
Genetic variants associated with mosaic Y chromosome loss 
highlight cell cycle genes and overlap with cancer susceptibility

Daniel J. Wright#1, Felix R. Day#1, Nicola D. Kerrison#1, Florian Zink#2, Alexia Cardona1, 
Patrick Sulem2, Deborah J. Thompson3, Svanhvit Sigurjonsdottir2, Daniel F Gudbjartsson2, 
Agnar Helgason2, J. Ross Chapman4, Steve P. Jackson5,6, Claudia Langenberg1, Nicholas 
J. Wareham1, Robert A. Scott1, Unnur Thorsteindottir2,7, Ken K. Ong1,8, Kari 
Stefansson#2,7, and John R.B. Perry#1

1MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK 
2deCODE genetics/Amgen, Inc., IS-101 Reykjavik, Iceland 3Centre for Cancer Genetic 
Epidemiology, Department of Public Health and Primary Care, University of Cambridge, 
Cambridge, UK 4Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK 
5Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, 
UK 6Department of Biochemistry, University of Cambridge, Cambridge, UK 7Faculty of Medicine, 
University of Iceland, Reykjavik, Iceland 8Department of Paediatrics, University of Cambridge, 
Cambridge, UK

# These authors contributed equally to this work.

Abstract

The Y-chromosome is frequently lost in hematopoietic cells, representing the most common 

somatic mutation in men. However, the mechanisms regulating mosaic loss of chromosome-Y 

(mLOY), and its clinical relevance, are unknown. Using genotype array intensity data and 

sequence reads in 85,542 men, we identify 19 genomic regions (P<5x10-8) associated with mLOY. 

Cumulatively, these loci also predicted X-chromosome loss in women (N=96,123, P=4x10-6). 

Additional epigenome-wide methylation analyses in whole blood highlighted 36 differentially 

methylated sites associated with mLOY. Identified genes converge on aspects of cell proliferation 

and cell-cycle regulation, including DNA synthesis (NPAT), DNA damage response (ATM), 

mitosis (PMF1-CENPN-MAD1L1) and apoptosis (TP53). We highlight shared genetic 

architecture between mLOY and cancer susceptibility, in addition to inferring a causal effect of 

smoking on mLOY. Collectively, our results demonstrate that genotype array intensity data enable 
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a measure of cell-cycle efficiency at population scale, identifying genes implicated in aneuploidy, 

genome instability and cancer susceptibility.

Introduction

For over a century, errors in cell division have been described which result in too few or too 

many chromosomes in daughter cells, a cytogenetic feature termed aneuploidy. Although a 

well-established feature of human cancer cells, it remains unclear whether acquired 

aneuploidy is a cause or consequence of tumorigenesis. Research into the molecular 

mechanisms of aneuploidy has focussed largely on the role of mitosis and mitotic 

checkpoint signalling, primarily in cellular and animal models1,2. Recent human genomic 

studies have shown that aneuploidy can be estimated using intensity data from standard 

genotyping arrays; an approach validated by DNA sequencing3–5. These population-based 

studies demonstrate that mLOY is more frequent than other mosaic chromosomal and 

structural mutations: indeed, around 1 in 5 men over 80 years of age has detectable Y 

mosaicism in whole blood-derived DNA4, reflecting the capacity of some cells to survive 

without this chromosome.

Although a common feature in the general population, it remains unclear whether mLOY is 

relevant to disease susceptibility, or whether cells in tissues other than peripheral blood 

undergo similar rates of chromosomal loss. Population studies have identified correlations 

between mLOY and smoking status, an association which appears transient and reversible 

after smoking cessation6. Such epidemiological studies have also identified associations 

with non-hematological cancers4,5 and Alzheimer’s disease7; however, these observations 

are inconsistent3 and possibly subject to confounding or reverse-causality.

The ability to assay a common measure of aneuploidy in large array-genotyped populations 

could enable systematic identification of variants/genes involved in cell division errors. This 

would in turn enable a better understanding of the mechanisms involved, and the potential 

causal consequences of aneuploidy on cancer risk, inferred using Mendelian randomisation 

approaches. To date, a single genomic association with mLOY near TCL1A has been 

reported (N=12,369), suggesting that germline variation influencing mosaic chromosome 

loss can be detected3. Here, we use data in up to 85,542 men, highlighting widespread 

genomic, transcriptomic and epigenetic signatures of mosaic Y chromosome loss. We also 

demonstrate that this approach can successfully identify genes implicated in cell cycle 

regulation, genome instability and cancer susceptibility.

Results

As a proxy for mLOY, we estimated mean intensity log-R ratio of all array-genotyped Y-

chromosome SNPs (mLRR-Y) in a sample of 67,034 male participants from the UK 

Biobank cohort (UKBB)8. A normal distribution centred around zero was observed 

(standard deviation = 0.067), with negative values indicating reduced Y chromosome 

abundance in the clonal blood cell population (Supplementary Figure 1).
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Consistent with previous reports3,6, we observed a strong negative correlation between 

mLRR-Y and age (r=-0.21). A strong association with ‘ever smoking’ status was also 

observed (P=3.05×10-82), which in combination with age explained 4.74% of the trait 

variance (age alone = 4.45%). We sought to demonstrate the causal relationship between 

smoking and mLOY through the principle of Mendelian randomization, using a reported and 

widely used genetic instrument for smoking frequency9. By modelling genetic variants 

robustly associated with cigarettes smoked per day at the CHRNA5-CHRNA3-CHRNB4 
nicotinic receptor locus, we inferred a causal effect of smoking on decreased mLRR-Y 

(increased Y loss) (rs1051730 P=0.03 [Pnever-smokers=0.41, Pever-smokers=0.04]). This genetic 

association was confirmed in independent replication samples (EPIC Norfolk and deCODE 

combined N=18,508, P=0.009, overall combined P=0.004).

Many autosomal genetic variants are associated with mLOY

To identify novel genetic variants associated with mLOY, we performed a genome-wide 

association study of mLRR-Y as a quantitative trait in UKB. After stringent quality control 

(see Methods), the most significantly-associated SNPs were located at the previously 

reported3 mLOY locus, TCL1A (P=3.6x10-23). In addition, we identified a further 18 novel 

signals at genome-wide significance (P<5x10-8), with no evidence for significant inflation of 

test statistics genome-wide (lambda=1.05) (Supplementary Figures 2 and 3). Replication 

was subsequently performed in an independent set of 9,793 men with array intensity data, in 

addition to 8,715 men from deCODE with Y loss estimated using sequence reads (see 

Methods). Both replication datasets provided strong statistical support for the identified loci, 

with all 19 loci retaining genome-wide significance in a combined model (Table 1). As 

evaluated in the deCODE data, these loci cumulatively explained 2.7% of the total variance 

in Y chromosome copy number. We estimated an overall heritability of 34% (25.2-42.4%), 

suggesting many additional associated variants remain to be discovered.

We next used HaploReg10 and sequence data from the deCODE study to functionally 

annotate identified variants and genes. This highlighted four signals containing highly 

correlated missense variants, implicating MAD1L1 (rs1801368, r2>0.98), PMF1 
(rs1052053, r2=1), NREP (rs11559, r2=0.74) and NPAT (rs2070661, r2=0.97) as potential 

candidates.

To ascertain whether the identified signals are more likely to reflect gain or loss of Y 

chromosome material, we performed two analyses comparing the bottom and top 5% of 

mLRR-Y ranked individuals to the median 25%, as a dichotomous indicator of extreme Y-

chromosome loss or gain. All nineteen loci exhibited consistently stronger associations with 

the bottom 5% of mLRR-Y (greatest mLOY) than with the top 5% (Supplementary Table 1), 

suggesting their impact was on mosaic Y chromosome loss rather than gain. Analysis of 

mLRR-Y as a continuous trait across all individuals was, however, the most powerful 

approach for variant discovery, as only two of the signals reached genome-wide significance 

in the stratified analysis.

Genome-wide pathway analyses conducted on association results for continuous mLRR-Y 

highlighted five pre-defined biological pathways enriched for association (study-wise 

significant FDR<0.05), the most significant of which was ‘Apoptosis’ genes defined per the 
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Kyoto Encyclopaedia of Genes and Genomes (KEGG)11 (Supplementary Table 2). Other 

significant pathways included sulphur metabolism, susceptibility to colorectal, prostate and 

thyroid cancers, and progesterone-mediated oocyte maturation.

The impact of mLOY variants on X-chromosome loss in women

We next sought to understand whether our identified variants acted only on the Y 

chromosome, or promoted aneuploidy of other chromosomes more generally. Using a 

combined sample of 96,123 women from three studies, we ascertained X chromosome loss 

via both array intensity data (N=86,843) and sequence reads (N=9,280, Figure 1). 

Chromosome X copy number was estimated to have a heritability of 26% (17.4-36.2%) in 

the deCODE data; comparable to that of Y chromosome loss. Cumulatively, the 19 Y loss 

SNPs significantly predicted X loss in women, with the expected direction of effect (Figure 

2, P=4x10-6).

Identifying transcriptomic and epigenetic signatures of mLOY

To identify potential functional transcripts mediating Y chromosome loss, we performed 

summary statistic approaches to infer gene expression associations using three analytical 

imputation approaches12–14 in independent whole-blood expression datasets 

(Supplementary Tables 3-5). Across these datasets, eight genes (HM13, SMPD2, TCL1A, 
SENP7, NPAT, ATM, ACAT1, CENPN) were significantly associated with mLRR-Y, all of 

which mapped near to one of the 19 associated genetic signals from GWAS.

We additionally identified 36 methylation variable positions (MVPs) correlated with mLRR-

Y levels in 569 whole-blood samples from the European Prospective Investigation of Cancer 

(EPIC)-Norfolk cohort15 (Supplementary Table 6). All significant MVPs were in genomic 

regions distinct (>500kb) from the 19 mLOY loci, with the exception of four correlated 

methylation probes within the TP53 gene region. To ascertain if any of the methylation 

changes represented causal drivers of mLOY, we next identified cis-methylation quantitative 

trait loci (meQTLs) in publicly available data16 for all associated probes. In total, 20 probes 

had one or more genetic variants in cis which were associated with methylation levels of the 

corresponding site (Supplementary Table 7). None of these genetic variants were correlated 

with the 19 genomic loci; however, one cis-meQTL survived multiple test correction for 

association with mLRR-Y (rs7208523, cg20116579 methylation P=5.6x10-31, mLRR-Y 

P=9x10-4). This suggests that genetic variation at the TNK1 locus, a gene with known 

involvement in tumor growth and survival, may be associated with increased mLOY via an 

epigenetic mechanism17.

Genetic overlap with cancer susceptibility

Three mLOY signals are correlated with signals previously reported for basal cell 

carcinoma18, glioma19, neuroblastoma20 (TP53), or testicular cancer21,22 (SEMA4A/
PMF1 and MAD1L1). In each case, the mLRR-Y decreasing allele (i.e increased mLOY) 

was associated with increased cancer susceptibility. We performed a reciprocal lookup of 90 

loci previously reported for prostate cancer susceptibility23,24, the most common male non-

skin cancer in western populations. There was no obvious enrichment of signal across these 

loci and no apparent dose-response relationship between the allelic effects on prostate cancer 
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and mLOY (PEGGER-MR = 0.26, Supplementary Table 8, Supplementary Figure 4). Under 

the hypothesis that susceptibility to many types of cancer may have a common basis in 

mitotic error, we performed a GWAS in UKB defining men with any diagnosed cancer as a 

case (N= 7,745 cases, 58,562 controls). This approach was recently used for multiple 

reproductive cancers, yielding several novel loci25. Applying the 19 mLRR-Y signals as an 

additive genetic instrument, there was no evidence of a dose-response relationship between 

genetically-modelled mLOY and cancer risk in men (PEGGER-MR = 0.94, Supplementary 

Table 9 and Supplementary Figure 5). To test the relationship between cancer risk and 

mLOY more comprehensively, we estimated the extent of shared genetic architecture across 

the whole genome using LD score regression26. This revealed an overall significant inverse 

relationship between mLRR-Y and cancer risk (rg=-0.42, P=0.02), which was not significant 

when considering only female cancer cases (rg=-0.06, P=0.64).

Discussion

Our findings, together with previous reports, demonstrate that loss of the Y-chromosome in 

peripheral blood likely represents a proxy trait for the study of aneuploidy in large-scale 

populations, which can be readily estimated from sequencing reads or array-based 

genotyping data. The nature of the genes identified by our analyses suggests that genetic 

determinants of mLOY reflect general mechanisms of aneuploidy, which we speculate most 

frequently manifest in mLOY due to the higher capacity of cells to tolerate Y-chromosome 

loss. This hypothesis is supported by the observation that these same SNPs also predicted X 

chromosome loss in women, the second most frequent large-scale mosaic event27.

Pathway analyses identified enrichment for cancer and apoptosis pathways associated with 

mLOY. This is further supported by the many well-established cell cycle regulation genes 

which we observed either as the closest gene to the association signal, or which were 

implicated via altered expression or protein coding changes. Major mechanistic aspects of 

the cell cycle, and key regulators of cell-cycle progression were represented by these 

findings (Figure 3), including elements of three cell cycle checkpoints, and several genes 

with complementary functional roles in mitosis. TPX2, CENPN, PMF1 and ATMIN are 

involved in aspects of chromosome alignment during metaphase, spindle assembly, 

orientation and attachment to chromatids ahead of segregation28,29. In particular, TPX2 
recruits the crucial mitotic enzyme, Aurora Kinase A, to the spindle30, whilst ATMIN 
regulates expression of a dynein motor component (DYNLL1) which critically mediates 

spindle positioning31–33 and also modulates Nek9 kinase signalling required for correct 

spindle formation and function34. Similarly, Rho-GEF 10 (ARHGEF10, for which we 

observe a nearby methylated signal) regulates centrosome duplication and prevents 

formation of multipolar spindles35. We identified a missense variant in MAD1L1 (MAD1 

mitotic arrest deficient like 1), a major component of the spindle assembly checkpoint 

(SAC). This represents a key cellular safeguard against chromosome mis-segregation (and 

subsequent ploidy errors), supressing metaphase-anaphase progression until chromatids are 

bi-orientated on a bipolar spindle at the metaphase plate1. During cytokinesis, SEPT5 
(septin 5, implicated in our methylation analysis) encodes a conserved cell cycle regulator 

required for effective cell division36, while activation of signalling by Rho-GEF 10 

(ARHGEF10) facilitates contractile ring ingression to separate the two daughter cells37.
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We also implicated a number of genes with established roles in the replication and stability 

of nuclear DNA in interphase: replication errors are a key cause of genomic instability and 

chromosomal fragility38–40. G1 to S-phase transition is dependent on NPAT, at least in part 

through it promoting histone gene transcription41, while ATM, at least in part in association 

with ATMIN42, acts as major cell cycle checkpoint kinase dedicated to maintaining genome 

stability throughout interphase, with particular importance at the G1/S and G2/M 

checkpoints40. In response to double-stranded DNA breaks (DSBs) indicative of genomic 

instability, ATM promotes various responses via p53 and other factors to promote DNA 

repair, arrest cell-cycle progression, or otherwise initiate cell cycle exit strategies including 

apoptosis and senescence38–40,43. TREX1 encodes 3’ Repair Exonuclease 1, which digests 

aberrant replication intermediates and single stranded DNA from genotoxic stress to prevent 

chronic checkpoint activation44. Predicted deleterious missense variants in this gene were 

recently identified in a mouse GWAS for micronucleus formation, a biomarker of 

chromosomal breaks, whole chromosome loss and extranuclear DNA45.

At the later stages of the cell lifespan, several genes implicated by our GWAS findings – 

including TP53, TCL1A, SMPD2, BCL2 and BCL2L1 – functionally impact on apoptotic 

events46–50. Apoptosis is a prime mechanism by which cells with detected DNA damage or 

ploidy errors may be eliminated51: indeed, p53 drives multiple cell-cycle exit responses in 

response to aberrant mitosis, including G1 arrest43,52,53. The TP53 variant associated with 

mLOY in our analyses is the one previously reported for basal cell carcinoma: for this trait, 

the risk allele changes the AATAAA polyadenylation signal to AATACA, resulting in 

impaired 3′-end processing of TP53 mRNA18. Our findings also implicated genes involved 

in spermatogenesis54,55 (HENMT1 and DAZAP1), and cellular growth and 

differentiation56 (DLK1).

The genes directly involved in mitotic prophase-metaphase and the SAC have clear roles in 

averting chromosomal mis-segregation and preventing these from persisting unchecked, 

however how the broader set of genes we identify here may act to promote mLOY remains 

less clear. We speculate that either many of these genes act in ways that are not currently 

recognised, or alternatively that the other highlighted processes outside of cell cycle control 

and mitosis are important. In particular, as a major mode of cell-cycle exit, our observed 

enrichment of apoptotic regulatory genes and cascades may play a more passive permissive 

role in enabling mis-segregated cells to survive with ploidy errors, rather than being directly 

causative of them.

Although an initial defect during the cell cycle process is required to generate an aneuploid 

daughter cell, clonal expansion is likely required to drive the lineage to a detectable 

frequency in the circulating white blood cell population. It is possible that mLOY in 

haematopoietic precursors confers a proliferative advantage to such cells, leading to a 

relative enrichment of assayable mLOY progeny. We therefore speculate that some loci may 

operate through this pathway to further facilitate or promote clonal expansion of these cells. 

Additional functional experimentation in cellular and animal systems is ultimately required 

to fully elucidate this issue and the role individual associated genes may play in determining 

mLOY. We also acknowledge that there are likely other, currently unknown, mechanisms by 

which our associated loci exert their effects.
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We observed a substantial shared genetic architecture between mLOY and cancer 

susceptibility, suggesting that bivariate analyses of these two traits may help to prioritise 

novel cancer susceptibility loci and elucidate their functions. We could not, however, find 

evidence of a dose-response relationship between these two traits. This is perhaps not 

surprising given that findings from mouse studies in which mitotic checkpoint components 

are experimentally down-regulated demonstrate an inconsistent relationship between 

aneuploidy and spontaneous tumorigenesis1. It is possible, therefore, that some of our 

identified genes may promote benign aneuploidy, whereas others may play a role more 

generally in genome instability. This makes the use of genetic variants associated with 

mLOY difficult within a Mendelian randomization framework, as genes with general roles in 

instability may have different phenotypic consequences to genes that promote aneuploidy in 

a more stable way. This of course does not preclude identifying causal risk factors for 

mLOY, exemplified by our positive causal inference for smoking on mLOY, using a genetic 

instrument for cigarettes per day. More generally, the association between smoking and 

mLOY suggests that care should be taken to avoid confounding influences such as 

socioeconomic patterning in epidemiological observations between mLOY and disease. In 

addition to fully evaluating the broader disease relevance of mLOY, future epidemiological 

studies should look to assess the differential rates at which mLOY changes in individuals 

over time, its relevance in other tissue types and further non-genetic modifiable factors 

which may influence it.

In conclusion, our study highlights that estimation of mLOY using genotype array intensity 

data may serve as a useful quantitative measure of cell cycle efficiency and genome stability, 

and may thereby add a new approach to the study of cellular ageing and its associations with 

disease, particularly cancer.

Data availability statement

The genome-wide discovery data used is from UK Biobank and can be obtained via 

application from www.ukbiobank.ac.uk. Requests for access to the underlying replication 

data is limited by participant consent and data sharing agreements; requests should be 

directed via http://www.srl.cam.ac.uk/epic/) or the corresponding author. Methylation data is 

available from the same EPIC-Norfolk resource and gene expression datasets are publically 

available from three resources: MetaXcan (https://github.com/hakyimlab/MetaXcan), SMR 

(http://cnsgenomics.com/software/smr/) and TWAS (http://gusevlab.org/projects/fusion/).

Online Methods

Estimating Y chromosome mosaicism in UK Biobank

We analysed data from the May 2015 release of imputed genetic data from UK Biobank8, 

containing ~73M SNPs, short indels and large structural variants in 152,249 individuals. Full 

details have been published elsewhere57. Briefly, the samples were genotyped on two 

slightly different arrays - approximately 50,000 on the custom UK BiLEVE study array, and 

the remainder (~100,000) on the UK Biobank Axiom array (Affymetrix), which was 

specifically designed to optimize imputation performance in GWAS studies. Removal of 

SNPs with missing data, multi-allelic SNPs, SNPs with a minor allele frequency (MAF) 
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<1%, and 1,037 sample outliers, resulted in a dataset with 641,018 autosomal SNPs in 

152,256 samples for phasing and imputation. Imputation was performed using a reference 

panel created by merging the UK10K haplotype panel with the 1000 Genomes Phase 3 

reference panel.

In addition to the quality control metrics performed centrally by UK Biobank, we defined a 

subset of “white European” ancestry samples using a K-means clustering approach applied 

to the first four principle components calculated from genome-wide SNP genotypes. All 

individuals defined in this group also self-identified by questionnaire as being of white 

ancestry.

mLOY was estimated by calculating the mean log-R ratio (normalised signal intensity) of 

SNPs on the male-specific region of the Y chromosome. Signal intensity, genotype call and 

confidence files from Affymetrix Power Tools software were analysed using the PennCNV-

Affy pipeline58 to produce a log-R ratio (LRR) for each SNP. SNPs without LRR calculable 

on both arrays, or those flagged by UKB as failing QC, were excluded. Whole Y 

chromosome fluorescence signal intensity was summarised by calculation of mean LRR 

across all Y chromosome SNPs (mLRR-Y). After omission of monomorphic SNPs, 

genotyping and QC failures, 253 SNPs were available across all participants for derivation 

of mLRR-Y.

Association testing and signal selection

Autosomal SNPs were analysed by linear mixed models implemented in BOLT-LMM59 to 

account for cryptic population structure and relatedness within this group in our genetic 

association tests. The regression model included age and genotyping array as covariates. 

SNPs with an imputation quality < 0.4 or MAF < 0.1% were excluded post-analysis. After 

application of QC criteria, a maximum of 67,034 men were available for analysis with 

genotype and phenotype data. Samples were subdivided by never (N=32,539] vs ever 

N=34,329] smoking for the Mendelian Randomization analysis using the CHRNA5-
CHRNA3-CHRNB4 rs1051730 locus. Genomic loci were defined on the basis of physical 

proximity using a 1 Mb window. The following genome-wide significant signals were 

excluded from further consideration due to concerns of technical artefacts: rs61737590 

(Chr1-27Mb), rs115979215 (Chr2-54Mb), rs1857807 (Chr2-115Mb), rs115722056 

(Chr2-171Mb), rs73191481 (Chr3-105Mb), rs9289877 (Chr3-152Mb), rs77306208 

(Chr3-194Mb), rs9269173 (Chr6-32Mb), rs117810108 (Chr7-130Mb), rs117941885 

(Chr12-90Mb), rs118031436 (Chr15-57Mb), rs16961626 (Chr16-84Mb), rs58108384 

(Chr20-7Mb), rs73892829 (Chr21-19Mb), rs116446488 (Chr22-24Mb). All were excluded 

due to fulfilment of 2 or more of the following criteria: a) singletons in regional association 

plots, b) significantly associated with genotype array status, c) associated with mLRR-Y in 

women (reflecting technical background intensity).

Replication

Replication was performed in two independent studies using two separate techniques.

The first comprised 9,793 men from the EPIC-Norfolk study15, following the same protocol 

using GWAS array intensity data as described above.
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Secondly, we analyzed whole-blood genome sequences of 8,715 Icelandic males60 (age 

range 41-105 years, mean 63 years), that had been whole-genome sequenced by Illumina 

method to a mean depth of 37x.

As an estimate of chromosome Y copy-number we used the average read depth over 

chromosome Y, using exclusively X-degenerate regions. This was computed by samtools 

from bam files aligned to hg38 and normalized by genome-wide sequencing coverage for the 

subject. A total of 12 outlier individuals (copy-number greater than 1.25) were excluded.

Chromosome Y copy-number had a strong negative correlation with age at bleeding 

(Spearman correlation r=-0.50). For individuals older than 60 years at the time of sample 

collection, the distribution of chromosome Y copy-number has a heavy left tail with copy-

numbers as low as 0.08.

Association analysis was performed using BOLT-LMM59 after inverse normal 

transformation and adjustment for age at bleeding. To enable comparison with the estimates 

obtained from GWAS array intensity data, effect sizes for log2(chrY copy-number) were 

estimated using robust linear regression (rlm from R package MASS).

The fraction of variance explained by a given variant was calculated using the formula 2f(1-

f)a^2, in which f denotes the minor allele frequency of the variant and a is the additive effect 

in standard deviations. Heritability estimates were calculated using the spearman rank 

correlation of the traits between sibling pairs (max N=1488).

X chromosome loss

Similarly to mLOY, X chromosome loss was estimated using two complementary methods. 

Firstly, mLRR-X was calculated in UK Biobank (N=75,595) and EPIC Norfolk (N=11,248), 

using the same methodology described for X loss. Secondly, a similar analysis was 

performed using whole blood genome sequences of 9,302 Icelandic females (age range 

41-106 years, mean 63 years) whole-genome sequenced to a mean depth of 36x. The 

chromosome X copy-number was estimated from the average read depth over chromosome 

X, excluding paralogous regions PAR1 and PAR2, the X-transposed region, and the 

centromere. This estimate was normalized by genome-wide sequencing coverage for the 

subject and adjusted for the sequencing protocol. A total of 22 outlier individuals (copy-

number greater than 2.5 or less than 1.5) were excluded. We observed a Spearman 

correlation of -0.28 between the chromosome X copy-number and age at bleeding.

Cancer GWAS

To understand the genomic relationship between cancer and mLOY, we defined an ‘any 

prevalent cancer’ variable in UKB using linked UK cancer registrations. Individuals with a 

reported age of diagnosis in the cancer registry were coded as a case. Individuals with 

inconsistent cancer diagnosis (i.e a reported cancer but not age at diagnosis) were set to 

missing, and controls were defined as any individual with no self-reported or registry-

defined cancer. GWAS analysis was performed as described above, including age, sex and 

genotyping array as covariates.
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Genetic correlations (rg) were calculated between mLRR-Y and cancer using LD Score 

Regression26.

In order to assess the possible causal links between cancer and mLOY we applied Mendelian 

Randomization methods, which have been described extensively elsewhere61. In order to be 

as conservative as possible we preferentially report results from the Egger regression 

method, though inverse weighted, median weighted and penalised median weighted analyses 

were also calculated.

Gene expression

To identify specific eQTL linked genes, we utilised three complementary approaches – 

SMR, TWAS and MetaXcan – enabling systematic integration of publicly available gene 

expression data with our genome-wide dataset.

Summary Mendelian Randomization (SMR) uses summary-level gene expression data to 

map potentially functional genes to trait-associated SNPs14. We ran this approach against 

the publicly available whole-blood eQTL dataset published by Westra et al62, providing 

association statistics for 5,952 transcripts. A conservative significance threshold was set at 

P<4.9x10-6 reflecting the number of genes tested genome-wide.

MetaXcan, a meta-analysis extension of the PrediXcan method13, was used to infer the 

association between genetically predicted gene expression (GPGE) and mLRR-Y. PrediXcan 

is a gene-based data aggregation and integration method which incorporates information 

from gene-expression data and GWAS data to translate evidence of association with a 

phenotype from the SNP-level to the gene. Briefly, PrediXcan first imputes gene-expression 

at an individual level using prediction models trained on measured transcriptome datasets 

with genome-wide SNP data and then regresses the imputed transcriptome levels with 

phenotype of interest. MetaXcan extends its application to allow inference of the direction 

and magnitude of GPGE-phenotype associations with only summary GWAS statistics, which 

is advantageous when SNP-phenotype associations result from a meta-analysis setting and 

also when individual level data are not available. As input we utilized GWAS meta-analysis 

summary statistics for mLRR-Y, LD matrix from the 1000 Genomes project, and as weights, 

gene-expression regression coefficients for SNPs from models trained with whole-blood 

transcriptome data from the GTEx Project63. Threshold for statistical significance was 

estimated using the Bonferroni correction for number of tested genes.

Finally, we used the recently described Transcriptome-wide Association Study (TWAS) 

approach12 to infer gene expression association using two whole blood datasets (Young 

Finns Study and Netherlands Twin Registry cohorts). The threshold for significance was set 

to correct for the number of studies and genes (P<1x10-5). Each of the three approaches 

described in this section were compared by estimating the correlation (r) of association Z 

scores across genes present in all three datasets. There was strong concordance between the 

2,326 transcripts analysed across the three approaches/datasets; SMR vs. TWAS r=0.72, 

SMR vs. MetaXcan r=0.54, TWAS vs. MetaXcan r=0.55.
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Methylation

DNA methylation in whole blood was measured for 1,378 individuals in the EPIC-Norfolk 

cohort using the Illumina Human Methylation 450k BeadChip platform. After setting 

methylation markers with detection p-value ≥ 0.01 to missing, methylation beta values were 

calculated for each marker. Quantile normalisation of methylation betas was applied 

separately to different marker groups based on colour channel, probe type and M/U 

subtypes64. Samples with a sample call rate ≤0.99 were removed (n=77). Methylation beta 

value distributions of the X, Y and autosomal chromosome markers were analysed 

separately and a further 11 sample outliers were excluded. Within each sample, markers with 

a marker call rate ≤ 0.95 were excluded (n=4,423).

All further downstream analyses were restricted to autosomal methylation markers. Signal 

detection of methylation intensities can be affected by several factors, including SNPs on the 

probe, repetitive DNA, and cross-reactive probes. We thus calculated the proportion of 

missing data at each CpG site (marker call rate) and 8,775 CpGs with a call rate ≤ 0.95 were 

excluded. 3,295 CpGs with multimodal distributions of methylation intensities, identified by 

the R package ENmix65, which typically arise from technical artefacts were also excluded. 

A further 18,874 CpG sites which were previously identified as mapping to more than 1 

genomic location66 were also excluded. The final cleaned dataset comprised 442,920 

autosomal CpG sites. To account for cell composition variability, we estimated counts of T 

lymphocyte subtypes, natural killer cells, monocytes, granulocytes and B lymphocytes using 

the minfi R package67,68. These were included as covariates in subsequent epigenome-wide 

regression models.

To examine the association between methylation markers and mLOY, we performed an 

epigenome-wide association analysis in all male EPIC-Norfolk methylation samples 

(n=569). mLRR-Y was regressed separately on each methylation marker, adjusted for type 2 

diabetes status, age, current smoking status, estimated cell counts, and sample plate. 

Bonferroni correction was applied, accounting for the number of markers tested (p=1×10-7). 

Furthermore, we checked that no significant CpG sites had sequences which also mapped to 

the Y chromosome.

Association statistics for genetic variants within the probe vicinity and corresponding 

methylation levels (i.e cis-meQTLs) were available from the BIOS QTL browser (http://

www.genenetwork.nl/biosqtlbrowser/)

Pathway analyses

Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) was used to 

explore pathway-based associations in the full GWAS dataset. MAGENTA implements a 

gene set enrichment analysis (GSEA) based approach, as previously described69. Briefly, 

each gene in the genome is mapped to a single index SNP with the lowest P-value within a 

110 kb upstream, 40 kb downstream window. This P-value, representing a gene score, is 

then corrected for confounding factors such as gene size, SNP density and LD-related 

properties in a regression model. Genes within the HLA-region were excluded from analysis 

due to difficulties in accounting for gene density and LD patterns. Each mapped gene in the 
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genome is then ranked by its adjusted gene score. At a given significance threshold (95th 

and 75th percentiles of all gene scores), the observed number of gene scores in a given 

pathway, with a ranked score above the specified threshold percentile, is calculated. This 

observed statistic is then compared to 1,000,000 randomly permuted pathways of identical 

size. This generates an empirical GSEA P-value for each pathway. Study-wise significance 

was determined when an individual pathway reached a false discovery rate (FDR) <0.05 in 

either analysis. In total, 3216 pathways from Gene Ontology, PANTHER, KEGG and 

Ingenuity were tested for enrichment of multiple modest associations with mLRR-Y.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Estimated X and Y chromosome loss with age in the Icelandic deCODE study.
(A) Y chromosome copy number estimated in 8703 males from whole genome sequencing. 

(B) X chromosome copy-number for 9280 females. In each case, the black line indicates the 

line of best fit with age at blood collection as a linear predictor.
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Figure 2. Association of 19 SNP mLOY genetic risk score on X loss in women.
The genetic risk score is additive, based on mLRR-Y increasing allele dosage.
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Figure 3. Overview of identified genes implicated in Y chromosome loss.
Genes falling within GWAS loci are shown in blue, those implicated by methylation 

analyses in green. Grey boxes highlight specific checkpoints, signalling cascades, or 

enzymes of note. Green arrows denote activation of a target by phosphorylation, blue arrows 

a signalling cascade and its ultimate effect.
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