micromechanics of the superficial zone of articular
cartilage. Osteoarthritis Cartilage 23, 1806 – 1816.

10. Chen MH, Broom N. 1998 On the ultrastructure of
softened cartilage: a possible model for structural
transformation. J. Anat. 192, 329 – 341. (doi:10.
1046/j.1469-7580.1998.19230329.x)

11. Chen MH, Broom ND. 1999 Concerning the
ultrastructural origin of large-scale swelling in
articular cartilage. J. Anat. 194, 445 – 461. (doi:10.
1046/j.1469-7580.1999.19430445.x)

12. Jeffery AK, Blunn GW, Archer CW, Bentley G. 1991
3-Dimensional collagen architecture in bovine
articular-cartilage. J. Bone Joint Surg. Br. 73,
795 – 801. (doi:10.1302/0301-620X.73B5.1894669)

13. Poole CA, Flint MH, Beaumont BW. 1987 Chondrons
in cartilage—ultrastructural analysis of the
pericellular microenvironment in adult human
articular cartilages. J. Orthop. Res. 5, 509 – 522.
(doi:10.1002/jor.1100050406)

14. Nieminen M, Rieppo J, Töyräs J, Hakumäki JM,
Silvennoinen J, Hyttinen MM, Helminen HJ, Jurvelin
JS. 2001 T2 relaxation reveals spatial collagen
architecture in articular cartilage: a comparative
quantitative MRI and polarized light microscopic
study. Magn. Reson. Med. 46, 487 – 493. (doi:10.
1002/mrm.1218)

15. Rieppo J, Hallikainen J, Jurvelin JS, Kiviranta I,
Helminen HJ, Hyttinen MM. 2008 Practical
considerations in the use of polarized light
microscopy in the analysis of the collagen network
in articular cartilage. Microsc. Res. Tech. 71,
279 – 287. (doi:10.1002/jemt.20551)

16. Drexler W et al. 2001 Correlation of collagen
organization with polarization sensitive imaging of
in vitro cartilage: implications for osteoarthritis.
J. Rheumatol. 28, 1311 – 1318.

17. Ugryumova N, Jacobs J, Bonesi M, Matcher SJ. 2009
Novel optical imaging technique to determine the
3-D orientation of collagen fibers in cartilage:
variable-incidence angle polarization-sensitive
optical coherence tomography. Osteoarthritis
Cartilage 17, 33 – 42. (doi:10.1016/j.joca.2008.05.
005)

18. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ.
2012 Second harmonic generation microscopy for
quantitative analysis of collagen fibrillar structure.
Nat. Protoc. 7, 654. (doi:10.1038/nprot.2012.009)

19. Zipfel WR, Williams RM, Christie R, Nikitin AY,
Hyman BT, Webb WW. 2003 Live tissue intrinsic
emission microscopy using multiphoton-excited
native fluorescence and second harmonic
generation. Proc. Natl Acad. Sci. USA 100,
7075 – 7080. (doi:10.1073/pnas.0832308100)

20. Tilbury KB, Hocker JD, Wen BL, Sandbo N, Singh V,
Campagnola PJ. 2014 Second harmonic generation
microscopy analysis of extracellular matrix changes
in human idiopathic pulmonary fibrosis. J. Biomed.
Optics 15, 086014.

21. Ghazaryan A, Tsai HF, Hayrapetyan G, Chen W-L,
Chen Y-F, Jeong M-Y, Kim C-S, Chen S-J, Dong C-Y.
2012 Analysis of collagen fiber domain organization
by Fourier second harmonic generation microscopy.
J. Biomed. Optics 18, 031105.

22. Mostaço-Guidolin LB, Ko ACT, Wang F, Xiang B,
Hewko M, Tian G, Major A, Shiomi M, Sowa MG.
2013 Collagen morphology and texture analysis:
from statistics to classification. Sci. Rep. 3, 2190.
(doi:10.1038/srep02190)

23. Chaudhary R, Campbell KR, Tilbury KB, Vanderby R,
Block WF, Kijowski R, Campagnola PJ. 2015
Articular cartilage zonal differentiation via 3D
second-harmonic generation imaging microscopy.
Connect. Tissue Res. 56, 76 – 86. (doi:10.3109/
03008207.2015.1013192)

24. Brown CP, Houle MA, Chen M, Price AJ, Legare F,
Gill HS. 2012 Damage initiation and progression in
the cartilage surface probed by nonlinear optical
microscopy. J. Mech. Behav. Biomed. Mater. 5,
62 – 70. (doi:10.1016/j.jmbbm.2011.08.004)

25. Freund I, Deutsch M, Sprecher A. 1986 Connective-
tissue polarity—optical 2nd-harmonic microscopy,
crossed-beam summation, and small-angle
scattering in rat-tail tendon. Biophys. J. 50,
693 – 712. (doi:10.1016/S0006-3495(86)83510-X)

26. Stoller P, Kim BM, Rubenchik AM, Reiser KM, Da Silva
LB. 2002 Polarization-dependent optical second-
harmonic imaging of a rat-tail tendon. J. Biomed. Opt.
7, 205 – 214. (doi:10.1117/1.1431967)

27. Williams RM, Zipfel WR, Webb WW. 2005
Interpreting second-harmonic generation images of

https://doi.org/10.24378/exe.603
https://doi.org/10.24378/exe.603
http://dx.doi.org/10.1186/ar380
http://dx.doi.org/10.1016/j.jbiomech.2004.05.006
http://dx.doi.org/10.1038/2201127b0
http://dx.doi.org/10.1016/0021-9290(76)90186-X
http://dx.doi.org/10.1016/0021-9290(76)90186-X
http://dx.doi.org/10.1002/jor.1100040401
http://dx.doi.org/10.1002/jor.1100040401
http://dx.doi.org/10.1016/j.actbio.2014.02.008
http://dx.doi.org/10.1046/j.1469-7580.1998.19230329.x
http://dx.doi.org/10.1046/j.1469-7580.1998.19230329.x
http://dx.doi.org/10.1046/j.1469-7580.1999.19430445.x
http://dx.doi.org/10.1046/j.1469-7580.1999.19430445.x
http://dx.doi.org/10.1302/0301-620X.73B5.1894669
http://dx.doi.org/10.1002/jor.1100050406
http://dx.doi.org/10.1002/mrm.1218
http://dx.doi.org/10.1002/mrm.1218
http://dx.doi.org/10.1002/jemt.20551
http://dx.doi.org/10.1016/j.joca.2008.05.005
http://dx.doi.org/10.1016/j.joca.2008.05.005
http://dx.doi.org/10.1038/nprot.2012.009
http://dx.doi.org/10.1073/pnas.0832308100
http://dx.doi.org/10.1038/srep02190
http://dx.doi.org/10.3109/03008207.2015.1013192
http://dx.doi.org/10.3109/03008207.2015.1013192
http://dx.doi.org/10.1016/j.jmbbm.2011.08.004
http://dx.doi.org/10.1016/S0006-3495(86)83510-X
http://dx.doi.org/10.1117/1.1431967


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180611

14
collagen I fibrils. Biophys. J. 88, 1377 – 1386.
(doi:10.1529/biophysj.104.047308)

28. Aı̈t-Belkacem D, Gasecka A, Munhoz F, Brustlein S,
Brasselet S. 2010 Influence of birefringence on
polarization resolved nonlinear microscopy and
collagen SHG structural imaging. Opt. Express 18, 14
859 – 14 870. (doi:10.1364/OE.18.014859)

29. Brasselet S. 2011 Polarization-resolved nonlinear
microscopy: application to structural molecular and
biological imaging. Adv. Opt. Photonics 3, 205.
(doi:10.1364/AOP.3.000205)

30. Duboisset J, Aı̈t-Belkacem D, Roche M, Rigneault H,
Brasselet S. 2012 Generic model of the molecular
orientational distribution probed by polarization-
resolved second-harmonic generation. Phys. Rev. A
85, 043829. (doi:10.1103/PhysRevA.85.043829)

31. Tiaho F, Recher G, Rouede D. 2007 Estimation of helical
angles of myosin and collagen by second harmonic
generation imaging microscopy. Opt. Express 15, 12
286 – 12 295. (doi:10.1364/OE.15.012286)

32. Psilodimitrakopoulos S, Artigas D, Soria G, Amat-
Roldan I, Planas AM, Loza-Alvarez P. 2009
Quantitative discrimination between endogenous
SHG sources in mammalian tissue, based on their
polarization response. Opt. Express 17, 10 168 – 10
176. (doi:10.1364/OE.17.010168)

33. Chen WL, Li TH, Su PJ, Chou CK, Fwu PT, Lin SJ,
Kim D, So PTC, Dong CY. 2009 Second harmonic
generation chi tensor microscopy for tissue imaging.
Appl. Phys. Lett. 94, 183902. (doi:10.1063/1.
3132062)

34. Tilbury K, Lien C-H, Chen S-J, Campagnola PJ. 2014
Differentiation of Col I and Col III isoforms in
stromal models of ovarian cancer by analysis of
second harmonic generation polarization and
emission directionality. Biophys. J. 106, 354 – 365.
(doi:10.1016/j.bpj.2013.10.044)

35. Stoller P, Reiser KM, Celliers PM, Rubenchik AM.
2002 Polarization-modulated second harmonic
generation in collagen. Biophys. J. 82, 3330 – 3342.
(doi:10.1016/S0006-3495(02)75673-7)

36. Kumar R, Grønhaug KM, Romijn EI, Finnøy A, Davies
CL, Drogset JO, Lilledahl MB. 2015 Polarization
second harmonic generation microscopy provides
quantitative enhanced molecular specificity for
tissue diagnostics. J. Biophotonics 8, 730 – 739.
(doi:10.1002/jbio.201400086)

37. Aı̈t-Belkacem D, Roche M, Duboisset J, Ferrand P,
Brasselet S, Guilbert M, Sockalingum GD,
Jeannesson P. 2012 Microscopic structural study of
collagen aging in isolated fibrils using polarized
second harmonic generation. J. Biomed. Optics 17,
080506.

38. Strupler M, Hernest M, Fligny C, Martin J-L, Tharaux
P-L, Schanne-Klein M-C. 2008 Second harmonic
microscopy to quantify renal interstitial fibrosis and
arterial remodeling. J. Biomed. Opt. 13, 054041.
(doi:10.1117/1.2981830)

39. Ambekar R, Lau T-Y, Walsh M, Bhargava R,
Toussaint KC. 2012 Quantifying collagen structure in
breast biopsies using second-harmonic generation
imaging. Biomed. Opt. Express 3, 2021 – 2035.
(doi:10.1364/BOE.3.002021)

40. Gusachenko I, Tran V, Houssen YG, Allain JM,
Schanne-Klein MC. 2012 Polarization-resolved
second-harmonic generation in tendon upon
mechanical stretching. Biophys. J. 102, 2220 – 2229.
(doi:10.1016/j.bpj.2012.03.068)

41. Su PJ et al. 2010 The discrimination of type I and
type II collagen and the label-free imaging of
engineered cartilage tissue. Biomaterials 31,
9415 – 9421. (doi:10.1016/j.biomaterials.2010.
08.055)

42. Couture C-A et al. 2015 The impact of collagen fibril
polarity on second harmonic generation microscopy.
Biophys. J. 109, 2501 – 2510. (doi:10.1016/j.bpj.
2015.10.040)

43. Outerbridge RE. 1961 The etiology of
chondromalacia patellae. J. Bone Joint Surg. Br. 43,
752 – 757. (doi:10.1302/0301-620X.43B4.752)

44. Deniset-Besseau A, Duboisset J, Benichou E, Hache
F, Brevet P-F, Schanne-Klein M-C. 2009
Measurement of the second-order
hyperpolarizability of the collagen triple helix and
determination of its physical origin. J. Phys. Chem. B
113, 13 437 – 13 445. (doi:10.1021/jp9046837)

45. Schon P, Behrndt M, Ait-Belkacem D, Rigneault H,
Brasselet S. 2010 Polarization and phase pulse
shaping applied to structural contrast in nonlinear
microscopy imaging. Phys. Rev. A 81, 013809.
(doi:10.1103/PhysRevA.81.013809)

46. Benninghoff A. 1925 Form und bau der
Gelenknorpel in ihren Bezeihungen zur Function. Z
Zellforsch Mikrosk Anatomy 2, 783 – 825. (doi:10.
1007/BF00583443)

47. Alkhouli N et al. 2013 The mechanical properties of
human adipose tissues and their relationships to
the structure and composition of the extracellular
matrix. Am. J. Physiol. Endocrinol. Metab. 305,
E1427 – E1435.

48. Vergari C, Mansfield J, Meakin JR, Winlove PC. 2016
Lamellar and fibre bundle mechanics of the annulus
fibrosus in bovine intervertebral disc. Acta Biomater.
37, 14 – 20. (doi:10.1016/j.actbio.2016.04.002)

49. Sasazaki Y, Shore R, Seedhom BB. 2006 Deformation
and failure of cartilage in the tensile mode. J. Anat.
208, 681 – 694. (doi:10.1111/j.1469-7580.2006.
00569.x)

50. Bell JS et al. 2018 The hierarchical response of
human corneal collagen to load. Acta Biomater. 65,
216 – 225. (doi:10.1016/j.actbio.2017.11.015)

51. Fratzl P, Daxer A. 1993 Structural transformation of
collagen fibrils in corneal stroma during drying. An
X-ray scattering study. Biophys. J. 64, 1210 – 1214.
(doi:10.1016/S0006-3495(93)81487-5)

52. Moger CJ, Barrett R, Bleuet P, Bradley DA, Ellis RE,
Green EM, Knapp K, M P, Winlove CP. 2007 Regional
variations of collagen orientation in normal and
diseased articular cartilage and subchondral bone
determined using small angle X-ray scattering
(SAXS). Osteoarthritis Cartilage 15, 682 – 687.
(doi:10.1016/j.joca.2006.12.006)

53. Inamdar SR, Knight DP, Terrill NJ, Karunaratne A,
Cacho-Nerin F, Knight MM, Gupta HS. 2017 The
secret life of collagen: temporal changes in
nanoscale fibrillar pre-strain and molecular
organization during physiological loading of
cartilage. ACS Nano 11, 9728 – 9737. (doi:10.1021/
acsnano.7b00563)

54. Moger CJ, Arkill KP, Barrett R, Bleuet P, Ellis RE,
Green EM, Winlove CP. 2009 Cartilage collagen
matrix reorientation and displacement in response
to surface loading. J. Biomech. Eng. 131, 031008.
(doi:10.1115/1.3049478)

55. Aspden RM, Hukins DW. 1981 Collagen organization
in articular cartilage, determined by X-ray
diffraction, and its relationship to tissue function.
Proc. R. Soc. Lond. B 212, 299 – 304.

56. Hughes L, Archer C, Ap Gwynn I. 2005 The
ultrastructure of mouse articular cartilage: collagen
orientation and implications for tissue functionality.
A polarised light and scanning electron microscope
study and review. Eur. Cell. Mater. 9, 68 – 84.
(doi:10.22203/eCM.v009a09)

57. Poole CA. 1997 Articular cartilage chondrons: form,
function and failure. J. Anat. 191, 1 – 13. (doi:10.
1046/j.1469-7580.1997.19110001.x)

58. Julkunen P, Kiviranta P, Wilson W, Jurvelin JS,
Korhonen RK. 2007 Characterization of articular
cartilage by combining microscopic analysis with a
fibril-reinforced finite-element model. J. Biomech.
40, 1862 – 1870. (doi:10.1016/j.jbiomech.2006.
07.026)

http://dx.doi.org/10.1529/biophysj.104.047308
http://dx.doi.org/10.1364/OE.18.014859
http://dx.doi.org/10.1364/AOP.3.000205
http://dx.doi.org/10.1103/PhysRevA.85.043829
http://dx.doi.org/10.1364/OE.15.012286
http://dx.doi.org/10.1364/OE.17.010168
http://dx.doi.org/10.1063/1.3132062
http://dx.doi.org/10.1063/1.3132062
http://dx.doi.org/10.1016/j.bpj.2013.10.044
http://dx.doi.org/10.1016/S0006-3495(02)75673-7
http://dx.doi.org/10.1002/jbio.201400086
http://dx.doi.org/10.1117/1.2981830
http://dx.doi.org/10.1364/BOE.3.002021
http://dx.doi.org/10.1016/j.bpj.2012.03.068
http://dx.doi.org/10.1016/j.biomaterials.2010.08.055
http://dx.doi.org/10.1016/j.biomaterials.2010.08.055
http://dx.doi.org/10.1016/j.bpj.2015.10.040
http://dx.doi.org/10.1016/j.bpj.2015.10.040
http://dx.doi.org/10.1302/0301-620X.43B4.752
http://dx.doi.org/10.1021/jp9046837
http://dx.doi.org/10.1103/PhysRevA.81.013809
http://dx.doi.org/10.1007/BF00583443
http://dx.doi.org/10.1007/BF00583443
http://dx.doi.org/10.1016/j.actbio.2016.04.002
http://dx.doi.org/10.1111/j.1469-7580.2006.00569.x
http://dx.doi.org/10.1111/j.1469-7580.2006.00569.x
http://dx.doi.org/10.1016/j.actbio.2017.11.015
http://dx.doi.org/10.1016/S0006-3495(93)81487-5
http://dx.doi.org/10.1016/j.joca.2006.12.006
http://dx.doi.org/10.1021/acsnano.7b00563
http://dx.doi.org/10.1021/acsnano.7b00563
http://dx.doi.org/10.1115/1.3049478
http://dx.doi.org/10.22203/eCM.v009a09
http://dx.doi.org/10.1046/j.1469-7580.1997.19110001.x
http://dx.doi.org/10.1046/j.1469-7580.1997.19110001.x
http://dx.doi.org/10.1016/j.jbiomech.2006.07.026
http://dx.doi.org/10.1016/j.jbiomech.2006.07.026

	Collagen reorganization in cartilage under strain probed by polarization sensitive second harmonic generation microscopy
	Background
	Material and methods
	Sample preparation
	Multiphoton microscopy
	Polarization sensitivity analysis
	Sensitivity to birefringence
	Sensitivity to out-of-plane orientation

	Tensile loading

	Results
	Collagen architecture
	Osteoarthritis cartilage
	Collagen fibril reorganization with tensile load

	Discussion
	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


