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�1.1  Introduction

Infectious disease informatics has been defined as a new field that studies knowl-
edge creation, sharing, modeling and management in the domain of infectious 
diseases (Zeng et al. 2005). Its emergence has been fueled by rapid increases in the 
amount of biomedical and clinical data, and demands for data analyses. The result-
ing combinations of experimental and informatics evidence have reshaped the ways 
of conducting infectious disease research, raising the expectation of better control 
of infectious diseases. The authors of this book argue that informatics has not only 
changed the scale on which the infectious disease research is being done but has 
also conceptually opened up different ways of managing patients and making dis-
coveries in the field of infectious diseases.

The goals of infectious disease informatics are lofty and include the optimiza-
tion of the development of antimicrobials, the improved design of more effective 
vaccines, the identification of biomarkers for transmissibility and clinical outcomes 
of infectious diseases, and a better understanding of host-pathogen interactions. 
In the last two decades, the emergence of new informatics methods and integrated 
databases has facilitated the realization of these goals. This chapter outlines the 
major challenges and opportunities that infectious disease informatics faces in the 
twenty-first century.
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�1.2   Handling New Data Types

�1.2.1  Microbial Genome Assembly and Annotation

“New Age” infectious disease informatics rests on advances in microbial genomics, 
the sequencing and comparative study of the genomes of pathogens, and proteomics 
or the identification and characterization of their protein related properties and 
reconstruction of metabolic and regulatory pathways (Bansal 2005). The speed of 
microbial genome sequencing has been steadily accelerating since the introduction 
of modern DNA sequencing methods more than thirty years ago (Sanger et al. 1977). 
The accumulation of sequenced genomes of bacteria shows a good fit to exponential 
functions with a doubling time of approximately 20 months (Koonin and Wolf 
2008). Despite the historical bias towards the “working horses” of bacterial genom-
ics, such as commensals E. coli and B. subtilis (Collado-Vides et al. 2008), the depth 
and breadth of the coverage of sequences belonging to different species of viral, 
bacterial, fungal and protozoan pathogens has been rapidly expanding.

Microbial genomes are thousands or millions of base pairs in length, requiring 
both a global view of the genome and the ability to zoom in on details for the 
purpose of analysis and annotation. Annotation is the extraction of biological 
knowledge from raw nucleotide sequences (Médigue and Moszer 2007). Such 
decoding of the genomes allows the prediction of protein-coding genes and there-
fore, the proteins the organism is able to produce. Desktop computer sequence 
editors such as Chromas Lite (http://chromas-lite.software.informer.com/), Trace 
Edit (http://www.ridom.de/traceedit/) or commercial products like LaserGene 
(http://www.dnastar.com/products/lasergene.php) or Sequencher (http://www.
sequencher.com/) are helpful in the initial sequence assessment. The task of 
assembling of sequences from re-sequencing experiments, when a reference 
sequence is available, can be supported by tools like TraceEditpro (http://www3.
ridom.de/traceeditpro/) or SeqScape.

Different software pipelines have been developed to automate microbial genome 
annotation and assembly (Table 1.1). The Integrated Microbial Genome (IMG) 
system, hosted by the Joint Genome Institute (JGI), and the RAST (Rapid 
Annotation using Subsystem Technology) server are examples of open resources. 
Major sequencing centers offer genome viewers and browsers through their web-
sites (McNeil et al. 2007). For example, Manatee (J. Craig Venter Institute (JCVI)) 
has been developed to view and to alter initial automatic annotations of prokaryotic 
genomes. The Sanger Institute’s Pathogen Sequencing Unit has been maintaining 
freeware for sequence analysis, viewing and annotation, such as Artemis and the 
Artemis Comparison Tool (ACT) (Carver et al. 2008). The alignment of genomes 
of three strains of Staphylococcus aureus using ACT is shown in Fig. 1.1. 
Alternatively, multiple genome alignments in the presence of large-scale evolution-
ary events, such as rearrangement and inversion, can be efficiently constructed and 
visualized using the Mauve program (http://gel.ahabs.wisc.edu/mauve/download.
php) (Darling et al. 2004). These tools assist in the rapid identification of protein-coding 

http://chromas-lite.software.informer.com/
http://www.ridom.de/traceedit/
http://www.dnastar.com/products/lasergene.php
http://www.sequencher.com/
http://www.sequencher.com/
http://www3.ridom.de/traceeditpro/
http://www3.ridom.de/traceeditpro/
http://gel.ahabs.wisc.edu/mauve/download.php
http://gel.ahabs.wisc.edu/mauve/download.php
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genes, as well as other features like non-coding RNA genes, repetitive sequences or 
recently acquired DNA.

Web servers like Integrated Microbial Genomes (Joint Genome Institute; http://
img.jgi.doe.gov) or the Bacterial Annotation System (BASys, http://wishart.biology.
ualberta.ca/basys/cgi/submit.pl) also support comparative analysis and the auto-
mated annotation of bacterial genomic (chromosomal and plasmid) sequences 
(Van Domselaar et al. 2005). They accept raw sequence data and gene identification 
information, and provide textual annotation and hyperlinked image output.

Strings of nucleotides are assembled into draft sequences that can be characterized 
by the following: (1) > 90% of genome in contigs, (2) average contig length > 5 kb, 
(3) >90% of a set of conserved genes present, (4) contig N90 length > 5 kb, (5) >90% 
of bases > 5× read coverage, (6) scaffold N90 length > 20 kb. The information used 
to annotate genomes comes from three types of analysis: (1) ab initio gene finding 
programs, which are run on the DNA sequence to predict protein coding genes; (2) 

Table 1.1  Bioinformatics analysis tools

Analysis tasks Tools URL

ORF or gene identification ORF Finder http://www.ncbi.nlm.nih.gov/gorf.
html

GeneMark http://opal.biology.gatech.edu/
GeneMark/genemarks.cgi

GLIMMER http://www.cbcb.umd.edu/software/
glimmer/

Sequence alignment ClustalW http://www.ebi.ac.uk/clustalw/
Tcoffee http://www.tcoffee.org/Projects_

home_page/
MUSCLE http://www.drive5.com/muscle/

Genome annotation RAST http://rast.nmpdr.org/
Artemis and ACT http://www.sanger.ac.uk/Software/
IMG http://rast.nmpdr.org/
MAUVE http://genome-alignment.org/mauve/

Phylogenetic analysis Phylogeny programs http://evolution.genetics.washington.
edu/phylis/software.html

SplitsTree http://www.splitstree.org
MEGA http://www.megasoftware.net

Microarray analysis Gene Expression 
Omnibus

http://www.ncbi.nih.gov/geo/
http://www.ebi.ac.uk/microarray

Microarray 
informatics EBI

Metabolic pathway analysis KEGG http://www.genome.ad.jp/kegg/kegg2.
html

UniPathway http://www.grenoble.prabi.fr/
obiwarehouse/unipathway

Whole genome visualization BacMap http://wishart.biology.ualberta.ca/
BacMap/index_2.html

GenomeAtlas http://www.cbs.dtu.dk/services/
GenomeAtlas/

http://img.jgi.doe.gov
http://img.jgi.doe.gov
http://wishart.biology.ualberta.ca/basys/cgi/submit.pl
http://wishart.biology.ualberta.ca/basys/cgi/submit.pl
http://www.ncbi.nlm.nih.gov/gorf.html
http://www.ncbi.nlm.nih.gov/gorf.html
http://opal.biology.gatech.edu/GeneMark/genemarks.cgi
http://opal.biology.gatech.edu/GeneMark/genemarks.cgi
http://www.cbcb.umd.edu/software/glimmer/
http://www.cbcb.umd.edu/software/glimmer/
http://www.ebi.ac.uk/clustalw/
http://www.tcoffee.org/Projects_home_page/
http://www.tcoffee.org/Projects_home_page/
http://www.drive5.com/muscle/
http://rast.nmpdr.org/
http://www.sanger.ac.uk/Software/
http://rast.nmpdr.org/
http://genome-alignment.org/mauve/
http://evolution.genetics.washington.edu/phylis/software.html
http://evolution.genetics.washington.edu/phylis/software.html
http://www.splitstree.org
http://www.megasoftware.net
http://www.ncbi.nih.gov/geo/
http://www.ebi.ac.uk/microarray
http://www.genome.ad.jp/kegg/kegg2.html
http://www.genome.ad.jp/kegg/kegg2.html
http://www.grenoble.prabi.fr/obiwarehouse/unipathway
http://www.grenoble.prabi.fr/obiwarehouse/unipathway
http://wishart.biology.ualberta.ca/BacMap/index_2.html
http://wishart.biology.ualberta.ca/BacMap/index_2.html
http://www.cbs.dtu.dk/services/GenomeAtlas/
http://www.cbs.dtu.dk/services/GenomeAtlas/
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Fig. 1.1  Alignment of genomes of three strains of Staphylococcus aureus. DNA sequences that 
find a perfect match are connected with red lines or blocks. Blue areas are inversions or transitions 
and white areas represent indels. The figure was produced using Artemis software (The Wellcome 
Trust Sanger Institute, UK)
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evidence-based gene calling or translating alignments of the DNA sequence to known 
proteins; and (3) aligning cDNAs from the same or related species. Gene finding has 
progressed far beyond the simple identification of open reading frames. The programs 
aligning cDNA and protein sequences to genomic DNA can locate the protein coding 
regions by searching the publicly available databases or by applying machine learning 
algorithms such as Hidden Markov Models (HMM). There is a long list of such pro-
grams including GeneMark, mORFind, PRODIGAL (Prokaryotic Dynamic pro-
gramming Genefinding Algorithm), Argon and GLIMMER (Gene Locator and 
Interpolated Markov Modeller) (Delcher et  al. 1999; Suzek et  al. 2001; Majoros 
2007). They differ in the time required for automated annotation as well as the quality 
of gene calling (Guigo et al. 2006). Problems with the accuracy of current gene find-
ers reflect not only the performance of their algorithms but also the quality of the 
primary resources and the abundance of non-coding DNA regions in microbial 
genomes. Genome assembly annotation methods and tools including new applica-
tions for RNA genes, were reviewed in detail elsewhere (Stothard and Wishart 2006; 
Médigue and Moszer 2007; Brent 2008; Pop and Salzberg 2008).

Recent breakthroughs in high-throughput sequencing technologies have posed 
new challenges for genome assembly, annotation and analysis. These technologies 
make it feasible to sequence not only static genomes but also entire transcriptomes 
expressed under different conditions (Shendure and Ji 2008). However, they can 
produce read lengths as short as 35–40 nucleotides, which cannot be analyzed with 
software developed for Sanger data as they are often non-unique, lack neighbor-
hood context and have a different distribution of errors. The task of linking such 
short-reads may be accomplished using a comparative assembly algorithm, in 
which new sequences are put together by mapping them onto close relatives or the 
“reference genomes.” Not surprisingly, the comparative assembly strategy works 
best when the two species are more than 90% identical. Alternatively, when no 
“reference genome” is available, the new cohort of assembly algorithms based on 
de Bruijn graphs – a way to transform sequence data into a network structure – has 
risen to the task (Chaisson and Pevzner 2008; MacLean et al. 2009). Strategies and 
systems that address these new challenges have recently been reviewed elsewhere 
(Pop and Salzberg 2008; MacLean et al. 2009; Ussery et al. 2009). Tables 1.1 and 
1.2 provide examples of informatics tools for pathogen annotation and analysis.

1.2.2 � Meta-Omics: Metagenomics and Metaproteomics

The metagenomics or the sequencing of genomes of complex mixed communities 
has emerged at the interface of genomics, microbiology and information technology. 
This field examines the interplay of hundreds of microbial species present at 
specific sites of potential infections in space and time (Hutchinson 2007; Smarr 
et al. 2009). Significantly, metagenomics has extended its focus from environmental 
microorganisms to microbial communities or “community whole genome sequences” 
of the human host (Field et al. 2006; Verberkmoes et al. 2009).
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Most of the 10–100 trillion microorganisms in the human gastrointestinal tract 
live in the colon (Turnbaigh et al. 2007). The genomes of these microbial symbionts 
have been collectively defined as the microbiome or ecosystem in which the number 
of microbial genes is estimated to be many folds higher than those present in the 
human genome. The Human Gut Microbiome Initiative, a logical conceptual exten-
sion of the Human Genome Project, aims to discover genomes of at least 100 new 
intestinal species. This approach has targeted the totality of genes involved in the 
gut biofilms, the mechanisms of horizontal gene transfer, and the role of the micro-
bial pan-genome (Field et al. 2006). The Microbiome project aims to address some 
of the most inspiring and fundamental scientific questions today in order to identify 
new ways to determine health and predisposition to diseases and define parameters 

Table 1.2  Examples of bioinformatics resources for pathogens with epidemic potential

Analysis Tools URL

Sequence databases 
and tools

GenBank http://www.ncbi.nlm.nih.gov/
sites/entrez

Protein Data Bank http://www.rcsb.org/pdb/
Microbial Genome Database http://mbgd.genome.ad.jp/

Workbenches Virology on the WWW http://www.virology.net
Viral Bioinformatics 
Research

http://www.biovirus.org
http://www.microbase.gr

Microbase http://xbase.bham.ac.uk/
xBASE
SEED http://www.theseed.org
Influenza Virus Resources http://www.ncbi.nih.gov/genomes/

FLU/FLU.html
http://www.biohealthbase.org
http://www.flu.lanl.gov/

Pathogen specific 
datasets

European Hepatitis C 
database

http://euhcvdb.ibcp.fr/euHCVdb/
http://hcv.lanl.gov/content/hcv-db/

index
Hepatitis C database http://www.hiv.lanl.gov/content/

indexHIV databases
Poxvirus Resource http://www.poxvirus.org
SARS Bioinformatics Suite http://athena.bioc.uvic.ca/database.

php?db = cooronaviridaeDengueInfo
http://www.dengueinfo.org

Neisseria.org http://neisseria.org/
TB Database http://www.tbdb.org/
Plasmodium Genome 

Resource
http://plasmodb.org/plasmo/

Antimicrobial resistance ARDB http://ardb.cbcb.umd.edu
ARGO http://www.argodb.org/

http://www.lahey.org/studiesCompendium of TEM genes

http://www.ncbi.nlm.nih.gov/sites/entrez
http://www.ncbi.nlm.nih.gov/sites/entrez
http://www.rcsb.org/pdb/
http://mbgd.genome.ad.jp/
http://www.virology.net
http://www.biovirus.org
http://www.microbase.gr
http://xbase.bham.ac.uk/
http://www.theseed.org
http://www.ncbi.nih.gov/genomes/FLU/FLU.html
http://www.ncbi.nih.gov/genomes/FLU/FLU.html
http://www.biohealthbase.org
http://www.flu.lanl.gov/
http://euhcvdb.ibcp.fr/euHCVdb/
http://hcv.lanl.gov/content/hcv-db/index
http://hcv.lanl.gov/content/hcv-db/index
http://www.hiv.lanl.gov/content/index
http://www.hiv.lanl.gov/content/index
http://www.poxvirus.org
http://athena.bioc.uvic.ca/database.php?db = cooronaviridae
http://athena.bioc.uvic.ca/database.php?db = cooronaviridae
http://www.dengueinfo.org
http://neisseria.org/
http://www.tbdb.org/
http://plasmodb.org/plasmo/
http://ardb.cbcb.umd.edu
http://www.argodb.org/
http://www.lahey.org/studies
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needed to design, implement and monitor strategies for intentionally manipulating 
the human microflora (Turnbaigh et al. 2007).

1.2.3 � Global Genome Analysis

In addition to conventional strings of nucleotides, large-scale sequencing can pro-
vide new types of data reflecting global genome architecture and the properties of 
pathogens. These data include the size of a genome and its nucleotide composition, 
the locations of genes and intergenic regions, GC percentage and gene density. 
Microbial genomes are compared by the number of particular sets of genes, gene 
order (synteny) and the presence or absence of important genes. Other metrics 
include gene set properties (the number of two component system regulatory 
genes) and nucleotide sequence-based measures (distance between paired two-
component system genes and consensus sequence) (Whitworth 2008; Ussery et al. 
2009). These metrics represent a global view of genomes but often have limited 
biological meaning. Thus, “signature” sequences have been suggested as a means 
of identifying organisms or genes with sequence profiles correlating with the 
pathogen phenotype or disease outcomes. Examples of genome characteristics that 
are more directly related to biologically important behavior are bacterial IQ (a 
measure of the number of signal transduction proteins as a function of genome 
size) and extrovertedness (the proportion of signaling proteins predicted to sense 
external stimuli) (Galperin 2005).

Analyses of genomics data challenge the traditional taxonomy of microbial 
species. Recent projects have focused on producing simple analytical diagnostic 
tools based on strong taxonomic knowledge collated in the DNA reference libraries 
such as the DNA Barcode of Life Data System (BOLD; http://www.boldsystems.
org). These types of data enable the acquisition, storage, analysis and publication 
of DNA barcode results, and provide clues about the global distribution of species. 
Their genetic diversity and structure is based on two postulates: first, that every 
species is represented by a unique DNA barcode (indeed there are 4650 possible 
ATGC combinations compared to an estimated 10 million species remaining to be 
discovered (Frézal and Leblois 2008)), and second, that the genetic variation 
between species exceeds the variation within species. DNA barcoding requires a 
minimum sequence length of 500 bp and more than three individual sequences per 
species. The initial Barcode of Life framework was based on the sequence of a 
single universal marker – the cytochrome c oxidase gene – but has evolved since 
then, giving rise to a flexible description of DNA barcoding, a larger range of appli-
cations and the broader use of the term “barcode” (Frézal and Leblois 2008). For 
example, the whole microbial genome’s barcodes were defined as frequency distri-
butions of periodic DNA sequences or k-mers across the whole genome (Zhou et al. 
2008). It has been postulated that such barcode similarities are proportional to the 
genomes’ phylogenetic closeness and could be utilized in metagenome analyses 
(Zhou et al. 2008).

http://www.boldsystems.org
http://www.boldsystems.org
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Microbial species diversity can be also estimated by the average nucleotide 
identity (ANI) using the list of orthologs and deriving the overall divergence of the 
core genome by averaging the percentages of identity at the nucleotide level 
(Konstantinidis and Tiedje 2005). Another approach to measure distances between 
genomes is based on estimating the proportion of common genes by calculating the 
ratio of orthologs to the total number of genes of the reference genome. More 
recently, similar methods such as DNA content, BLAST distance phylogeny and 
the MUM (maximal unique and exact matches) index have been suggested as more 
sensitive measures for intra-species comparisons (Deloger et al. 2009).

1.3 � Changing the Way Discoveries Are Made

1.3.1 � Knowledge Discovery from Comparative Genomics

The true power of large-scale comparative genomic studies lies in their ability to 
identify and characterize biological trends and rules that explain particular phenom-
ena (Field et  al. 2006). Computational methods have become essential steps in 
formulating hypotheses about gene functions. The comparative approach has not 
only yielded fundamental insights into the function and evolution of microbial 
genomes, but has also led to practical results. Comparative genomics has allowed 
the accurate estimation of the structure of genomes and the speed of gene move-
ments, including the role of natural selection versus genetic drift, the origin of the 
pandemic strains, and the ecology of a pathogen in its natural reservoir (Chen et al. 
2005; Yang et al. 2008a). Computational studies identified unexpected relationships 
between genomic features and ecological niches, demonstrated diversity in the 
microbial world and helped to reconstruct evolutionary relationships among 
genomes (Binnewies et al. 2006; Field et al. 2006).

Comparisons made between different genomes can also generate new hypotheses 
for testing, usually relating to the unexpected presence or absence of particular 
genes with respect to other genomes (Whitworth 2008). The studies of three main 
forces shaping genome evolution – gene loss, gain and change – have been 
especially fruitful in this respect (Burrack et al. 2007; Whitworth 2008). Discoveries 
of gene duplication in many bacterial pathogens, resulting in increased numbers of 
key gene clusters or the expansion of important protein families have led to the 
development of new diagnostic methods. For example, the gene clusters encode a 
secreted protein called the early secretory antigenic target 6 or ESAT6, which was 
identified as one of the key virulence factors in Mycobacterium tuberculosis and 
was subsequently used in the interferon-gamma release assays for the diagnosis of 
tuberculosis (Pallen and Wren 2007; Behr 2008).

Comparative genomics has also revealed that pathogens undergo a process of 
genome decay or a reduction in the number of biosynthetic pathways, resulting in 
a dependence on the infected host for certain essential functions. The most surprising 
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snapshots of genome decay have come from relatively recently emerged pathogens 
that have changed their lifestyles by adopting a simpler host-associated niche. For 
example, the genomes of Yersinia pestis (Parkhill et  al. 2001b) and Salmonella 
enterica serovar Typhi (Parkhill et  al. 2001a) contain hundreds of pseudogenes. 
These findings challenge the traditional view that bacterial genomes never contain 
“junk” DNA and that every gene in a bacterial genome must have a function. 
Instead, every genome should be viewed as a work in progress, burdened with some 
non-functional “baggage of history” (Pallen and Wren 2007).

As the smallest-scale variation in microbial genomes occurs at the level of single-
nucleotide polymorphisms (SNPs), SNP detection has been applied extensively to 
many pathogens (Yao et al. 2008). While SNPs are generally considered rare, at one 
per several thousand base pairs, two genomes of M.tuberculosis of 4 Mb each may 
have some 1,0002008 SNPs between two isolates (Behr ). Whole-genome sequenc-
ing has been proven as an even more powerful tool to detect SNPs. It enabled the 
differentiation of Escherichia coli strains that had diverged for as few as 200 genera-
tions (Shendure and Ji 2005) and revealed genomic changes in pathogens in the 
process of human infection (Chen et al. 2006; Forst 2006; Pallen and Wren 2007).

1.3.2 � Automatic Recognition of Functional Regions

In the pre-informatics era, virulence factors were typically identified either by 
biochemical studies or through genetic screens. Informatics has enabled innovative 
strategies for the recognition of virulence gene recognition through the analysis of 
genetic signatures (Pallen and Wren 2007). Despite the variety of microbial life 
styles and associated genomic and metabolic complexity, pathogen genomes share 
common architectural principles. As a result, computational techniques assist in 
exploring similarities between virulence factors and other genes with known functions. 
This association can then be tested using targeted genetic methods such as the 
inactivation of the putative virulence gene followed by the comparison of pheno-
types of the original and modified microorganisms (Chen et al. 2005; Raskin et al. 
2006). A strategy that does not rely on sequence similarity for identifying potential 
genes is the detection of coding sequences, which is based the gene context “grammars” 
supplemented with machine learning models (Garrido et al. 2008). For example, 
functional gene recognition tools GeneMark and GLIMMER employ Hidden 
Markov models, in which the preceding nucleotide bases are used to predict the 
next base in a coding region, and the algorithm is trained on a trusted set of 
sequences. Gene coding regions are then identified using probability estimates of 
the correct coding “grammar” in a region (Dougherty et al. 2002). Different statisti-
cal and machine learning methods for gene prediction have been reviewed 
elsewhere (Majoros 2007).

Gene-gene interactions specifically associated with a phenotype or a particular 
disease can be explored with or without a prior biological knowledge. Several 
techniques utilizing Bayesian networks, pair-wise mutual information and graphical 
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Gaussian models have been proposed for this purpose. Coupled with biological 
knowledge, the identification of such phenotype-specific interactions can shed light 
on the responsible pathways. The complexity of data handling and visualization has 
led to efforts to develop dedicated comparative genomics resources such as GenDB 
(Meyer et al. 2003), CMR, ACT, (Table 1.1) xBASE and Microbes OnLine as well 
as data management systems such as SEED (Table 1.2) (Chaudhuri et al. 2008).

1.3.3 � Enabling the Dynamic View of Infectious Diseases

Informatics has been instrumental in the change from static to a dynamic view of the 
microbial world. In contrast to the static view of genome annotations focused on the 
gene or protein prediction, the dynamic view places information obtained into a 
biological context to identify interactions between the genomic components and the 
reconstruction of regulatory networks (Médigue and Moszer 2007; Sakata and 
Winzeler 2007). Under the network vision of the microbial world, microbial chro-
mosomes are not envisaged as strictly defined genotypes gradually changing in time 
but rather as islands of temporary, relative dynamic stability that form tightly con-
nected (vertically and horizontally) areas of the network (Koonin and Wolf 2008). 
The infection cycle should be considered as a whole and the links between growth, 
virulence, immune evasion and transmission should be assessed (Restif 2009).

Biological interactions vary in their nature and are spatially and temporally 
heterogeneous. One can abstract the actions of proteins and metabolites by repre-
senting genes acting on other genes as a gene network or as genetic regulatory, 
transcription or expression networks. Such networks can be constructed using 
computationally assigned functional linkages inferred by Rosetta Stone, Operon or 
similar methods (Rachman and Kaufmann 2007; Harrington et al. 2008), and often 
point to highly connected and central proteins frequently referred to as “hubs” 
(Wu et al. 2008). Biological interaction and communication networks share several 
commonalities: they are scale free (only a few nodes are highly connected) and are 
small world networks (highly clustered with short distances between any two 
nodes) (Kann 2008). Increasingly, disease pathogenesis and the mechanisms of 
drug action are viewed from a biological systems perspective (Wu et  al. 2008). 
From this perspective, a deeper understanding of infectious diseases may rely on an 
exhaustive characterization of all potential interactions occurring between proteins 
encoded by viruses and those expressed in infected cells. Thus, the integration of 
all protein-protein interactions into an infected cellular network, or “infectome,” 
offers a powerful framework for the virtual modeling and analysis of infections 
(Navrati et al. 2009). The terms “interactome” and “phenomics” have been coined 
in this context (Lussier and Liu 2007).

Numerous resources have been developed to explore host-pathogen interactions 
(PHI) (Table 1.3). Specifically, PHI-base (Winnenburg et al. 2006), PHIDIAS (Xiang 
et al. 2007), BioHealthBase (Squires et al. 2008), PIG (Driscoll et al. 2009) VirusMINT 
(Chatr-aryamontri et  al. 2009) and VirHostNet (Navrati et  al. 2009) have been 
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suggested to study and visualize pathogen-related pathways. For example, the 
VirHostNet is a knowledge base for the management and analysis of proteome-wide 
virus-host interaction networks and a resource of manually curated interactions defined 
for a wide range of viral species (Navrati et al. 2009). Genomic and proteomic data is 
often informationally synergistic, allowing for the reconstruction of known pathways 
from the first principles. The combination of these forms of data have been used to 
identify libraries of recurring motifs, where the mixed semantics of the pattern prom-
ises to be more informative than any single data source taken in isolation in building 
biological networks (Michael et al. 2008; Stavrinides et al. 2008).

Systems biology has arisen from various attempts to move away from the reduc-
tionist approach, which is hindered by the difficulty of breaking a system into sepa-
rable and meaningful parts. It encompasses several high-throughput analytic 
technologies, including genomics, transcriptomics to measure gene expression and 
its regulation at the level of messenger RNA and microRNA production, proteom-
ics to measure changes in protein production, and computational biology, which 
depends on analytic software packages for analyzing, organizing, and interpreting 
those data (Sakata and Winzeler 2007). Such an approach treats pathogens and their 
environments as a series of hierarchical levels or networks from gene products to 
whole organisms and integrates the time dimension in order to structure knowledge 
and to determine rules that would allow navigation between levels (Lisacek et al. 
2006). This approach demands new tools for data management, the integration of 
which offers the opportunity to correlate multiple lines of evidence and to reduce 
uncorrelated noise.

1.3.4 � Cross-Validating the Knowledge Sources

The major difference between the pre- and post-genomics eras is that one can now 
potentially account for and keep track of all components at once. However, the 
gathering of a large collection of data does not guarantee that we can make sense 
of it or that new knowledge will emerge (Collado-Vides et al. 2009). The chance 
for enriching biomedical knowledge can be increased by mixing various streams of 
data and gaining robustness from the “cross-validation” of the knowledge sources 
(Guyet et al. 2007). Public websites like Galaxy (http://galaxy.psu.edu) and InterPro 
(http://www.ebi.ac.uk/interpro/) offer integration toolsets for genomics and 
proteomics analyses.

As generating data remains a costly undertaking, computational models have a 
pivotal role to play in the integrative science. They help researchers to illuminate 
the underlying processes and identify the key questions that need to be addressed 
experimentally (Restif 2009). Compared to conventional, small-scale experimental 
approaches, they give a wider, often more relevant view of host responses to infec-
tions or other health insults. These computational models have the capacity to 
guide and direct wet lab experimental efforts complimenting traditional in vivo, in 
situ, and in vitro testing with the emerging in silico approach (Lengauer et al. 2007; 

http://galaxy.psu.edu
http://www.ebi.ac.uk/interpro/
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Raman et al. 2008). Some impressive starts have been made on bacterial models in 
the form of simulation tools. For example, the reconstruction of metabolic networks 
gave birth to the first examples of in silico strains that can be utilized to explore 
alternative ways of identifying new drug targets (Jamshidi and Palsson 2007). 
The end result of these simulations may be the genomic bioengineering of microor-
ganisms based on knowledge of interacting systems and networks of genes and gene 
products.

Text mining tools are being created to query the PubMed literature database and 
to integrate the available genomic and proteomic information to map the genes and 
their interrelationship with particular networks of a disease (Korbel et  al. 2005; 
Jelier et  al. 2008; Rzhetsky et  al. 2008; Zaremba et  al. 2009). An unsupervised, 
systematic approach for associating genes and phenotypic characteristics (G2P) 
that combines literature mining with comparative genome analysis has been 
successfully applied and has uncovered clusters of unsuspected G2P associations 
(Korbel et al. 2005).

1.4 � Enabling Knowledge Communities: eScience

The phase of history in which biomedical science could be significantly 
advanced by individual researchers without data sharing has come to a close. 
The global, collaborative analyses of data and the exchange of the results 
across social, political and technological boundaries have created the demand 
for new cyber-infrastructures for research. There has been a major effort, in the 
form of e-Science, to develop technologies to fulfill these demands (Craddock 
et al. 2008).

1.4.1 � Novel Infrastructures Support Knowledge Communities

The chance of making a discovery or replicating the finding is greatly increased if 
there are effective mechanisms for different groups to share data and thereby 
enlarge the number of samples that are studied. This paradigm has been successful 
in both human genomics and infectious disease research (e.g., including the rapid 
discovery and identification of emerged pathogens such as the Nipah virus and the 
novel coronavirus that caused the SARS epidemic). Post-genomic era solutions 
such as federated databases and other technologies that enhance connectivity and 
data retrieval have created a new knowledge environment (Birkholtz et  al. 2006; 
Thorisson et al. 2009). The level of technical competence required of the users is 
being reduced by the provision of “off-the-shelf” solutions. For example, the 
GEN2PHEN project offers “database-in-a-box” installation packages, which 
include an open-source complete genetic association database system with the 
option for federation (Thorisson et al. 2009).
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Alternative infrastructures for e-Science with significant advantages over 
conventional Internet technologies are offered by grid and cloud computing and the 
Semantic Web (Numann and Prusak 2007; Craddock et  al. 2008). First, grids 
provide unique access to high performance computing power, distributed applica-
tions and sources (see Chap. 14 for examples). Second, grids increase data storage 
spaces, and allow data and tools to be shared by geographically dispersed users. 
However, developing and maintaining grid or cloud architectures remains a complex 
task and requires further advances in security and privacy models before they can 
be embraced by diagnostic laboratories (Lisacek et al. 2006).

1.4.2 � Data Aggregation

Tasks that require an e-Science approach or global science that is performed in 
silico are typically computationally intensive and use heterogeneous resources that 
must be integrated across distributed networks (Craddock et al. 2008). Increasingly, 
the genomic, proteomic and metabolomic data have to be integrated with tradi-
tional literature in a machine-readable way. Typical sets of experimental data yield 
component lists with quantitative content data and a catalog of interactions and 
networks. This requires the establishment of a middleware to convert experimental 
data into a format suitable for manipulation and viewing by end-users. For example, 
the Generic Model Organism Database project (GMOD; http://gmod.org) aims to 
link experimental data with corresponding contextual meta-data about experimental 
conditions and protocols in a multi-user, multi-center environment. It offers a 
collection of open source tools for creating and managing genome-scale biological 
databases ranging from a small database of genome annotations to a large 
web-accessible community database. Another approach is to trade off the width of 
integration for more depth with regard to a particular analysis task, and to employ 
workflow systems such as InforSense (http://www.inforsense.com) or Taverna 
(http://taverna.sf.net). These act as glue layers between various data sources and 
analysis packages and are also often referred to as pipelines, in silico protocols or 
e-experiments (Turnbaigh et  al. 2007). “Pipeline” is mostly used to describe 
executable workflows, while the other terms are dedicated to abstract workflows 
(Lisacek et al. 2006).

Many innovative solutions for the multi-dimensional integration of data 
produced by experimental laboratories have been introduced by Bioinformatics 
Resource Centers for Biodefense and Emerging/Re-Emerging Infectious Diseases 
through regional Biodefense Centers of Excellence (McNeal et  al 2007; Greene 
et al. 2007). Sets of task- and domain-specific online query and display tools are 
being developed to allow the end-user to view data in a number of different formats 
and to run informative comparisons of data with existing libraries (Louie et  al. 
2007; Glassner et al. 2008). The most striking change in data collection and repre-
sentation is expressed by the move from flat databases to atlases or collections of 
interconnected maps (Lisacek et al. 2006).

10.1007/_14
http://gmod.org
http://www.inforsense.com
http://taverna.sf.net
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The uneven content and quality of data and the constant evolution of biomedical 
knowledge remain the main obstacles to data integration (Lisacek et al. 2006). The 
quality of data is affected by a number of factors including the accuracy of the mapping 
algorithms and reference datasets, the standardization of data formats and the level 
of detail of the experiment description (Stead et al. 2008). In addition, an increasing 
number of genomes are being released in “draft” form, before the finishing stage of 
a sequencing project, with high sequencing error rates (De Keersmaesher et  al. 
2006; Médigue and Moszer 2007). Recent developments in databases and browsers 
for genomics have been summarized by Schattner (2008).

There is an urgent need for data structures suitable for infectious disease space 
that can be applied to emerging “omics” data sets. The Pathogen Information 
Markup Language (PIML) has also recently been introduced to enhance the interop-
erability of microbiology datasets for pathogens with epidemic potential (He et al. 
2005) by capturing the data elements that describe determinants of pathogen pro-
files. However, the jury is still out on the question of which data integration archi-
tectures are best suited to assembling large scale and highly diverse genomic data.

Integrating high-throughput techniques with other analytic tools brings a new 
understanding of infectious processes and introduces an era of personalized strate-
gies for managing infectious diseases. In this way, informatics becomes an irre-
placeable platform for the constant cross-fertilization and interplay between 
focused and genome-wide studies.

1.5 � Translating “Omics” into Clinical Practice

1.5.1 � Rapid Identification of Pathogens

Rapid and standardizable molecular identification systems have emerged during the 
last decade, with the development of sequence based species identification and 
sub-typing as the alternative to slow, labor-intensive and underpowered phenotypic 
techniques. Molecular identification usually relies on the detection of a single gene 
or multiple gene targets, or requires the comparison of whole microbial genomes. 
For example, in the pragmatic world of diagnostic bacteriology, conserved house- 
keeping genes such as the 16S rRNA gene, rpoB gene and others have been 
accepted as reliable targets. They are found in all microorganisms and show enough 
sequence conservation for accurate alignment as well as enough variation for 
phylogenetic analyses (Christen 2008). Furthermore, the 16S rRNA gene based 
phylogeny is sufficiently congruent with those based on whole genome approaches. 
Sequencing of six to eight genes or loci, as it typically done in multilocus sequence 
typing analysis, may constitute a reasonable compromise between single gene-
based and whole genome-based methods for species diversity studies.

To streamline the process of the translation of sequencing-based identification into 
clinical practice, the concept of the pathogen profile has been introduced (Sintchenko 
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et al. 2007). A pathogen profile is a single, multivariate observation or set of observa-
tions, comprised of classes of specific attributes (e.g., genome, transcriptome, proteome 
or metabolome data), which are designed to allow the interrogation of existing or future 
databases, and the integration of genomics and post-genomics data with clinical observa-
tions and patient outcomes. The profile may indicate the probability that a specific 
marker is associated with a clinically relevant phenotype such as in vivo antimicrobial 
resistance or high transmissibility. This information allows the classification of strains 
into “risk groups” for treatment failure or a propensity to cause outbreaks of infections. 
It is often important to capture the quantitative information about a pathogen, in vivo, i.e. 
viral or bacterial loads and their units of measurement. In contrast to traditional subtyp-
ing, which is based on phenotypic characteristics such as serotype, biotype, phage type 
or antimicrobial susceptibility, genetic profiling describes the phenotypic potential in the 
nucleic acid sequence. A pathogen profile is a synthesis of various markers and clinical 
end-points, which can be extracted from medical charts that characterize an individual 
patient’s clinical and public health outcomes. The profile may be heuristic, when only a 
single genetic marker is associated with a specific patient outcome, while more insights 
can be achieved when attributes from different levels of the biological hierarchy (i.e. gene 
detection, gene expression, metabolite profiles etc) corroborate and complement each 
other. Machine learning algorithms, such as E-Predict (Urisman et al. 2005), are being 
developed to identify viruses and bacteria present in clinical samples. These profiles are 
based on the microarray hybridization patterns or DNA sequences of pathogens.

1.5.2 � Guiding Antibiotic Prescribing Decisions

Many computerized evidence-based guidelines and decision support systems (DSS) 
have been designed to improve the effectiveness and efficiency of antibiotic prescribing 
(Samore et al. 2005; Buising et al. 2008). The most frequently utilized are electronic 
guidelines and protocols, especially for the empirical selection of antibiotics. The 
majority of DSS result in improvement in clinical performance and, in at least half of the 
published trials, in improved patient outcomes (Finch and Low 2002; Sintchenko et al. 
2007; Sintchenko et al. 2008a). The revival of interest in prescribing-decision-support 
reflects the recent change in emphasis from support for diagnostic decisions towards 
support for patient management, and the changing focus from systems targeting a broad 
range of clinical diagnoses to task- and condition-specific decision aids. Despite reported 
successes of individual applications, the safety of electronic prescribing systems in 
routine practice has recently been identified as an issue of potential concern.

Bioinformatics assisted prescribing has become a new frontier in reducing the com-
plexities of prescribing combinations of antimicrobials in the era of multidrug resis-
tance. The great diversity of mutational patterns contributing to antimicrobial resistance 
complicates the choice of optimal therapies. A range of bioinformatics tools to predict 
drug resistance or response to therapy from a genotype, have been developed to support 
clinical decision-making (Beerenwinkel et al. 2003; Lengauer and Singh 2006). These 
tools use either a statistical approach, in which the inferred model and prediction are 
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treated as regression problems, or machine learning algorithms, in which the model is 
addressed as a classification problem (Sintchenko et al. 2008a). A statistical learning 
approach to the ranking of therapeutic choices often relies on a direct correlation 
between the baseline microbial profiles, the therapeutic decision and the patient’s 
response to treatment (e.g., expected reduction in viral load resulting from anti-HIV 
combination therapy). For example, several susceptibility scores have been used for 
combination antiretroviral therapy. These take into account specific resistance muta-
tions and add up the activities of individual drugs in the regimen (Lengauer and Singh 
2006). Computer-assisted therapy depends on the availability of widely shared data-
bases that can correlate quality-controlled data from genotypic resistance assays and 
treatment regimens with short- and long-term clinical outcomes. Databases such ARDB 
(Liu and Pop 2009) capture differences in antimicrobial sensitivities and reflect varia-
tion in the amino acid composition of resistant microbes, but simply counting mutations 
may not be enough to predict functional differences, which affect treatment outcomes.

1.5.3 � Linking Genomics to Clinical Outcomes

The molecular profiling of pathogens is based on the concept that various pathogens 
can be associated with different clinical outcomes. It brings together the pathogen 
and host factors as the pathogenesis and natural history of infection are determined 
by both the pathogen and human genetic susceptibility. The effectiveness of 
combining host and pathogen genetics in a single system or “genetics-squared” has 
been proven in studies of viral infections (Persson and Vance 2007). Investigations 
of the impact of host genetics on the susceptibility to HIV infection and the rate of 
disease progression have mainly used a candidate gene approach to reveal associa-
tions with a number of different genes. The genome-wide association studies look 
at the genetic variation across the human genome in order to uncover factors not 
previously suspected of influencing infection outcomes. For example, this strategy 
identified variants of the HIV virus associated with differences in the control of 
viral load at set points and in disease progression. However, unraveling the interaction 
between the host and microbial genetic factors requires large clinical trials, 
reinforcing the role of collaborative networks and data repositories.

Informatics methods have become critical for data mining to decipher links between 
genetic variation and disease pathogenesis in order to define markers of disease pro-
gression, to guide the optimum use of therapeutics and to refine the drug and vaccine 
development (Mansmann 2005). A better understanding of the function of genes and 
other parts of the genome has enabled the reverse engineering approach, which may 
lead to the characterization and discovery of potential drug targets, vaccine candidates 
and diagnostic or prognostic markers (Davies and Flower 2007; Yang et al. 2008b). 
Proteins with essential biological functions present in multiple pathogens could be the 
best drug targets. Once the target genes essential for pathogen survival are identified, 
their susceptibility to specific compounds derived from large chemical libraries is 
examined in silico and in vitro (Muzzi et al. 2007; Biswas et al. 2008).
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1.5.4 � Tracing Pathogens with Epidemic Potential

Increases in the use of electronic medical records and the availability of information 
technology tools have created opportunities for the automation of surveillance and 
facilitation of surveillance based on either syndromic or disease-specific signals 
(Amadoz and Gonzales-Candelas 2007; M’ikanatha et al. 2007). The automation of 
data collection improves the time and completeness of surveillance and allows 
infection control professionals to focus on interventions (Hota et al. 2008; Young 
and Stevenson 2008).

The comparison of chromosomal sequences allows the identification of the 
unique genomic signatures of pathogens for the purposes of infection control and 
“microbial forensics.” Molecular typing methodologies, in contrast to classical 
phenotypic methods, allow the discrimination of variations among strains within a 
species, the elucidation of the route of contamination, the identification of the 
source of infection as well as the analysis of epidemics. The identification of the 
natural reservoir and any possible intermediate hosts of pathogens is critical for 
understanding the transmission modes, designing a long-term disease control strat-
egy, and preventing future reintroduction (Sintchenko and Gallego 2009). 
Bioinformatics assisted biosurveillance addresses the inefficiencies of traditional 
surveillance, as well as the need for a more timely and comprehensive infectious 
disease monitoring and control. It leverages on recent breakthroughs in the rapid, 
high-throughput molecular profiling of microorganisms and text mining, as well as 
on the growing electronic body of knowledge about the molecular epidemiology of 
pathogens with epidemic potential. Such a framework combines the genetic and 
geographic data of a pathogen to reconstruct its history and to identify the migra-
tion routes through which the strains spread regionally and internationally (Cantón 
2005; Sintchenko et al. 2008b). Computer-based geographic information systems 
(GIS) have offered an efficient way to visualize the dynamics of the transmission of 
infections, especially in the setting of a community outbreak (McKee et al. 2000; 
Schreiber et al. 2007).

Another way to track infectious diseases of public health concern is to monitor 
health-seeking behavior in the form of queries to online search engines used by the 
general public or health professionals. Epidemics of seasonal influenza in areas 
with a large population of Internet users have been successfully detected using 
Google search data and then correlated with visits to a doctor (Ginsberg et al. 2009; 
Brownstein et al. 2009). The advent of news aggregators has led to the development 
of new disease surveillance tools that can continuously mine, categorize, filter, and 
visualize multilingual online information about epidemics. The Global Public 
Health Intelligence Network (GPHIN), developed almost a decade ago by Health 
Canada in collaboration with WHO, HealthMap (http://www.healthmap.org/en) 
(Fig. 1.2) or Geosentinel (http://www.istm.org/geosentinel/main.html) among 
many others are examples of such early warning systems. Resources for infection 
prevention and control on the World Wide Web have been recently reviewed else-
where (Brownstein et al. 2009; Johnson et al. 2009)

http://www.healthmap.org/en
http://www.istm.org/geosentinel/main.html
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1.6 � Conclusions

The reductionist approach to biomedical research focusing on the study of cells and 
molecules has peaked with the sequencing of the human genome. However, it is 
becoming increasingly clear that “taking apart” analyses have reached their limit, 
and the time has perhaps come for integrative science (An and Faeder 2009). 
Developments in informatics have been critical in supporting and engaging with 
both reductionist and integrative paradigms. On one hand, informatics has equipped 
comparative genomics with tools to scrutinize genes and explore genetic polymor-
phisms. On the other hand, informatics has enabled the generation of integrative and 
testable hypotheses through the discovery of knowledge in databases and through 
the study of gene-phenotype connections between a pathogen and its host environ-
ment. A variety of data sets can be integrated, including the patient’s demographic 
and clinical presentation, the laboratory results, the pathogen’s gene regulation and 
expression, and metabolic maps with different parameters reflecting the phenotypic 
behavior of a pathogen and host factors. In early years some skeptics saw informat-
ics-assisted research as a distraction of effort and funding away from traditional 
hypothesis-driven inquiry. Since then, infectious disease informatics has verified its 
status as a platform for hypothesis generation and testing (Sintchenko et al. 2007).

New breakthroughs in infectious disease informatics (IDI) are the result of 
cross-pollination between different disciplines that use technologies to gather and 
disseminate knowledge (Fig. 1.3). Microbial genome sequence analysis and 
metagenomics have contributed intriguing new data types and data sources to IDI. 
Bioinformatics has brought to the IDI a range of analytic tools, databases and data 
standards. Conventional health informatics and computer science has provided high 
performance solutions for the data storage, sharing, analysis and visualization as 
well as clinical terminology libraries, data standards, decision support and technology 
evaluation frameworks. Importantly, the infectious disease informatics community 
has fed the lessons learnt from the implementation of clinical and public health 
systems back to the broader audience.

As the subsequent chapters of this volume testify, infectious disease informatics 
is set to lead to the more targeted and effective prevention, diagnosis and treatment 
of infections through a comprehensive review of the genetic repertoire and meta-
bolic profiles of pathogens. The post-genomic era offers new opportunities for the 
efficient discovery of safe and efficacious subunit vaccines by shortcutting the 
enormous economic burden of the experimental process. Our analytical capacity 
has already become the rate-limiting step in biomedical research. At the same time, 
it provides an opportunity to apply the engineering paradigm to biomedical 
research, thereby mandating the development of tools that can dynamically repre-
sent a body of current knowledge. However, the simplistic application of brute 
force computational power to massive reams of biomedical data is unlikely to result 
in meaningful mechanistic insight. It cannot be overstressed that informatics initia-
tives should compliment “wet laboratory” practices. An iterative loop of discovery 
and validation between the two methodologies remains the best way forward.
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