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Immune checkpoint inhibitors (ICIs) have changed the landscape of cancer treatment
and are emerging as promising curative treatments in different type of cancers. However,
only a small proportion of patients have benefited from ICIs and there is an urgent need
to find robust biomarkers for individualized immunotherapy and to explore the causes
of immunotherapy resistance. In this article, we review the roles of immune cells in the
tumor microenvironment (TME) and discuss the effects of ICIs on these cell populations.
We discuss the potential of the functional interaction between the TME and cancer cells
as a predictive biomarker for ICIs. Furthermore, we outline the potential personalized
strategies to improve the effectiveness of ICIs with precision.

Keywords: tumor microenvironment, innate immunity, responsive or resistant biomarkers, immune checkpoint
inhibitors, immune cells

INTRODUCTION

The tumor microenvironment (TME) is a key component of tumors that consists of various cell
types including immune cells, endothelial cells, cancer-associated fibroblasts (CAFs) along with
cytokines, chemokines and the extracellular matrix (ECM) (Hanahan and Weinberg, 2011). While
certain cells in the TME have the potential to inhibit tumor development, other cells in the
TME act synergistically with tumor cells to enhance tumor development (Figure 1). The tumor-
promoting factors in the TME include immunosuppressive effector molecules and effector cells
such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated
macrophages (TAMs) (Junttila and de Sauvage, 2013). The interaction between immunosuppressive
TME and tumor cells regulates a range of cellular processes including tumor cell proliferation and
metastasis. It also protects tumor cells from the clearance by immune effector cells. In addition,
tumor cells can escape host immune reactions through immune checkpoints (Sharpe and Freeman,
2002; Francisco et al., 2010; Pardoll, 2012). Recently, immune checkpoint inhibitors (ICIs) targeting
programmed cell death protein (PD-1), programmed death-ligand (PD-L1), and T-lymphocyte-
associated protein 4 (CTLA-4) have shown efficacies in restoring antitumor immunity in multiple
tumor types with tolerable adverse-event profiles (Zheng et al., 2017; Ren and Zhang, 2019; Yost
et al., 2019). However, only a small proportion of patients showed strong responses to ICIs, as
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many patients developed primary or acquired resistance (Zheng
et al., 2017). Thus, there is a need to find biomarkers to
inform patient-specific treatments and to better understand
the molecular mechanisms underlying the drug resistance.
At present, predictive biomarkers are limited to PD-L1,
tumor mutation burden (TMB) and MSI-H/dMMR. As these
biomarkers are often unreliable, better biomarkers are highly
desired. Given that the TME is a major obstacle to the success
of cancer immunotherapy (Yost et al., 2019), one could imagine
that the TME may serve as a predictive biomarker for ICIs. In
this context, it is desired to better understand the complexities of
immune cells within the TME, which may be achieved by using
cutting-edge techniques such as single-cell RNA sequencing and
mass cytometry (Spitzer and Nolan, 2016; Zheng et al., 2017;
Simoni et al., 2018; Kiselev et al., 2019; Ren and Zhang, 2019;
Zhang and Zhang, 2019). In this paper, we review the molecular
heterogeneity of the TME and relate it to the unique challenges
and opportunities for ICIs (Figure 1).

THE BIOLOGICAL FUNCTIONS OF
INNATE IMMUNITY WITHIN THE TME IN
CANCER IMMUNOTHERAPY

Anti-tumor immunity depends on tumor immunogenicity
and the immune function of the host and other factors.
The tissue of origin and occurrence of tumor cells leads
to significant variations in immunogenicity and anti-tumor
immune responses. Tumor immune responses include innate
and adaptive response. Innate immunity develops gradually with
age and involves the evolution and adaptation of the immune
system. Generally, innate immune response is the first line anti-
tumor effectors whilst the adaptive immune response plays more
specific roles in the immune responses. However, innate immune
response [dendritic cells (DCs), natural killer (NK) cells, TAMs,
and tumor-associated neutrophils (TANs)] and adaptive immune
response [CD8+ cytotoxic T cells (CTLs), CD4+ T helper 1
(Th1), and B cells] are complementary and interdependent
(Tanaka et al., 1999).

Dendritic Cells Within the TME
Coordinate the Priming and
Differentiation of T Cells
Dendritic cells are the central antigen-presenting cells (APCs)
that can directly activate naïve T cells. DCs initiate the
adaptive immune response and mediate interactions between
innate and adaptive immune responses (von Andrian, 2002;
Batista and Harwood, 2009). Following the activation of DCs,
an inflammatory response is triggered and pro-inflammatory
cytokines and chemokines are released to regulate immune
function. The maturation and metastasis of DCs to the lymph
nodes result in the activation of antigen-specific T cells that
participate in adaptive immunity. DCs express high levels
of adhesion molecules such as intracellular cell adhesion
molecule 1 (ICAM-1) that allow strong binding to T cells
and facilitate intercellular interactions (Segura et al., 2005).

ICAM can participate in the innate immune response by
recognizing and transporting antigens and can initiate an
adaptive immune response, as well as enhancing antigen
presentation and CTLs priming (von Andrian, 2002; Allan
et al., 2006). Mature DCs express high levels of costimulatory
molecules such as CD86, CD40, and CD80. CD40 and its
ligand CD40L are also expressed on the surface of other APCs,
such as B cells and macrophages, and act to significantly
increase antigen presentation and co-stimulatory capacity
(Schoenberger et al., 1998).

Dendritic cells present tumor-associated neoantigens through
pattern recognition receptors (PRRs) in the early stages of
tumorigenesis. Inter-tumoral stimulatory dendritic cells (SDCs)
can stimulate CTLs and initiate immune responses against
cancer. The activation of DCs is positively correlated with
T-cell inflammatory status and response to PD-1/PD-L1 pathway
inhibition (Barry et al., 2018).

A previous study investigated the TME in gastric cancer
using single-cell RNA sequencing. The study reported that DCs
infiltrating the TME (TIDCs) expressed chemokines such as
CCL17, CCL19, CCL22, and IL-32 that helped recruit naïve T
cells. These cells also displayed unique gene expression programs
that differed from peripheral blood mononuclear cells (PBMCs)
(Sathe et al., 2020). Although TIDCs have anti-tumor potential
within the TME, the function of these cells is often impaired at
the later stages of tumor development due to interactions among
tumor cells and surrounding immune cells. In the early stage of
tumorigenesis, PD-1 expression is low on TIDCs and cytokines
such as IL-10, TGF-β, and arginase in the TME can upregulate the
expression of immunosuppressive molecules, such as PD-1 and
Tim-3, on TIDC cells. The overexpression of the molecules acts to
convert DCs with anti-tumor potential into immunosuppressive
DCs (Gardner et al., 2020).

Within the TME, cytokines produced by DCs may induce
the activation and proliferation of Tregs (Figure 1). A novel
subset of tolerogenic DCs can also promote the differentiation
of T-regulatory cells (Tr1) through producing high levels of IL-
10 (Gregori et al., 2010). DCs can secrete CCL22 that promotes
interactions between DCs and Tregs via binding to its receptor
CCR4. The recruitment of Tregs into the tumors cause immune
suppression and downregulation of co-stimulatory molecules on
DCs, causing CTLs dysfunction (Curiel et al., 2004; Bauer et al.,
2014; Rapp et al., 2019). Ibrahim et al. (2012) showed that liver
DCs with low lipid concentrations induced anergy in Tregs whilst
DCs with high levels of lipids were immunogenic in many models
and functioned to activate T and NK cells.

Function of NK Cells in the TME
CD3−CD56+ NK cells can be divided into CD56bright and
CD56dim subtypes. The main function of CD56bright NK
cells is to secrete cytokines whilst CD56dim NK cells mainly
mediate cytotoxicity. NK cells can kill targeted cells through
several specific pathways including antibody-dependent cellular
cytotoxicity (ADCC), the Fas-FasL pathway, the perforin-
granzyme pathway and the secretion of pro-inflammatory
cytokines, such as TNF, IFN-γ, GM-CSF, IL-6, and CCL5
(Voskoboinik et al., 2006; Guillerey et al., 2016; Habif et al., 2019).
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FIGURE 1 | The main interactions of immune cells and the relationships between tumor and immune cells in the TME. The figure is divided into two parts to show
the complementary and interdependent relationship between innate and adaptive immunity. Left, represents innate immunity included natural killer (NK) cells,
dendritic cells (DCs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs). Right, represents adaptive immunity included
CD8 + cytotoxic T cells (CTLs), CD4 + T helper 1 (Th1), and B cells.

In the early stages of tumor development, NK cells are the
first line of defense against tumors. NK cells could migrate into
tumors in response to chemokines secreted by DCs (Guillerey
et al., 2016). The deletion or decreased expression of MHC
molecules on the surface of tumor cells prevent the binding
of NKs to the inhibitory receptor (killer inhibitory receptor,
KIR) that inhibits the initiation of killing inhibitory signal.
However, surface carbohydrate ligands can bind to the activated
receptor (killer activation receptor, KAR) on the surface of
NK cells to activate NK cells and exert a killing effect (Long,
2008; Thielens et al., 2012; Myers and Miller, 2021). Similar
to TIDC, tumor-infiltrating NK cells have anti-tumor and anti-
metastatic potential. In melanoma patients, it has been reported
that NK cells positively regulated intratumoral SDCs through
the production of cytokine FLT3L to enhance T cell responses
(Veglia et al., 2018). In some tumors, tumor-infiltrating NK
cells undergo phenotypic changes and dysfunctions compared to
normal NK cells, which partially explains why NK cell-targeted
therapies have low efficacy in some tumor types. The function of
NK cells is suppressed by soluble regulatory factors (e.g., TGF-
β) in the TME that can act directly on NK cells, leading to
reduced cytotoxicity and cytokine secretion. Tumor-infiltrating
NK cells’ function can also be dampened by NK cell-autonomous
inhibitory checkpoints such as PD-1, TIGIT, CD96, TIM-3,
LAG-3, CTLA-4, KIR2DL-1/2/3 and NKG2A (Guillerey et al.,
2016). Previous studies have indicated that PD-1 expression

on tumor-associated NK cells requires glucocorticoids (Quatrini
et al., 2021; Figure 1). While ICIs may restore NK cell-mediated
anti-tumor immunity (Kamran et al., 2017; Holmgaard et al.,
2018; Sivori et al., 2020). Furthermore, anti-CD96 has been
shown to stimulate NK cell function and improve the efficacy of
ICIs (Du Four et al., 2016; Davis et al., 2017).

Macrophages Within the TME Can Play a
Tumor-Inhibitory or Tumor-Promoting
Role
Tumor-associated macrophages are the main component
of the TME where they can promote the formation of
an immunosuppressive microenvironment or suppress
tumorigenesis and metastasis, depending on the direct or
indirect suppression of cytotoxic T-cell activity (Mantovani
et al., 2017; Lin et al., 2019), accordingly divided into anti-tumor
M1 and pro-tumor M2 types (Biswas and Mantovani, 2010;
Figure 1). TAMs can suppress immune responses by producing
immunosuppressive mediators/cytokines and also by expressing
the inhibitory receptor, thus affect the infiltration of CTLs and
suppress the function of CTLs by expressing the molecular
triggers of checkpoint proteins (De Palma and Lewis, 2013;
Ruffell and Coussens, 2015; Mantovani et al., 2017; Lin et al.,
2019). As TAMs are the primary source of IL-10 in tumors
and IL-10 can promote the expression of PD-L1 on monocytes,
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PD-L1+ monocytes can effectively inhibit tumor-specific
T-cell immunity via the infiltration of Tregs and dysfunction
of CD8 T-cells (Zhang et al., 2020; Figure 1). They can also
promote tumor growth, indicating that PD-L1 expression on
activated macrophages is a potential mechanism linking the
pro-inflammatory response to the immune tolerance of the TME
(Wynn et al., 2013; Romano et al., 2015; Zhang et al., 2020).

M1 macrophages, characterized with production of
inflammatory cytokines and reactive oxygen/nitrogen species,
showed anti-tumor effect and were valuable for host defense
(Wynn et al., 2013). Moreover, it were reported to show high
ratios in responder treated with ipilimumab (a fully human
CTLA-4-specific mAb) in comparison with non-responder
(Romano et al., 2015).The expression of PD-1 on TAMs and its
interaction with PD-L1 on tumor cells may impair phagocytic
capacity of macrophage. Interestingly, most of the PD-1 were
found in M2 macrophages, and ICIs treatment could revert their
function to M1 phenotype for killing tumor (Gordon et al., 2017;
Figure 1). Tumor cells can cause macrophages to exhibit an
immunosuppressive phenotype via releasing the autophagosome
(TRAPs). The expression of PD-L1 and IL-10 can hinder the
proliferation of CD4+ and CD8+ T cells, indicating that the
TRAPs-PD-L1 axis is a promising option by simultaneously
targeting autophagy and PD-L1 (Wen et al., 2018).

In contrast to M1 macrophages’ antitumor role, M2
macrophages predominate within the TME and can promote
vascular growth, invasion and metastasis, and enhance
chemoresistance (Xia et al., 2020). It has been reported that
M2 polarization increased the expression of PD-L2 in TAMs that
could lead to immune escape and tumor promotion through the
PD-1 signal pathway (Huber et al., 2010). These data indicated
that TAMs-targeting via blocking the CCL2-CCR2 axis was
potential strategy to overcome immune evasion, and inhibiting
the recruitment of TAMs might enhance the antitumor effect
of CTLs in the TME (Yang et al., 2020). Besides, the ratio of
M1/M2 macrophages can be used to evaluate the effectiveness
of immunotherapy. Sathe et al. found that the TME could
be reprogrammed based on the state of macrophages. The
phenomena that TAMs differentiated from monocytes and
retained basic features of macrophages were also found in
normal tissues (Sathe et al., 2020).

The interaction of PD-L1 on T-cells with PD-1 on macrophage
impacts the tolerance of macrophage differentiation (Diskin et al.,
2020). Although macrophages have immuno-suppressive roles,
the pro-inflammatory F480+MHCII+Ly6Cc low macrophage
can induce interferon by secreting CXCL9. In patients treated
with avelumab (an anti-PL-L1), the baseline levels of CXCL9
are related to clinical outcome, indicating that this subgroup of
macrophages improves response rates to ICIs (Qu et al., 2020).
Class IIa HDAC inhibition (TMP195) was used to modulate
the phenotype of macrophages by Guerriero et al. (2017), they
showed that the anti-tumor effect of TMP195 was enhanced
when combined with T-cell checkpoint blockade. Macrophages
may result in complete inability of T-cells to initiate an immune
response against their target cells, therefore the effect of blocking
immune checkpoints on monocytes within the TME may offer
improved responses to ICIs.

MDSCs Within the TME Are Associated
With Resistance to Immunotherapy
Myeloid-derived suppressor cells originate from bone marrow
progenitor cells that have not fully matured into granulocytes,
monocytes and DCs (Weiskopf et al., 2016). MDSCs include
groups of cells with different phenotypes that are biologically
diverse in humans. In the TME, the proliferation of MDSCs
is induced by various immune molecules produced by tumor,
stromal and activated immune cells, such as GM-CSF and VEGF.
In mice, MDSCs have been broadly identified as CD11b+ GR1+
cells, whilst in humans, they have been identified as LIN−
HLA−DR− CD33+ cells (Veglia et al., 2018).

The primary function of MDSCs is to suppress CD8+ T-cell
immunity by enhancing the expression of ROS, NO, arginase-
1 and PGE-2 through PD-L1/PD-1 interaction (Veglia et al.,
2018; Adeshakin et al., 2021; Figure 1). Other mechanisms
include the induction of some immunosuppressive cells, the
depletion of metabolites critical for T-cell function, the blocking
of lymphocyte homing and the expression of ectoenzymes, etc.
(Groth et al., 2019). MDSCs were recruited into the TME, their
potent suppressive activities against effector lymphocytes may
limit the efficacy of ICIs. The depletion of MDSCs is associated
with the activation of CTLs’ responses. Several preclinical studies
have shown that inhibition of MDSCs during immunotherapy
could improve efficacy. MDSC-depleting chemotherapy increases
the effects of anti-PD1 mAb whilst simultaneously improving
CD8+ T-cell infiltration and effector cytokine secretion, thereby
delaying tumor progression. Targeting MDSCs can improve
patient response rate to immunotherapy. For example, tumor
MDSCs can make TME immunosuppress through cell-specific
mechanisms like TGF-β or nitric oxide in head and neck
squamous cell carcinoma. And inhibiting CXCR1 and CXCR2
can eliminate MDSC accumulation and improve NK-Cell
immunotherapy therapeutic efficacy (Greene et al., 2020).
Apoptosis of MDSCs is caused by the high expression of TNF-
related apoptosis-induced ligand receptors (TRAIL-Rs), and
TRAIL-Rs’ expression is stronger at MDSCs in tumor sites.
So that targeting TRAIL-Rs can lead to rapid and significant
depletion of MDSCs, which can be used to improve the antitumor
effect of various immunotherapy drugs (Condamine et al., 2014;
von Karstedt et al., 2017). Thus, blocking the immunosuppressive
environment mediated by MDSCs may be a potential area for the
future development of effective treatments (Highfill et al., 2014;
Du Four et al., 2016; Davis et al., 2017; Iida et al., 2017; Kamran
et al., 2017; Veglia et al., 2018). Finally, high levels of circulating
MDSCs in cancer patients often correlate with poor response
rate to immunotherapy (Ai et al., 2018; Tavazoie et al., 2018),
suggesting that MDSCs may serve as a predictive marker for ICIs.

Mast Cells Have an Immunosuppressive
Role in the TME
Mast cells are a group of innate immune sentinels. Mast cells
secrete a variety of cytokines and participate in the regulation
of key immune cell types including T, B, and APC cells
(Voehringer, 2013). While mast cells may play an anti-tumor
role in the TME, they are more appreciated to promote tumor
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progression. For example, mast cells have a pro-tumorigenic role
in gastric cancer through the release of angiogenic (VEGF-A,
CXCL8, and MMP-9) and lymphangiogenic factors (VEGF-C
and VEGF-F) (Sammarco et al., 2019). Lv et al. found that mast
cell infiltration into tumors through CXCL12-CXCR4-mediated
chemotaxis resulted in immunosuppression (Lv et al., 2019).
Mechanistically, mast cells secrete IL10, leading to increased
numbers of Tregs in draining lymph nodes (Gan et al., 2012;
Figure 1). Moreover, tumor-derived TNF-α activates NF-κB
pathway in mast cells, causing mast cells to express PD-L1. In
this context, inhibition of PD-L1 on mast cells may benefit cancer
patients (Lv et al., 2019).

Neutrophils Plays a Double-Edged Role
in the TME
As a critical component of innate immunity, neutrophils are
recruited to sites of inflammation by chemokines, cytokines
and complement fragments (CXCL1, CXCL2, CXCL5, IL-8, C5a,
and C3a) to enable host defenses against invading pathogens
(Basu et al., 2002; Pagano et al., 2009; Ueha et al., 2011;
Coffelt et al., 2016; Zhang and Houghton, 2021). On the other
hand, the accumulation of peripheral blood polymorphonuclear
neutrophils (PMN) within the TME promotes tumor growth and
invasiveness in humans. TANs are CD45+CD66b+ (Zhang and
Houghton, 2021) and can be classified as N1 and N2 subtypes.
While N1 TANs exert anti-tumor activity through ADCC and
proinflammatory factors production, such as IFN-γand MMP-8,
in the innate immune response (Mihaila et al., 2021), N2 TANs
promote tumor growth. Blocking TGF-β and inducing IFN-γ can
cause N2 to convert to N1 (Fridlender et al., 2009).

N2 TANs are viewed as immunosuppressive cells (Kargl et al.,
2019). In line with this, increased levels of neutrophils in tumors
are associated with worse prognosis and poor outcomes in
patients. This may be partially due to that PMN in the tumor
matrix prevents T-cell infiltration. Concomitantly, increased
neutrophil infiltration into tumors is associated with decreased
efficacy of ICIs (Heng et al., 2009; Kargl et al., 2019; Schalper et al.,
2020; Yuen et al., 2020). Vice versa, Kargl et al. (2019) found that
higher ratio of CD8+ T cells to neutrophils was associated with
more favorable responses. Mechanistically, tumor-derived GM-
CSF induces PD-L1 expression in neutrophils through the Janus
kinase (JAK) signal transduction and activator of transcription
3 (STAT3) signaling pathway (Figure 1). PD-L1+ neutrophils
in turn inhibit T-cell immunity and promote tumor growth
(Wang et al., 2017). These findings form a basis for the ongoing
clinical trials (ClinicalTrials.gov NCT03161431, NCT03184870,
NCT04123379) of a combination therapy by targeting neutrophil
recruitment and ICIs.

THE ROLE OF ADAPTIVE IMMUNE
RESPONSE CELLS WITHIN THE TME IN
TUMOR IMMUNOTHERAPY

In general, the adaptive immune response plays a more important
role than innate immunity in a specific immune response.
However, innate and adaptive immunity are complementary

as the innate immune response acts to initiate the adaptive
immune response. Tumor antigens can be classified as tumor-
specific antigens (TSAs) and tumor-associated antigens (TAAs).
TSAs are recognized by T cells and induce a cellular immune
response whilst TAAs can be recognized by B cells and
induce humoral immunity (Jhunjhunwala et al., 2021). It is
believed that humoral immunity acts synergistically with cellular
immunity to inhibit tumor growth with cellular immunity
being the main force in anti-tumor immunity. CTLs and
Th1 responses are the main mechanisms of cellular immunity
(Vesely et al., 2011). On the other hand, tumor cells can
evade the attack of the immune system through loss of tumor
antigens, decreased expression of MHC class I molecules,
downregulation of costimulatory signals, secretion of immune
suppressants and induction of immunosuppressive cells such
as Tregs. Enhancing and improving the adaptive immune
response is a priority for the development of immunotherapies
(Vesely et al., 2011).

T-Cell Infiltration and Activation Within
the TME Are Key Drivers of Anti-tumor
Immune Response
CD8+ cytotoxic T cells are the main effector cells of anti-
tumor immunity. The complete activation of T-cells depends
on the activation of antigen and costimulatory signals as well
as the action of cytokines. These processes form the basis
of T-cell proliferation and differentiation. The first signal is
the antigen stimulation signal that allows the initial activation
of T-cells and upregulates the expression of activation-related
molecules such as costimulatory molecules (Tanaka et al.,
1999). T-cells and APCs have multiple pairs of costimulatory
molecules expressed on their surfaces. Interactions between
costimulatory molecules, such as CD80 (B7-1), CD86 (B7-2),
and CD28, are essential for the specific activation of T-cells
to promote IL-2 transcription and stabilize mRNA (Watts and
DeBenedette, 1999). Other costimulatory molecules are 4-1BB
and 4-1BBL, ICOS and ICOSL, CD40 and CD40L. Fully activated
T-cells express co-inhibitory receptors such as PD-1 and Tim-
3. The balance between positive costimulatory and negative
costimulatory molecules affects the activation of T cells. ICIs can
increase the ratio of costimulatory to co-inhibitory mediators
(Im et al., 2016). Inhibitory checkpoints like PD-1 and CTLA-4
have been targeted to relieve the depletion of CD8+ T-cells and
have shown efficacy in the clinic (Croft, 2003; Farhood et al.,
2019; Kallies et al., 2020; Figure 1). Other checkpoint receptor
targets such as TIM-3, VISTA, LAG-3, TIGIT, and CD96 are
currently being explored for clinical applications (Anderson et al.,
2016; Dougall et al., 2017; Kakavand et al., 2017; Qin et al., 2019;
Tu et al., 2020).

CD8+ cytotoxic T cells will enter an exhausted state as
antigens and inflammation persist in the TME leading to T-cell
dysfunction (Zheng et al., 2017; Bengsch et al., 2018; Sathe
et al., 2020). By blocking the PD-1 inhibitory pathway, exhausted
CD8 T (Tex) characterized by loss of the effector functions
can be reinvigorated, indicating the therapeutic potential of
improving immune control (Im et al., 2016; McLane et al., 2019).
The most critical aspect of anti-PD-1 therapy is the survival
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of effector T-cells that are active in the TME (Beltra et al.,
2020). In a study conducted in metastatic melanoma patients,
patients who responded to pembrolizumab (anti-PD-1 therapy)
showed proliferation of inter-tumoral CD8+ T-cells that directly
correlated with tumor regression (Tumeh et al., 2014). According
to other reports, sufficient T-cell infiltration is also a prerequisite
for tumor responses to PD-L1 blockade. These data indicate
that targeting LIGHT might increase responses to checkpoint
blockades by creating a T-cell inflamed microenvironment that
can also overcome tumor resistance to checkpoint blockade in
non-T-cell inflamed tumors (Tang et al., 2016). Furthermore,
pre-existed tumor-specific T-cells may have limited reactivation
ability, whilst T-cell clones that have just entered the tumor
may account for the response of T-cells to checkpoint blockade
(Yost et al., 2019).

The relationship between CD8+ effector T-cells and PD-1
expression on Tregs in the TME could be used to predict the
efficacy of anti-PD-1 immunotherapy. PD-1+ Tregs in tumor-
infiltrating lymphocytes (TILs) can be used as therapeutic targets
to enhance the clinical efficacy of ICIs. In addition, PD-1
expression by Tregs in TILs may explain the resistance to PD-1
blockade therapies (Kumagai et al., 2020; Figure 1).

An in-depth analysis of PD-1-CD8+ TIL found that these
three subgroups shared common characteristics with naive,
memory and effector CD8+ T-cells. Also, the proportions of
these cell types may change the response to different ICIs in
different cancers. Increases in the number of memory precursor-
like CD8+ T-cells after treatment are related to a good prognosis
and response to ICIs. Also, the transcription factor Tcf7/Tcf1
is a key regulator of this subgroup. If it is not expressed,
checkpoint blockade and innate agonist immunotherapy can fail
(Kurtulus et al., 2019).

Programmed death-ligand can be detected both on tumor
cells and in the immune stroma. Higher CD8+ T-cell densities
are accompanied by higher PD-L1 expression, indicating a
possible mechanism of adaptive immune resistance (Thompson
et al., 2017). TGF-β1 derived from tumor cells promotes the
Smad3-dependent expression of PD-1 and Smad2-dependent
dysfunction of CTLs, whilst PD-1 blockade cannot reverse this
immunosuppressive environment (Shen et al., 2020). Diskin et al.
(2020) found that PD-L1+ T-cells suppressed neighboring T-cells
in the TME. The interaction between PD-L1 and PD-1 induces
inhibitory signaling in T-cells and drives TH17 differentiation
and signaling pathways related to T-cell immunogenicity such
as STAT1, AKT, p38, and ERK. PD-L1+ T-cell expression has
multiple effects on the innate and adaptive immune tolerance,
immune synaptic cell crosstalk and TME signal transduction in
cancer patients. These interactions may play important roles in
immunotherapy response and drug resistance in cancer patients.

Th Cells Are Indirectly Involved in
Anti-tumor Immune Effects in Tumor
Immunity
CD4+ Th cells include T helper type 1 (Th1), Th2, and Th17 cells
(Ruterbusch et al., 2020). Although CD4+ Th cells are not the
main effector cells of cellular immunity, CD4+ Th cells assist in

activating CTLs and producing cytokines and chemokines that
are indirectly involved in anti-tumor immune effects (Borst et al.,
2018). For example, Th1 can influence APC antigen processing
and also secrete chemokines including IL-2 and IFN-γ to recruit
CTLs and NK to exert a local anti-tumor effect and to stimulate
DC cells (Knutson and Disis, 2005). Cytokines secreted by Th2
cells are important for DCs maturation, clonal proliferation and
class switching of B-cells, therefore these changes also promote
humoral immunity (Ruterbusch et al., 2020). Th17 was initially
identified as a CD4+ T-cell that secretes IL17 which is a separate
lineage to Th1 and Th2 cells. It was found that Th17 mainly
secretes IL-17A, IL-17F, and IL-22 which recruit and activate
neutrophils. Th17 may also promote angiogenesis and participate
in tumor formation, yet it remains unclear whether Th17 is
predominantly tumor-suppressive or tumor-promoting (Weaver
et al., 2007; Silva-Santos, 2010).

Regulatory T Cells Within the TME Limit
the Efficacy of ICIs
T-cells that constitutively express CD4 and CD25 are essential for
maintaining self-tolerance and are therefore termed regulatory T
cells (Tregs). The function of Tregs is defined by the transcription
factor Foxp3 (Samstein et al., 2012; Bin Dhuban et al., 2014). By
single-cell sequencing, it was showed that Tregs were significantly
enriched in the TME in gastric cancer compared to normal
tissue and contributed to an immunosuppressive TME. Also,
Tregs express several immune checkpoints such as CTLA-4 and
costimulatory molecules such as 4-1BB that are potential targets
for regulating their functions (Sathe et al., 2020; Figure 1). The
number of Tregs expressing immunosuppressive receptors in
tumors is correlated with the activation and proliferation of
CD4+ and CD8+ effector T-cells. Along with increases in Tregs,
the cytokines (such as IL10 and TGF-β) that inhibit the effects in
tumors are also up-regulated.

In a preclinical model, anti-CTLA-4 mAb has been shown to
effectively induced the depletion of Tregs via an Fc-dependent
mechanism in the TME but not in the peripheral lymphoid
organs (Tang et al., 2018). This may be because the expression
of CTLA-4 by Tregs in the tumor may be significantly higher
than in the peripheral lymphatic organs. In human tumors,
anti-CTLA-4 immunotherapy increases infiltration of inter-
tumoral CD8+ and CD4+ cells without depleting FOXP3+ cells
(Sharma et al., 2019).

The blocking of PD-1 and CTLA-4 can increase the ratio of
effector T-cells to Tregs in tumors. However, the blocking of
PD-1 is not entirely positive for T-cells. ICIs can also activate
and stable Tregs. Comparison of GC tissue samples before
and after anti-PD-1 mAb therapy found that the infiltration of
Tregs was associated with rapid disease progression known as
hyper progressive disease (HPD). Moreover, PD-1 blockade by
enhancing the proliferation and immunosuppressive activity of
PD-1+ Tregs in humans and mice inhibits antitumor immunity
and enhances the suppressive activity of Tregs. The presence of
actively proliferating PD-1+ Tregs in tumors may be a reliable
biomarker for HPD and can be used to guide the use of PD-1
blockade (Kamada et al., 2019). When the number of effector cells
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increases, their activity also increases and Tregs are eliminated to
maximize the antitumor effect.

CD25 expression is largely restricted to tumor infiltrating
Tregs in mice and humans. Anti-CD25 antibody enhances
binding to activate Fc gamma receptor (FcγRs), depleting tumor-
infiltrating Tregs and increasing effector cells to Tregs ratios. The
changes synergize with anti-PD-1 to eradicate established tumors
(Arce Vargas et al., 2017). Eliminating Tregs in the TME could
be an effective cancer treatment and prevent HPD during anti-
PD-1 therapy. Fc-mediated depletion of inter-tumoral regulatory
T-cells may be effective in combination with immunotherapy.

B-Cells in the TME Play Controversial
Roles in Tumor Immunity
The role of T-cells in tumor immune monitoring is well known,
however, the role of B-cells in the TME has not been extensively
studied. B-cells mediate humoral immunity mainly through the
production of antibodies and exert immune-regulatory functions
by producing cytokines. The role of B-cells in tumor immunity
is multifaceted. Antibodies can mediate ADCC and cytokines
(such as IL6, IL10) are involved in regulating the function of
macrophages and dendritic, NK and T-cells (Fridman et al.,
2021). For example, Bregs can secrete inhibitory cytokines,
such as IL-10, TGF-β, and IL-35, that inhibit the physiological
functions of effector CD4+ T cells by direct or indirect means.
They can kill macrophages, dendritic cells and other immune
cells during tumor development (Dasgupta et al., 2020). However,
in breast cancer, B-cells express activated markers and produce
cytokines and immunoglobulins to activate the humoral immune
responses to effective anti-tumor immunity (Garaud et al., 2019).

B-cells may also play a prominent role in tumor infiltration
and negatively regulate tumor growth. Higher tumor-infiltrating
B-cells in HPV-associated oropharyngeal squamous cell
carcinoma were associated with high CXCL9 production
and high levels of tumor-infiltrating CD8 T-cells. These data
indicated CD8 T-cells might be recruited via CXCL9 (Inoue et al.,
2006; Hladíková et al., 2019). In addition, B-cells play roles in
the formation of tumor-associated tertiary lymphoid structures
(TLS) that may promote the induction of T-cell phenotypes
required for response to ICIs. However, specific B-cell subsets
are associated with immune-related adverse events (irAEs) in
ICIs treatments (Willsmore et al., 2020). Recently, by bulk RNA
sequencing, it was shown that B-cells were different in the tumors
of responders versus non-responders during ICIs treatment,
implying that B-cells were predictive and potential therapeutic
targets (Helmink et al., 2020).

THE COMPLEXITY OF IMMUNE
EFFECTOR MOLECULES WITH THE TME

Immune molecules produced by immune cells and enzymes
are involved in the anti-tumor effects of the immune response.
Tumor cells can activate B-cells to secrete antibodies with an
anti-tumor effect because of the expression of tumor antigens.
These antibodies can exert their anti-tumor effect. In some cases,
tumor-specific antibodies interfere with the specific killing effect

of tumor cells. This growth-promoting antibody is called the
enhancing antibody. Also, antibodies can change or lose the
adhesion characteristics of tumor cells to promote tumor cell
metastasis (Vesely et al., 2011). Other immune effector molecules
in anti-tumor immunity, such as IFN and TNF, complement
molecules and various enzymes have non-specific inhibitory or
killing effects on tumor cells (Demaria et al., 2019). Prolonged
exposure of tumor cells to a microenvironment in which IFN-
γ is presented induces high expression of PD-L1 and IDO1.
These tumor cells, in turn, inhibit the release of IFN-γ by effector
T-cells, leading to T-cell depletion and tumor progression.

Chemokines are essential for immune cell recruitment and
the therapeutic efficacy of ICIs. For example, CXCR3 and its
ligand CXCL9 were critical for a productive CD8+ T cell response
in tumor-bearing mice treated with anti-PD-1, indicating that
the CXCR3 chemokine system was an indicator of the clinical
sensitivity to anti-PD-1 mAb. Mechanistically, inter-tumoral
CD103+ dendritic cells produce CXCL9, facilitating interactions
between DCs and T-cells within the TME (Chow et al., 2019).
Moreover, after dual PD-1/CTLA-4 blockade, the CXCR3 ligands,
CXCL9, and CXCL10 were significantly up-regulated, indicating
that macrophage-derived CXCR3 ligands were essential for the
efficacy ICIs (House et al., 2020).

Interleukins are the most common and most diverse cytokines
in the TME. Different interleukins have completely different
effects on tumors, but the same interleukin can also have
double-sided effects on tumors. For example, IL22 has been
found to induce endothelial cell proliferation and promote the
formation of blood vessels in tumors (Protopsaltis et al., 2019).
While IL2 is a cytokine that has a positive role in immune
activation by activating NK cells and CTLs to cause tumor
regression. However, IL2 also can bind to the IL2Rα receptor
on Tregs to stabilize and expand Tregs and play a negative role
(Lim et al., 2020).

Intra-tumor expression or inhibition of cytokines or
chemokines is a promising approach for tumor therapy. IL-12
is a cytokine that activates both innate and adaptive immunity,
partially due to IFN-γ secretion from NK cells, CD8+ and CD4+
T cells. Although in a past clinical study, systemic administration
of IL-12 caused severe adverse events, IL-12 remains an attractive
candidate for cancer immunotherapy. Vaccinia virus encoding
both IL-7 and IL-12 completely changed the tumor immune
microenvironment by boosting the inflammatory immune
status, which showed beneficial systemic antitumor efficacy and
markedly improved the sensitivity of solid tumors to systemic
anti-PD-1 and anti-CTLA4 (Nakao et al., 2020).

THE COMPLEX INTERACTIONS AMONG
STROMA AND IMMUNE CELLS AS WELL
AS TUMOR CELLS IN TME

The development of solid tumors is accompanied by excessive
deposition of ECM, abnormal tissue pattern and activation
and enrichment of CAFs. A large amount of evidence has
shown that the key components of stroma in the TME
not only were conducive to the growth and metastasis of
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tumor cells but also hindered immune cell infiltration and
affected the anti-tumor immune response (Figure 2). Cancer-
associated fibroblasts are highly heterogeneous for their dynamic
origins, by signals like TGF-β, PDGF, and YAP in tumors
inducing fibroblasts into activation state (Kalluri, 2016; Biffi
and Tuveson, 2021). CAF is closely related to the changing
state of ECM. On the other hand, ECM affects the activation
of CAFs and their functional exertion. Both CAFs and ECM
play important pro-tumorigenic and antitumorigenic roles in
the creation of TME, especially in solid tumors (Cox, 2021).
CAFs and ECM dynamically interact with the tumor cell,
which is not only important pathological features of solid
tumors but also important driving forces for malignant tumor
development (Najafi et al., 2019; Yoshida, 2020), such as changing
the microenvironment, regulating paracrine signals through
inflammatory cytokines, controlling tumor immune responses,
depositing different extracellular matrix components, stimulating
angiogenesis, providing scaffolds for tumor metastasis and
invasion and regulating malignant cell metabolism (Levental
et al., 2009; Erdogan and Webb, 2017; LeBleu and Kalluri,
2018; Demircioglu et al., 2020). With the secretion of cytokines
like CXCL12 and IL-6, CAFs regulate the recruitment of

macrophages and their contribution to tumor-promoting M2
type differentiation, thus affecting innate immunity (Ruffell and
Coussens, 2015). Moreover, CAFs and ECM allow the TME to
be maintained in a state of immunosuppression, thus greatly
limiting the effect of cancer immunotherapy. For instance, FAP-
positive CAFs suppress the anti-tumor efficacy by expressing
CXCL12, which causes T-cells in tumors exclusion and regulates
adaptive immunity. The removal of CAFs or CXCR4 antagonists
causes tumors to internal T-cell immersion and enhanced PD-L1
antibody immunotherapy (Feig et al., 2013). As TGF-β, PDGF,
and FGF2 are the main activating factors of CAFs, strategies
targeting CAFs and ECM remodeling like re-educating of the
tumor stroma have also made some progresses. For example,
suppressing PDGF signal pathway can make CAFs reversed to
normal tissue fibroblasts and inhibit tumor growth, thus better
regulating therapeutic efficacy and sensitivity (Pietras et al.,
2008; Kalluri, 2016). The normalization of CAFs and ECM is
a promising direction in tumor therapy and potential stromal
targeting cancer therapies are underway.

Vascular endothelial cells are a major component of non-
immune stromal cells. However, during tumor angiogenesis,
vascular endothelial cells do not form a dense structure, but

FIGURE 2 | Mechanisms of tumor-associated fibroblasts (CAFs) and vascular endothelial cells affecting the TME. CAFs, vascular endothelial cells, tumor cells, and
immune cells are in a dynamic relationship. CAFs through the secretion of cytokines and PD1/PDL1, PDL-2 pathways form the immunosuppression
microenvironment to promote tumor proliferation. Tumor microenvironment regulates vascular endothelial cell proliferation and the formation of blood vessels through
the secretion of growth factors and cytokines. Eventually, TME becomes hypoxic, accelerating tumor metastasis.
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form a loosely structured, highly permeable vessel, thus affecting
the infiltration of lymphocytes. Moreover, the permeability of
blood vessels is closely related to the hypoxic microenvironment
inside the tumor, tumor metastasis and tumor response to drugs
(Figure 2). By normalizing vasculature may mitigate hypoxia and
facilitate infiltration of lymphocytes. For instance, Th1 activated
with ICB plays a pivotal role in tumor vessel normalization,
and ICIs-activated CD4+ T lymphocytes increases vessel
normalization. Moreover, subgroup TH1 cells that secrete
interferon-γ play more critical roles in vessel normalization
(Tian et al., 2017). CAFs can induce angiogenesis by secreting
cytokines such as VEGF, CXCL12 and CTGF (Wu et al., 2021).
VEGF/VEGFR-2 signaling induces the proliferation, migration,
and angiogenesis of vascular endothelial cells, but also elevates
the permeability of blood vessels. Anti-angiogenic treatment
by blocking VEGF has shown anti-tumor effect by disturbing
angiogenesis (Dvorak, 2002). In HCC murine models, dual PD-
1/VEGFR-2 antibodies overcome anti-PD-1 treatment resistance
via promoting CD4+ cell-mediated vessel normalization and
reducing negative regulatory components like Tregs and CCR2+
monocytes, thus converting TAMs from M2 to M1 type,as
well as facilitating infiltration and activation of CTL. Therefore,
synergistic ICIs with anti-angiogenesis may improve sensitization
of the tumors to ICIs (Shigeta et al., 2020; Figure 2).

TARGETING TME IN COMBINATION
WITH IMMUNOTHERAPY

Cancer immunotherapy using ICIs and CAR-T cells has
developed rapidly, and has revolutionized cancer therapy.
Immunotherapies targeting TME are also emerging, for example,
targeting CTLs by blockading inhibitory checkpoints or by
activating stimulatory checkpoints. Since the approval of
Ipilimumab by the FDA in 2011, anti-CTLA-4 and anti-PD-1/L1
have demonstrated efficacy in various tumor types (Hodi et al.,
2010). Different cells within the TME have roles in promoting or
inhibiting tumor growth. CTLA-4 can be expressed on the surface
of CTLs, NK cells and Tregs. CTLA-4 monoclonal antibody
can relieve the inhibitory effect of CTLA-4 on CTLs and NK
cells (Krummel and Allison, 1995; Benson et al., 2010). Other
emerging ICIs, such as anti-tim3, can also play critical roles
in driving anti-tumor immune responses (Gleason et al., 2012;
Anderson, 2014). These drugs are able to indirectly improve the
anti-tumor activity of CTLs and NK cells by reducing the cell
number of Tregs (Bulliard et al., 2013). Specific targeting on
different cells with ICIs may have synergistic effects. Although
only drugs that activate T-cells have been brought to market,
the scope for other combinations will be rapidly developed in
clinical trials to explore the impact of these drugs within the
TME (Table 1).

Not all patients are responsive to ICIs and primary resistance
may be due to low levels of lymphocytes within the TME (Ochoa
de Olza et al., 2020). Additionally, patients who respond to ICIs
also have the possibility to ultimately develop acquired resistance.
This occurs through several mechanisms such as downregulation
of the antigen presentation machinery, loss of IFN-γ sensitivity,

neoantigen depletion, tumor-mediated immunosuppression, and
the expression of other inhibitory checkpoints (Schoenfeld
and Hellmann, 2020). Although the mechanisms of immune
checkpoints are largely dependent on CD8+ effector cells, an
increasing number of studies have found that the response
to ICIs is correlated with other components of the TME.
The combination of ICIs with agents that target the TME
components has major potential to optimize therapeutic efficacy
and overcome challenges associated with drug resistance and
tumor recurrence. TGF-β promote immune evasion in TME,
thereby limiting the efficacy of ICIs. And it has been found
that TGF-β inhibitor combined with PD-L1 antibody inhibits
tumor metastasis of colorectal cancer in preclinical mouse models
(Tauriello et al., 2018).

DISCUSSION

So far, predictive biomarkers, such as PD-L1, TMB, and
microsatellite instability (MSI) et al., are often not reliable, and
better sensitive biomarkers are highly desirable. Higher PD-L1
expression on tumor cells is likely to increase susceptibility to
ICIs and achieve an objective response (Topalian et al., 2012).
In addition to PD-L1 expression on the cell surface, metastatic
melanoma with high level of exosomal PD-L1 (a circulating
form of extracellular PD-L1) are positively responsive to ICIs
therapy. Consumption of PD-L1 inhibitors by soluble PD-L1
may contribute to further understanding the mechanisms of
tumor resistance to PD-L1 inhibitors. PD-L1 in tumor-derived
exosomes can assist tumor cells in immune escape, therefore the
combinations of small molecule drugs that inhibit the release
of exosomes with ICIs may be used to improve therapeutic
efficacy. It has been indicated that exosomal PD-L1 might be
more predictive and facilitate the identification of responders and
non-responders (Chen G. et al., 2018; Poggio et al., 2019; Orme
et al., 2020). Tumor mutation burden (TMB-H) was supposed to
be a predictive biomarker for the efficacy of response to ICIs in
multiple cancer types (Samstein et al., 2019; Jardim et al., 2020),
but a recent study indicated that TMB-H tumors indeed have
higher objective response rates (ORRs) in melanoma, lung and
bladder cancers, but failed to show the same predictive efficacy
among breast cancer, prostate cancer and gliom. Moreover, the
predictive power of TMB in dual anti-PD-1/CTLA-4 checkpoint
blockade is less satisfactory than monotherapy (Klein et al., 2021;
McGrail et al., 2021). Besides, the cutoffs of TMB-H are not
universal. Generally, TMB of 10 or more mutations per megabase
is more likely to have higher response rates after ICIs treatment
(Valero et al., 2021). Other specific mutations may also provide
insights into the effects of immunotherapy, such as MMR,
PRKDC, HED and POLE (Le et al., 2015; Chowell et al., 2019).

Tumor cells are inextricably linked to their microenvironment
from occurrence, development, growth, metastasis and invasion.
They can be further divided into “hot tumor” and “cold
tumor” according to the types of invading immune cells, as
the suppressive immune microenvironment of tumors limits
the infiltration of effector immune cells. Inhibitory changes
and the heterogeneity in the TME are important factors
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TABLE 1 | Landmark and ongoing trials of targeting tumor immune microenvironment synergize ICIs.

Treatment type Treatment mechanism Trial name (NCT number) Current status

CTLs-based therapy with
ICIs

Blockade of inhibitory checkpoints:
Anti-PD-1/Anti-PD-L1/Anti-CTLA-4/Other
ICIs, enabling tumor-reactive T cells to
overcome regulatory inhibitory
mechanisms.

NCT02453594/NCT00094653/NCT01927419
NCT01721746/NCT02108652/NCT02125461

Combination therapies to overcome
tumor immune evasion, other ICIs have
emerged as potential targets.

NK cells -based therapy
with ICIs

1. Targeting NK inhibitory molecules
2. Targeting NK cell activating signals
3. Adoptive NK cells therapy

NCT02665650/NCT03586869/NCT04261439
NCT03387085/NCT04143711/NCT03841110

Natural killer (NK) cell-based therapies are
emerging as safe and effective treatments
for some cancers, auxiliary methods for
enhancing the therapeutic activity of NK
cells include immune- checkpoint
inhibitors

TAMs-targeted therapy with
ICIs

1. Anti-CSF-1 antibodies and CSF-1R
inhibition to deplete macrophages

2. Agonistic anti-CD40 or inhibitory
anti-CD47 antibodies to stimulate
macrophages

3. Modulation of macrophage phenotype
4. Eliminating TAMs already present in the

TME
5. Inhibition of monocyte recruitment
6. Reprogramming of TAMs

NCT04123379/NCT03767582/NCT03059147
NCT02826486/NCT02907099/NCT04058145
NCT02777710/NCT02323191/NCT03768531
NCT02554812/NCT03558139/NCT03869190
NCT02807844/NCT02890368/NCT02663518
NCT01103635/NCT03123783/NCT02304393
NCT04116320/NCT03435640/NCT04193293

To convert its immunosuppressive ability
to its potential immunostimulatory
function, which is beneficial to the current
ICI-based immunotherapy

MDSC-targeted therapy
with ICIs

1. Decrease MDSCs recruitment
2. Promote MDSC depletion
3. Reprogram MDSCs to enhance

anti-tumor immunity

NCT03214666/NCT02403778 Combined treatment with ICIs along with
small molecule inhibitors to precise target
MDSC remains challenge.

Neutrophils-targeted
therapy with ICIs

Inhibition of various chemokines(IL8, Arg1,
CXCR2, IL1β)to retard PMN recruitment
and function.

NCT03161431/NCT03184870/NCT03473925
/NCT04123379/NCT02903914/NCT03631199

Pre-clinical studies by targeting neutrophil
recruitment and neutrophil
immunosuppressive function are currently
under to complement the ICIs
monotherapy

Tregs-targeted therapy with
ICIs

Depletion of Tregs synergizes with ICIs to
eradicate established tumors, for example
blocking CCR4 and Tregs chemotaxis;
blocking various chemokines and
chemokine receptor (TGF-β, IL-10 and
IL-35)

NCT02476123/NCT02705105/NCT02444793
/NCT02301130/NCT02503774

Through depleting Tregs depletion
combination with ICIs, eliminating Tregs
mediated resistance

Stroma–targeted
therapy/anti-angiogenesis
with ICIs

Stroma–targeted therapy by reversing CAFs
and ECM to antitumorigenic roles. By
normalizing vessel formation, reducing
negative regulatory components like Tregs,
promoting of CTL infiltration and activation

NCT02681549/NCT02337491/NCT02348008
NCT03475004/NCT02443324/NCT03650764
NCT02210117/NCT02873962/NCT03452579
NCT02999295/NCT03502746/NCT02336165

Potential stromal targeting cancer
therapies are underway. ICIs coupling
with anti-angiogenesis have already
shown efficacy in the clinic, but deeper
understanding of the immunomodulatory
capacity still unsatisfactory

that can promote tumor progression and affect responses to
immunotherapy. TILs can exert an antitumor effect through
the host cellular immune response. It was reported that TIL
levels could predict tumor control in EBV-positive gastric cancers
(Kang et al., 2016). PD-L1 positivity has been shown to correlate
with the presence of high TIL infiltration, as a higher TIL
density was also associated with a lower risk of progression
in gastric cancer patients (Dai et al., 2016). The infiltration
of multiple immune cell types, such as TAMs and Tregs,
may explain the limited efficacy of ICIs based on subgroup
analysis of immune cell infiltration. The TME is a complex
integrated system. Genomic and transcriptomic analysis offer a
multifaceted view on TME and provide approaches for precision
medicine (Cieślik and Chinnaiyan, 2018; Beaubier et al., 2019;
Rodon et al., 2019). For example, by transcriptomic analysis, over

10,000 cancer patients were classified into four distinct TME
subtypes. Among them, the immune-favorable TME subtypes
were more likely to be susceptible to ICIs than the suppressive
subtypes. So it has been demonstrated that visual tools
containing transcriptomic and genomic data could help us better
understand the tumor framework, mutational load, immune
composition, anti-tumor immunity and immunosuppressive
escape mechanisms (Bagaev et al., 2021). Comprehensive analysis
and visualization may also help us identify biomarkers and guide
therapeutic decision.

Interventions have been applied to target different
components of the TME, aiming to convert a tumor-promoting
into a tumor-suppressive TME. That is also optimal for
ICIs-based therapies. Strategies targeting the TME were used
to overcome the tumor resistance to immunotherapy, for
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example, through CD40-mediated immune cell activation (Diggs
et al., 2020), tumor-penetrating peptide iRGD-mediated tumor-
specific lymphocyte infiltration (Ding et al., 2019), combined
inhibition of CD38 and PD-L1 (Chen L. et al., 2018) or
radiotherapy combined with immunotherapy (Yu et al., 2021).
TGF-β released from cancer cells, stromal fibroblasts and other
cells can shape the architecture of the TME by suppressing
the antitumor activities of immune cells to attenuate the anti-
tumor efficacy of ICIs (Mariathasan et al., 2018; Derynck et al.,
2020). The blockade of TGF-β signaling may alter the immune
microenvironment, making it more amenable to immunotherapy
and offering synergy with ICIs. These changes may augment
intra-tumoral CD8 T-cell proliferation, reduce exhaustion and
evoke pro-inflammatory cytokines that can promote antitumor
immunity (Greco et al., 2020).

In this review, we focus on the TME and its interactions
with ICIs. However, the immunosuppressive TME is a complex
network regulated by a variety of immunosuppressive signals
that are dynamic and continuously changing. Targeting single
specific immunosuppressive signal may not be optimal to achieve
long-term efficacy. Immunotherapy biomarkers are supposed to
associate with advantages and shortcomings, such as positive
biomarkers to assess the benefit of treatment while negative
biomarkers predict the patient’s immune resistance, hyper
progression, severe toxicity, etc. As a combination of TMB,

PD-L1 and neutrophil-lymphocyte, ratio (NLR)status has shown
improved predictive power (Bruni et al., 2020; Kao et al.,
2021). Screening of sensitive biomarkers like exosomal PD-L1,
TMB, specific mutations and combined assessment of multiple
biomarkers may be the future research directions. Designing
multiple combined immunotherapy strategies and exploring
new immunotherapy targets are the potential priority areas in
scientific researches and clinical trials.
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