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Abstract: Arbuscular mycorrhizal (AM) fungi are root symbionts that provide mineral nutrients to
the host plant in exchange for carbon compounds. AM fungi positively affect several aspects of plant
life, improving nutrition and leading to a better growth, stress tolerance, and disease resistance and
they interact with most crop plants such as cereals, horticultural species, and fruit trees. For this
reason, they receive expanding attention for the potential use in sustainable and climate-smart
agriculture context. Although several positive effects have been reported on photosynthetic traits
in host plants, showing improved performances under abiotic stresses such as drought, salinity
and extreme temperature, the involved mechanisms are still to be fully discovered. In this review,
some controversy aspects related to AM symbiosis and photosynthesis performances will be discussed,
with a specific focus on nitrogen acquisition-mediated by AM fungi.
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1. Introduction

An enhanced photosynthetic efficiency might help achieve the sustainable yield increases required
to meet future food and energy demands, mainly considering the climate estimations for the coming
decades, with increased temperatures, drought and soil salinization that are also correlated to soil
degradation [1,2]. This scenario requests for more stress-tolerant and climate-flexible crops [3,4]. It is in
fact already known that plant photosynthetic efficiency is closely related to growth and development
traits [5]. The plant root system provides a unique ecological niche for soil microbiota that colonize the
rhizosphere, roots and to a certain extent above ground parts. This narrow layer of soil, which is under
the direct influence of plant roots, is considered one of the most complex ecosystems and a hot spot for
microbial activities [6]. Arbuscular mycorrhizal (AM) fungi are one of the most important groups of
plant symbionts and positively affect several aspects of plant life, i.e., improved nutrition, better growth,
stress tolerance, and disease resistance [7]. These fungi, which are obligate symbionts, provide mineral
nutrients to plants in exchange for carbon compounds (carbohydrates and lipids). Although substantial
amounts of resources are exchanged, the factors that regulate trade in the AM symbiosis are poorly
understood [8,9]. It has been suggested that an increased photosynthetic rate in leaves of mycorrhizal
plants might be due to enhanced rhizospheric sink strength or to a mycorrhizal-dependent increase in
the P status of AM plants grown at low P [10]. Increased total CO2 assimilation can be in fact linked
to an enhanced plant growth due to an improved nutrition, resulting in a higher concentration of
chlorophyll, photosynthetic enzymes, ATP, and inorganic P (Pi) in leaves that could stimulate rates of
photosynthesis. However, the fact that photosynthesis is also regulated by the source-sink relations
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of the plant should be keep in consideration. Quoting Jansson et al., 2018, photosynthetic uptake of
carbon in plants occurs in source tissues which are net exporters of photosynthate, such as mature leaves. Excess
photosynthate, mainly in the form of sucrose, moves from mesophyll cells to the phloem, where it is transported
to sink tissues, i.e., net importers of photosynthate, such as roots, seeds, stems, or young leaves, where it is
metabolized and/or stored. It is worth noting that up to 20% of photosynthates has been reported to
be released to the rhizosphere, through exudation but also as secretions and root epidermal cells [3].
The role of AM symbiosis as carbon sinks for plants has been already reported [11–13], suggesting a
role for this group of fungi in increasing rhizospheric sink strength, and thus enhancing photosynthesis
in source leaves. However, it was recently reported that substantial amounts of photosynthetically
fixed C did not allocated to fungal symbionts supplementing the soil with a commercial AM fungal
inoculum [14]. Despite these contrasting data, looking at transcriptomics and proteomics data from
leaves of AM plants, the up-regulation of genes and proteins involved in photosynthesis and related
processes has been reported in wheat [15]. Particularly, genes and proteins related to RuBisCO large
subunit-binding protein, Photosystem II 10 kDa polypeptide, Sucrose synthases and a cell wall invertase,
involved in the sucrose cleavage yielding UDP-glucose and fructose, have been found to be induced
by AM symbiosis [15]. Moreover, proteomics highlighted the accumulation of a ferrochelatase-2 (FC2),
producing heme for the photosynthetic machinery, two delta-aminolevulinic acid dehydratases that are
implicated in chlorophyll biosynthesis, in addition to proteins involved in photosystem II repair such
as two peptidyl-prolyl cis-trans isomerases (PPIases) and a Protease Do-like 5 [15]. Additionally, three
genes belonging to the photosynthesis category (i.e., two genes with a role in the light reactions and
one gene related to Calvin cycle) have been found to be mycorrhizal-responsive in tomato leaves [16].
Recently, physiological and transcriptomic data showed that AM symbiosis attenuated the reduction
of photosynthetic CO2 assimilation rate and the downregulation of photosynthesis-related genes due
to cucumber mosaic virus infection [17]. However, different studies that investigate AM symbiosis
and plant performance are mainly related to the improvement in tolerance to abiotic stresses [18,19].
Recently, Li et al. [20] showed through transcriptomics that 24 differentially expressed genes (DEGs)
related to photosynthesis and respiratory metabolism were regulated during symbiosis upon low
temperature stress, providing new findings into low temperature tolerance mediated by AM fungi.
In detail, AM root colonization had positive effects on low temperature tolerance, impacting the
expression of genes correlated to light harvest complex (LHC) and photosystems PS I and PS II.
Overall results suggested a PS I and PS II photoinhibition alleviation coupled to a decrease in ROS
production and accumulation, in addition to an impact on the CO2 assimilation capacity to produce
more adenosine triphosphate (ATP), which is important for photoreactions, under low temperatures.
In this review, some debate aspects related to AM symbiosis and photosynthesis performances will be
discussed, with a specific focus on nitrogen acquisition—mediated by AM fungi.

2. AM Symbiosis-Mediated Nitrogen Acquisition in Plant

2.1. Nitrogen Use in Agricultural Practices and Biological Significance in the Plant Life

In the twentieth century, agronomic and plant nutrition practices profoundly changed with a
widespread use of fertilizers and advances in breeding techniques for high-yielding crops production,
known as the ‘Green Revolution’ phenomenon [21,22]. Thanks to the (bio)technological and scientific
advances over this period, new crop varieties, together with synthesis of new pesticides, herbicides
and inorganic fertilizers, allowed unprecedented yield increase and agricultural modernization [23].
With the enhancing in above ground weight, an increased photosynthate allocation was obtained,
leading to a more efficient photosynthesis use. The crops developed during the Green Revolution were
domesticated plants selected specifically to respond to fertilizers and produce an increased amount
of grain per acre planted. Among fertilizers, the chemically synthesized nitrogen (N) was the main
player, considering that its production via the Haber-Bosch industrial process accounted for about
2% of world’s annual energy output [24]. This massive production posed risks for environment and
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human health and once applied lead to soil quality loss [25,26]. Considering the ongoing climate
changing and the consequent predicted stress scenarios that includes novel plant pathogens, intense
abiotic stresses (e.g., drought and salinity) and low availability of organic N and phosphorus fertilizers,
novel environmental friendly management options (e.g., smart-climate agriculture, including crop
diversification and the use of beneficial root-associated microorganisms) are under scrutiny [26,27].
In detail, the final goal of research and industry efforts, would provide an improved N use by crops.
The so called N use efficiency (NUE), is commonly defined as the grain or biomass crops yield per
unit of N in the soil and its improvement is referred to three major targets: plant breeding, alternative
and sustainable agronomic practices and exploiting beneficial effects of microbes inhabiting soil and
plant tissues [18] and references therein. Despite the difficulties in dissecting the ecosystem services of
beneficial microbes living together in a complex system, thanks to the Next Generation Sequences (NGS)
approaches, a huge diversity of microbial communities and their putative roles in crop adaptation
strategies and mineral nutrition, (including N cycle) were discovered [28–32].

Plants take up their N predominantly through the roots in different forms, such as nitrate (NO3,
mobile in soil and mostly used by plants in arable lands), ammonium (NH4

+, form much less mobile
in soil and preferred in acidic and anaerobic conditions as for rice plants) or amino acids. The root
N uptake can happen directly by means of plant transporters [33,34] and/or indirectly by beneficial
microbes associations (e.g., AM fungi) [7,8,35,36].

During the vegetative seasons, roots, shoots and young leaves are sink organs for nitrogen, while in
the later growth stages (usually after the flowering phase) a re-mobilization of N takes place and both
leaves and roots become source organs of amino acids [37]. In general, since the leaves are the main
site with nitrate reductase activity in plants, it is well known that plants with low N content appear
suffering with smaller and lower number of leaves and premature senescence with respect to those
fertilized [38,39]. Additionally, N availability also affects the plant hydraulics; for example, sunflower
plants grown in substrate with low N content showed hydraulic conductance impairment, but, once
supplied with nitrate fertilization, the hydraulic conductance quickly recovered [40]. Although further
studies are needed to deepen this aspect, the conductance increase was likely due to the activation of
aquaporin channels mediated by nitrate application [40,41].

Looking at photosynthesis, a strong correlation between N and photosynthetic performances
have been reported since the 80 s [42], this because N is one of the main component of chlorophyll,
photosynthetic-related enzymes, photosystem proteins and other proteins localized in the chloroplasts
membranes. In this line, a direct relation between N content, CO2 assimilation rate, chlorophyll content
and Rubisco activity have been previously reported in [29,36] and references therein. For these reasons,
since the assimilation rate has been measured for many plant species, by combining nitrogen content
and leaf dry mass, it is possible to predict, by means of model applications, the photosynthetic capacity
of natural ecosystems [43–45].

In the optic of sustainable crop management to improve NUE, over the last decades many
researches have been performed using transgenic plants (GMOs) or agronomic techniques with limited
translational success as a consequence of the strong restrictions and public concerns of GMOs in many
countries [6]. For these reasons, in the last few years several researchers focus their attention to study
the roles played by beneficial microbes on plant N acquisition [46]. It is well known that microbes carry
out essential reactions to convert the different forms of N, thus contributing to the N cycle, although
most of the reports present in literature refer to N2-fixing bacteria and archaea [47]. More recently the
impact of AM symbioses in mediating N uptake to its host become increasingly relevant, as further
detailed in the section below.

2.2. AM-Mediated Effects in Soil N-Cycling and Plant Acquisition

Nowadays it is well recognized that AM symbioses are able to provide many ecosystem services
to their hosts, including nutrients transfer from the soil (e.g., P, zinc, copper), although less importance
to N cycling and acquisition have been imputed to AMF [26].
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However, AM fungi may affect directly or indirectly N-cycling processes in the soil. Firstly,
AMF leads to modifications of soil aggregates and aeration that in turn could influence nitrification/

denitrification processes and reduce leaches of inorganic N [8,48]. Moreover, their presence could
also affect soil pH and consequently the N availability for the surrounding plants and microbes [49].
In terms of microbial structure and diversity, it is well established that AM root colonization could
result in shifting the microbial community in the rhizosphere and in the surrounding bulk soil by
means of both fungal and AM-mediated root exudates. This can favor the recruiting of some bacteria
genus (e.g., Azospirillum, Pseudomonas) influencing directly or indirectly soil N-cycling processes [50].

On the fungal side, AM fungi are able to actively uptake both NO3
− and NH4

+ forms, but since the
reduction of NO3

− to NH4
+ is an energy-requiring process, AM fungi prefer to take up the NH4

+ form.
They encode for both ammonium transporter (AMT) genes and NO3

− transporter (NT) gene(s) [51].
Additionally, as revealed by molecular and 13C and 15N labelling experiments, AMF are capable
of taking up and transferring a huge amount of organic N forms—for example, free amino acids
(e.g., glutamine, aspartic acid, arginine, proline) or small peptides to their hosts [52–54]. Once N has
been transferred into the fungal cytoplasm, it is translocated into the intraradical hyphae via vacuole
and the NH4

+ form is released in the apoplastic compartment [55–58]. The latter is thus assimilated and
transformed into amino acids, mainly by the glutamine synthetase-glutamate synthase (GS-GOGAT)
pathway [58,59]. In the case of NO3

− uptake by AM fungi, it is subsequently converted by several
enzymatic reactions in NH4

+. As cited before, in non-colonized plants, NO3
− reduction mainly occur

in the leaves, while in AM plants it mainly happens in the roots (Figure 1) [60]. In addition, it has been
also demonstrated that GS and GOGAT activities were significantly higher in AM-colonized plants
with respect to the non-colonized ones [42,43], further underlying the considerable roles that AM
symbiosis plays for N assimilation in their plant hosts. More recently, it has been reported that chitin
could represent a significant N source for the AM fungi. Chitin, together with cellulose, represent the
most abundant polymers in nature, with high content in N and largely present in soil micro-, meso-
and macrofauna [41,61]. Bulkovskà and colleagues [62], used 15N-labelling technique demonstrating
that a large fraction of organic N from chitin has been transferred to the colonized plants in few
weeks. Interestingly, genes encoding for the chitin monomer N-acetylglucosamine transporters and
metabolism have been documented in Rhizophagus irregularis. These findings opened new questions
about the potential AM fungi-chitinolytic capacity and the consequent N uptake that still remain to be
addressed [26,63].

On the plant side, the final step of AM-mediated nutrients transfer to the host occurs in the
periarbuscular membrane, probably by transmembrane transporters that allow their delivery into the
cortical cells [64]. It is not yet clear how the plants take up the ammonium released by the AM fungi,
although several AM-induced plant ammonium transporters (AMTs) and an aquaporin potentially
involved in ammonium uptake have been discovered in many plant species (e.g., Lotus japonicus,
tomato, Sorgum bicolor) [65–67]. For example, the first plant AMT gene (LjAMT2;2) activated during
AM symbiosis was characterized in L. japonicus and it is able to transport the NH3 molecules as revealed
by the Xenopus laevis oocytes assay [65]. Looking at NO3

− transporters, three families have been
characterized in plant (NRT1/NPF, NRT2 and NRT3). The AM-induced NO3

− transporters belonging to
the NRT1/NPF and NRT2 families have been identified in several plants [68–71]. However, the role(s)
of these AM-induced NRTs needs yet to be elucidated using functional genomics and subcellular
localization approaches. Additionally, as mentioned before, high levels of several amino acids have
been reported in mycorrhizal roots, suggesting an active amino acids transfer by AMF to their colonized
hosts. In this line, three members belonging to the amino acid permease (AAP) family have been found
upregulated only in AM samples of L. japonicus roots [70,72]. Interestingly, the LjLHT1.2, an amino
acid transporter (AAT) gene, encoding for a Lysine-Histidine-Transporter (LHT), was found strongly
upregulated in AM cells and the heterologous expression assay confirmed its amino acid transporter
competence [53].
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Figure 1. Schematic overview of some biochemical responses to drought, nitrogen uptake, translocation
and reduction in AM-colonized and non-colonized plants. The most relevant aspect related to plant
nitrogen uptake is the site where nitrate (NO3

−) is reduced to ammonium (NH4
+): when an AM

symbiont is present, the reduction takes predominantly place in the roots, while without the AM
symbiont it mainly happens in leaves. Glutamine synthetase-glutamate synthase (GS-GOGAT) pathway
is involved in the transformation of NH4 ions into amino acids and results more active when AM
fungi are present. Similarly, the root hydraulic conductivity (L0), the photosynthetic activity, the main
physiological and biochemical parameters are enhanced in the AM-colonized plants. Blue words
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represent biochemical responses that occur when the AM-colonized plant is under drought and which
are significantly different from non-colonized plant. Green arrows indicate an increase in content/rates
whereas red arrows represent a decrease in content/rates respect to non-colonized plants. Ψleaf: leaf
water potential; gs: stomatal conductance; E: transpiration rate; ROS: reactive oxygen species; ABA:
abscisic acid.

In summary, the AMF mycelium represents a sizable N sink for itself and the host plant with
consequent competition between the symbiotic partners for N resources when subjected to N-limited
conditions. This stress could lead to a shift in the relationship from mutualistic up to parasitism under a
severe N limited conditions [73]. Conversely, excessive N supply could decline AM fungal colonization
in the roots [74,75], suggesting that N content in soil could also strongly affects the functioning of AM
symbiosis as well as the root colonization rate. On the other hand, only when N demand by the fungus
has been satisfied do the AMF responses become positive for the plant [76].

In the future, a promising strategy to improve plant N nutrition could involve both bacteria and
AM fungi, favoring the establishment of so-called tripartite associations [77]. In some cases, it has
been found AMF associate with other microbes (mostly with bacteria) with beneficial or detrimental
effects to AMF, although such relationships are not well characterized yet [78,79]. These interactions
seem to involve fungi exudate products that are able to attract and recruit bacteria that, in turn,
facilitate the fungal access to the nutrients. An example has been reported for the phosphate present
in soil that was solubilized by some bacteria, thus improving both fungal and plant P nutrition [80].
In this line, a recent report showed that an AMF inoculum combined with a microbial consortium
isolated from non-fertilized soils, leads to N uptake improvement in Brachypodium dystachion [81].
In addition, several plant-associated fungi, including AMF, are often colonized by endosymbiont (e.g.,
diazotrophs) that can provide additional N to the fungus, thus ameliorating plant N acquisition and
physiological performances, particularly under poor fertilized soil environments [77,82,83]. Recently,
de Novais and colleagues [84] demonstrated that the wide network of extraradical mycelium (ERM) in
the soil can facilitate translocation and associations of beneficial bacteria (e.g., nitrogen-fixing rhizobia)
and fungi to the colonized-plants, as also observed in AM-colonized fenugreek plants under water
deficit conditions [79]. Interestingly, it has been recently reported that AM symbiosis can modify the
physiology and the environment of the host plant leading to an enhanced nutrient uptake, without a
direct phosphorous (P) contribution through the fungal hyphae. It has been suggested that P probably
increased in colonized plants for a change in the composition of soil microbial community [14].

These findings further highlight the great ecological importance of AM fungi in natural- and
agro-ecosystems. In fact, the above cited ERM network, can connect roots of different plant species
enabling nutrient (N and P in particular) transfer from one plant (donor) to another (receiver) depending
on the biomass strength, functioning as an unique super-organism [85,86].

3. Linking Root-Colonization by AM Fungi to Plant Water Relations, Biochemical and
Photosynthetic Performances

In the optic of sustainable crop management, the improvement of water use efficiency (WUE) is
another important target to maintain crop yield and reduce water consumption. Since under drought
the uptake of nutrients by roots and their translocation to aerial parts is impaired by low soil water
availability, the AM symbiosis has been widely utilized to improve plant performance under drought
conditions, both in natural- and agro-ecosystems [87–92]. It has been shown that AMF symbiosis
increases plant water content by the mycorrhizal root system through extra-radical phase [93,94].
Indeed, AM hyphae can obtain water resources from the soil both by exploring micropores not accessible
to plant roots and by affecting soil structure stability [95,96]. As a consequence, the resistance to water
movement through the soil, also in areas outside of the root zone, is reduced and plant water uptake
results are facilitated [37,89,97] (Figure 1). A further beneficial effect on plant water relations may derive
from an improved AMF-mediated P uptake [98] or, as suggested by Hoeksema et al. [99], from different
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N:P ratios in mycorrhizal plants compared to non-inoculated ones. More recently, Quiroga et al. [100]
reported that N fertilization with either ammonium or urea increased net photosynthesis (AN) and
stomatal conductance (gs) in plants maintained under well-watered conditions, with an increase in AN

under high NH4
+ supply in AM-colonized plants with respect to non-AM plants. However, fourteen

days after drought stress imposition, these parameters decreased in AM plants fertilized with high N
doses. These results have been correlated to a differential regulation of aquaporins both regulated by
N status and AM symbiosis, suggesting a possible role in the AM-mediated plant N homeostasis that
requires further analyses.

In addition to these direct mechanisms which affect the availability of water and nutrient
uptake, several molecular and biochemical mechanisms have been proposed to explain the enhanced
performance upon drought mediated by AM symbiosis in the host plant. At root level, the establishment
of the AM symbiosis induces extensive alterations in root morphology and physiology, and these
changes are likely to be controlled by specific gene expression pattern in the host plant [101]. In
addition to nitrate transporters and plant glutathione-S-transferases (GSTs), several studies have
shown the up-regulation of some aquaporin genes induced by mycorrhizal colonization [66,102–104].
Aquaporins are ubiquitous membrane proteins involved in the maintenance of plant water homeostasis
facilitating the flux of water and small solutes [105–107]; however, the role of aquaporins in AM
symbiosis may be not only restricted to regulate plant water status. Among these roles, AM-regulated
aquaporins may be involved in the plant mobilization of N forms (see Section 2.2), such as ammonium
and urea [100]. In addition, in a study on AM symbiosis in maize plants under drought, Bárzana
et al. [108] have shown the upregulation of some plant aquaporins belonging to the family of the
tonoplast intrinsic proteins (TIPs) which can transport H2O2. Since H2O2 is a key signalling molecule
produced under both biotic and abiotic stresses, this evidence suggests that TIPs could play a key
role in the detoxification of excess H2O2 generated under stress conditions [109]. Regarding the
regulation of plant water status, Watts-Williams et al. [110] have suggested that the up-regulation of
root aquaporin expression in AMF inoculated plants leads to a significant increment in root hydraulic
conductivity (Lo) in several accessions of Medicago truncatula. The increment in Lo was positively
correlated to the percentage of colonization, thus likely indicating a switching from the cell-to-cell
pathway to the apoplastic pathway during the growth of AM colonization [111]. The higher Lo,
regulated by specific root aquaporins in AM plants, may explain the maintenance of higher stomatal
conductance (gs), transpiration rate, relative water content and water potential (Ψw) observed in
mycorrhizal plants at low soil water content compared to non-mycorrhizal plants [112–117] (Figure 1).
The higher foliar water status characters observed in AM plants under drought were also associated
with a lower concentration of abscisic acid (ABA) in roots, xylem sap and leaves [114,118]. Since the
hormone ABA increases under drought to prevent excessive water loss, such differences indicate that
AM plants perceived the water deficit conditions less than their non-mycorrhizal counterparts [119].
The maintenance of a higher gs in AM plants can be helped not only by the higher water influx from
the roots to the shoot, but also by an active osmotic adjustment observed in leaves of AM plants
e.g., [117]. The accumulation of the osmolytes depends on the AM-plant interactions and may involve
both soluble sugar, proline and inorganic ions, mainly K+ and Cl− [118,120–124]. Regarding the release
of soluble sugars, this process results increased in leaves of mycorrhizal tomato plants through the
upregulation of the genes coding for the vacuolar invertase TIV1 and the cell wall invertase LIN6,
which both cleave sucrose into fructose and glucose [16]. This evidence suggests that genes involved in
the accumulation of soluble sugars are relevant to how leaves respond to mycorrhizal colonization and
further studies will be needed to investigate the regulation of the additional pathways involved in the
release of osmolytes during AM symbiosis. Indeed, the net accumulation of osmotically active solutes
has a key role in the maintenance cell turgor, which allows important processes such as cellular growth
and photosynthetic performances, as recently observed by Mo et al. [125], which reported higher
Rubisco activity in AM inoculated watermelon seedlings than non-inoculated ones under drought.
These authors reported a considerable reduction in the AN of watermelon seedlings under water
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limitation conditions, with an alleviation of the negative effect due to the AM symbiosis, in agreement
with previous studies [126,127]. Suppression of photosynthesis in drought conditions can be correlated
to stomatal limitation and/or non-stomatal/metabolic limitation [128]. Mo et al. [125] suggested that
the difference in photosynthetic efficiency between watermelon mycorrhizal and non-mycorrhizal
seedlings was probably due to non-stomatal rather than stomatal limitation. These authors reported
that although the maximum photochemical efficiency of PSII (Fv/Fm) was negatively affected by
water limitation, this variable was significantly higher in the leaves of the mycorrhizal watermelon
plants compared with the non-mycorrhizal one. This result, together with the higher Fv/Fm, electron
transport rate (ETR), photochemical (qP) and non-photochemical quenching (NPQ) and the lower
induction of two genes involved in the process of chlorophyll breakdown (i.e., PAO and PPH genes)
in AM-colonized plants under drought stress compared to non-colonized plants, suggested that root
colonization by AM fungi can reduce damages and sustain the efficiency of PSII photochemistry
at a relatively high level. RuBisCO activity is correlated with the expression of genes encoding for
small (rbcS) and large (rbcL) RuBisCO subunits and depends on the activity of RuBisCO activase
(RCA) [129]. Chen et al. [130] reported that the AM fungal colonization of cucumber roots, in addition
to leading to an improved CO2 assimilation and gas exchange parameters, positively affected activities
and gene expression of a range key enzymes in Calvin cycle, such as RCA, FBPase, FBPA, SBPase,
rbcS and rbcL genes. The same authors also reported a significantly higher chlorophyll content in
AMF-inoculated plants that was accompanied with an increased N status in the roots. Because
chlorophyll molecules trap N, the enhanced N uptake related to AM colonization might be correlated
to the higher chlorophyll contents in the AM-colonized plants compared to non-mycorrhizal ones [131].
Additionally, the increased chlorophyll contents in AM-colonized plants has been also associated with
increased P and Mg uptake [132,133]. Since gs and chlorophyll content both increased in AM-colonized
plants, both stomatal and non-stomatal factors have been suggested to be involved in the photosynthesis
improvement in cucumber seedlings [130]. However, in addition to opening and closing the stomata,
plants may exert control over their gas exchange rates by varying stomata density in new leaves.
Chitarra et al. [118] showed that the tomato root colonization by the AM fungus Rhizophagus intraradices
determined a higher stomatal density, increasing the plant CO2 absorption capacity, in agreement
with the significantly higher AN measured in these plants both under irrigated and water stress
conditions in respect to uncolonized plants, which were also directly correlated with intrinsic WUE
values. It has been also suggested that inoculation with multiple mycorrhizal fungi, genetically distant,
might induce higher photosynthetic ability and nutrient uptake in AM plants, and consequently lead to
enhanced plant biomass, with respect to a single inoculum or to closely related AM fungal species [130].
It has been also reported that AM fungal colonization can enhance salinity tolerance by increasing
photosynthetic capacity, water status and K+/Na+ homeostasis. Upon saline conditions, black locust
AM fungal colonization significantly improved the net photosynthetic rate, quantum efficiency of
photosystem II photochemistry, as well as the expression of three chloroplastic genes (RprbcL, RppsbA,
and RppsbD) with respect to non-mycorrhizal plants [133]. A proteomic analysis on Phragmites australis
under metal-stressed conditions also showed that photosynthetic changes due to AM colonization
mainly involved the up-regulation of transmembrane protein-pigment complexes CP43 (photosystem
II) and FNR (ferredoxin-NADP+ oxidoreductase related to photosynthetic electron transport) [123].
Interestingly, a meta-analysis on the effect of AM fungi on plant tolerance to salt stress [19] suggested
that, in terms of photosynthetic pathway, mycorrhizal C3 plants more positively responded in terms
of gas exchange compared to C4 plants. This has been reported also by Li et al. [134], that showed
an AM-mediated drought tolerance higher for a C3 species than that for the C4 species under both
light and moderate water stress conditions, suggesting that that AM fungi might have an important
role in shaping plant community composition, favoring more C3 species than C4 species under
drought. The higher photosynthetic efficiency, primarily obtained through increasing gas exchange
capacity and the PSII efficiency (Figure 1), may derive also from a lower oxidative damage and
higher membrane stability observed in AM plants [95]. In fact, in plants subjected to water limitation,
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the mycorrhizal colonization can reduce leaf H2O2 content and lipid peroxidation [135], while increases
activities of specific antioxidant enzymes, in particular of some Mn-SOD (superoxide dismutase)
isoforms [118,136–138]. The overall effects attributed to AM symbiosis to alleviate the deleterious
effects of osmotic stresses by elevating the activities of antioxidant enzymes in leaves and shoots have
also been confirmed by studies conducted on salinity stress [125,139]. These biochemical observations
were recently confirmed on shoots of S. cannabina seedlings exposed to salinity stress by qRT-PCR,
in which in Ren et al. [140] found increased expression levels of genes related to SOD, catalase (CAT) and
glutathione reductase (GR). As a consequence, the AMF-mediated maintenance of redox homeostasis
in osmotic stressed plants leads to the protection of the major metabolic pathways, including the
biosynthesis of chlorophyll and carotenoids, which contribute to preserving the photosynthetic process
under stress conditions [141]. The overall effects attributed to AM symbiosis to alleviate the deleterious
effects of osmotic stresses also include the activation of ROS scavenging non–enzymatic pathways, such
as polyphenols [142,143]. However, while the accumulation of polyphenols in the roots of mycorrhizal
plants has been reported in several studies [128,144], the influence of AM colonization on polyphenol
biosynthesis in plant leaves has been poorly investigated [145,146]. Further studies aimed at the
molecular and functional characterization of genes related to secondary metabolites in different plant
tissues will be required to highlight the role of these molecules in water stress tolerance induced by
AM symbiosis. Additionally, considering that the involvement of aquaporins (AQPs) in stomatal
conductance, transpiration and photosynthesis has been suggested [147], it could be also interesting to
verify if AM symbiosis might systemically affect the regulation of specific AQP isoforms acting in the
guard cells and/or subsidiary cells.

4. Conclusions

Although several advancements in the knowledge of the role of AM symbiosis in the enhanced plant
performance have been done, comprehensive mechanisms must be still investigated using quantitative
physiological tools. In recent years, high-throughput plant phenotyping (HTPP) strategies have
been widely developed to evaluate the plant performance, including both growth and physiological
traits, with the aim to improve the sustainability of agricultural production through the identification
of crop genotypes adapted to future climatic conditions. Although several studies have already
been conducted on the impact of AM fungal colonization on phenotypical traits, the knowledge on
AM-mediated photosynthesis mechanisms and on the role of this fungi in NUE is still patchy and
limited information is available on the response of different genotypes to AM symbiosis. For this
reason, the integration of the HTPP strategies—which allow us to measure a high number of plant
individuals at the same time—in AM symbiosis studies might represent a promising tool to exploit
these beneficial root associations for future breeding programs and sustainable agricultural practices.
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