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INTRODUCTION

Hematophagous mosquitoes vector many important human diseases, and a detailed understanding
of their physiology is crucial for designing efficient vector-control strategies. The midgut epithelium
plays a central role in mosquito physiology: as a digestive tissue, it transitions between processing
diets of sugar and blood to support both nutrition and reproduction; as a niche for microbiota, it
balances immunity and tolerance to maintain a functional microbiome; and in its capacity as an
interface between the mosquito and human pathogens, it serves as a barrier that often bottlenecks
parasites as they travel from gut lumen to hemocoel, en route to the salivary glands and their next
host (Smith et al., 2014; Franz et al., 2015).

Studies in model organisms, such as Drosophila, have revealed that the insect gut epithelium can
be highly complex and dynamic. The Drosophila midgut epithelium comprises diverse cell types,
including polyploid enterocytes (ECs), enteroendocrine cells (EEs), and undifferentiated
progenitors (intestinal stem cells, ISCs, and enteroblasts, EBs) (Bonfini et al., 2016). These cells
communicate and coordinate to maintain the gut’s function and integrity. Drosophila ISCs respond
to diverse stimuli with symmetric and asymmetric divisions to continuously replenish the midgut
epithelium or plastically alter its structure (O’Brien et al., 2011). Inputs including nutrition (O’Brien
et al., 2011), endocrine signaling (Reiff et al., 2015; Ahmed et al., 2020), the presence/composition of
the microbial community (Buchon et al., 2009a), pathogenic challenge (Buchon et al., 2009b; Houtz
et al., 2017), reactive oxygen species (Hochmuth et al., 2011), and aging (Biteau et al., 2008)
dynamically alter the kinetics of division, differentiation, and endocycling to reshape
epithelial composition.

In contrast toDrosophila, the epithelial composition and dynamics of mosquito midguts are little
studied. Early histological studies noted EEs in the mosquito midgut epithelium (Hecker, 1977;
Brown et al., 1985), and mapped their production of neuropeptides (Veenstra et al., 1995), but their
physiological significance remains unexplored. Likewise, the presence of putative “regenerative
cells” in the adult midgut epithelium was noted, but they were believed to be mitotically inactive
(Billingsley, 1990). However, a growing number of publications have documented DNA synthesis
and/or mitoses in the midguts of several mosquito species (Baton and Ranford-Cartwright, 2007;
Hernández-Martıńez et al., 2013; Janeh et al., 2017; Serrato-Salas et al., 2018; Taracena et al., 2018;
Janeh et al., 2019; Maya-Maldonado et al., 2020), indicating that the mosquito midgut epithelium is
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also highly responsive and dynamic. Furthermore, a recent study
using single-cell RNA-sequencing of the midgut of Aedes aegypti
revealed multiple cell clusters that express markers corresponding
to all major cell types described in theDrosophilamidgut (Cui and
Franz, 2020). Here, we discuss several mechanisms by which we
anticipate that mosquito midgut epithelial dynamics may
influence the parameters of fitness, vector competence, and
vectorial capacity. We propose that midgut epithelial dynamics
are an important and underexplored frontier in the study of
mosquito physiology.
EPITHELIAL DYNAMICS IN GUT
MATURATION, BLOOD-FEEDING, AGING,
AND INTERACTIONS WITH THE GUT
MICROBIOTA

The mosquito midgut begins in the larval stage as a lattice of
diploid regenerative cells and larger endoreplicating cells (Ray
et al., 2009). During the larval to pupal molt, all polyploid cells are
lost, leaving only a network of diploid cells (Nishiura et al., 2003).
This pool of cells is likely homologous to the adult midgut
progenitors in Drosophila, which give rise to the adult midgut in
the final stage of development (Hartenstein et al., 1992; Houtz
et al., 2019). In Anopheles albimanus mosquitoes, it was observed
that the adult midgut continues to mature in the 24 hours
following emergence, as proportions of diploid cells fall, and
polyploid cells (4N and 8N) accumulate via endocycling (Maya-
Maldonado et al., 2020). This post-emergence maturation phase is
marked in mosquitoes by elevated titers of juvenile hormone (JH)
(Zhu and Noriega, 2016). Within a few days of emergence, the
adult female is ready to take her first blood-meal, stimulating
the production of 20 hydroxyecdysone (20E), which circulates
in the hemolymph and activates vitellogenesis in the fat body
(Martıń et al., 2001; Wang et al., 2002; Bai et al., 2010). In
Drosophila, both JH and 20E are induced by mating, and both
promote epithelial proliferation to drive gut growth (Reiff et al.,
2015; Ahmed et al., 2020). Loss of either signal compromises
fecundity, suggesting that the gut’s growth response is adaptive for
optimizing nutrient acquisition to maximize reproductive output.
In the mosquito midgut epithelium, there is some evidence that
blood-feeding stimulates compositional changes. In the Aedes
albopictus midgut, blood-feeding induces phosphorylation of
ERK, a kinase in the EGFR pathway (Liu et al., 2020) which, in
Drosophila ISCs, is sufficient to drive proliferation (Buchon et al.,
2010). We propose that the pro-proliferative response to JH and
20E may be conserved in the midguts of mosquito species, helping
to prepare the epithelium for the task of digesting blood.

Upon acquisition of a blood-meal, the mosquito midgut must
pivot to the exploitation of its new diet. A recent single-cell RNA-
seq study of Ae. aegypti midguts, before and after a blood meal,
demonstrated that blood-feeding stimulates an increase in the
proportion of putative ISCs/EBs as well as ECs and “EC-like”
cells, providing further evidence for a proliferative response (Cui
and Franz, 2020). The authors also observed multiple distinct
populations of ECs and found that the proportions of EC
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populations changed in response to blood-feeding. Together, these
results suggest that blood-feeding prompts not only the proliferation
of progenitors, but changes among differentiated ECs. We propose
that these changes could reflect a form of terminal differentiation for
immature ECs, which may be key to the digestion of blood.

Midgut epithelial dynamics play an important role in every
stage of the insect lifecycle, including its terminus. In Drosophila,
the aging of the gut epithelium, with associated dysplasia and loss
of barrier integrity, is believed to be an important intrinsic
limiting factor in the lifespan of the insect (Biteau et al., 2008;
Rera et al., 2012). This aging is accelerated by the presence of the
microbiota, which increases the rate of epithelial turnover
(Buchon et al., 2009a), and pathogenic microbes can drive
even more rapid turnover of the gut epithelium (Buchon et al.,
2009b). Considering that the female mosquito midgut is
subjected not only to all the ordinary stresses of aging but also
to the rigors of blood-feeding - periods of intense mechanical
strain accompanied by the rapid proliferation of gut microbes –
we posit that the midgut may set the limits of mosquito longevity
and, by extension, vectorial capacity.
EPITHELIAL DYNAMICS AND CONTROL
OF INFECTION

A mosquito’s competence as a vector depends on the successful
invasion and traversal of midgut epithelial cells by orally acquired
pathogens. It has already been shown that epithelial dynamics, in
the form of cell sacrifice, participate in the bottlenecking of
invading pathogens in mosquito midguts. In the case of
Plasmodium infection, this phenomenon has been likened to a
“time bomb” where the invasion of an epithelial cell by an
ookinete commences a countdown culminating in the death and
extrusion of the invaded cell (Han et al., 2000). Ookinetes that fail
to make their way to the safety of the basal lamina before this
extrusion occurs are denied advancement to the oocyst stage of
development. By sacrificing epithelial cells, the gut may limit or
altogether block the progression of plasmodial infection. By a
similar principle, the elimination of epithelial cells may also help
to limit viral infections in mosquitoes. Several histological studies
have associated viral infection of the midgut with epithelial
pathology and cell loss (Weaver et al., 1992; Vaidyanathan and
Scott, 2006). There is some evidence that this phenomenon is
strain-dependent, and correlates negatively with susceptibility to
viral infection. Transcriptomic profiling of the midguts of
mosquitoes infected with DENV2 found that a refractory strain
showed biased representation of transcripts associated with cell
death as compared to a susceptible strain (Behura et al., 2011), and
a follow-up study found that silencing of pro-apoptotic genes
increased the susceptibility of a partially refractory strain
(Ocampo et al., 2013). These observations suggest that epithelial
cell elimination may underlie the refractoriness exhibited by some
strains to infection with incompatible viruses.

Even in the absence of cell sacrifice, we can envision scenarios
in which the dynamics of the epithelial response to an incipient
infection might alter its outcome. Intensified endocycling might
increase immune capacity. Increased proliferation might alter
March 2021 | Volume 11 | Article 653156
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midgut epithelial composition and the density of host factors
required for epithelial invasion. Newly differentiated ECs might
be either more or less resistant to infection than their older
counterparts. One 2018 study correlated population-level DENV
susceptibility to the timing of the proliferative response in the Ae.
aegypti midgut, suggesting that the activity of progenitor cells
might influence the outcome of infection (Taracena et al., 2018).
We propose that epithelial dynamics may play an important role
in the bottlenecking of all kinds of pathogens and helps to limit
vector competence in a species and/or strain-dependent manner.
EPITHELIAL REPAIR AND INFECTION
TOLERANCE

While cell sacrifice may help to limit infection, the loss of midgut
epithelial cells may negatively impact the survival of the
mosquito vector. The time bomb model of Plasmodium
invasion dictates that every invaded epithelial cell is fated to
die (Han et al., 2000). As the majority of invading ookinetes
never mature into oocysts (Ghosh et al., 2000), and as ookinetes
may move laterally through multiple ECs during invasion (Han
et al., 2000), oocyst counts - ranging from 1-10 in the field
(Gouagna et al., 1998) to hundreds in the laboratory (Usui et al.,
2011) - represent an extremely conservative estimate of EC loss.
As previously noted, infection with viral and bacterial pathogens
can also drive EC loss. For the mosquito gut, these losses could
destroy a substantial proportion of the epithelium; moreover,
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even a mild infection and the extrusion of a handful of ECs could
theoretically result in a fatal loss of gut barrier integrity.

Given the damage that Plasmodium infection causes to the
midgut, it is remarkable that survival effects in Plasmodium-
infected mosquitoes appear to be minimal (Han et al., 2000).
Despite a potentially significant loss of midgut epithelium,
mosquitoes are apparently able to maintain barrier integrity
and gut function sufficient to their needs. Mechanisms have
been articulated for closing emerging holes in the gut at the
moment of EC loss by drawing together neighboring ECs (Han
et al., 2000; Gupta et al., 2005), but it is unlikely that this process
fully compensates for cell loss. While the midgut may possess
ECs significantly in excess of what it needs to maintain adequate
function for survival, it is also possible that mosquitoes’ tolerance of
midgut damage is dependent on progenitor-mediated replacement
of lost epithelial cells. Multiple studies support a homeostatic
proliferative role for epithelial progenitors in mosquito vector
species. A histological study positively correlated instances of
apparent mitosis in the midgut with the intensity of Plasmodium
infection in Anopheles stephensi (Baton and Ranford-Cartwright,
2007). Ae. albopictus and Culex pipiens mosquitoes exhibit
increased mitoses following oral bacterial infection and chemical
challenge (Janeh et al., 2019). Epithelial repair may also be
important in response to cell loss sustained during viral infection
in non-permissive strains. Even in cases where it does not induce
cell loss, viral infection of midgut cells may cause stress and prompt
cell signaling responses (e.g. JAK-STAT activation (Behura et al.,
2011)) which could stimulate the activity of progenitors. In
A B

DC

FIGURE 1 | Possible impacts of epithelial dynamics in the mosquito midgut on the hematophagous lifecycle, aging, interactions with gut flora, Plasmodium and
arboviral infections. (A) During the post-emergence maturation, JH could stimulate ISCs to proliferate and create new ECs or prompt ECs to endocycle to attain
higher ploidy; blood-feeding stimulates the production of 20E, which could stimulate the proliferation of ISCs, the differentiation of new ECs, and transcriptional
changes in ECs. (B) Normal microbiota could contribute to aging and basal turnover of EC populations; dying ECs could stimulate ISCs to effect homeostatic
replacement; dysbiosis and/or infection with oral bacterial pathogens could accelerate the turnover of epithelial cells; ISC-mediated repair could serve as a disease
tolerance mechanism, promoting mosquito survival. Invasion by Plasmodium (C) and/or arboviral pathogens (D) could prompt cell sacrifice mechanisms to limit
pathogenic success; ISC proliferation and differentiation could help infected mosquitoes to tolerate epithelial damage.
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summary, we propose that the ability to effect proliferative repair
may be important for preserving midgut barrier integrity, with
potential knock-on effects for mosquito survival and, hence,
vectorial capacity.
DISCUSSION

The successful transmission of mosquito-borne pathogens
depends on (a) the maintenance of a sufficiently large and fit
vector population (b) the ability of pathogens to progress from
oral to systemic infection (essential for vector competence) and
(c) the longevity of infected mosquitoes (a key determinant of
vectorial capacity). We propose that midgut epithelial dynamics
(cell loss, proliferation, differentiation, and endocycling, Figure
1) may play an important role in determining the rate of
pathogen transmission by: (a) adapting epithelial composition
according to hormonal and/or nutritional cues to optimize the
exploitation of blood meals, thereby maximizing fecundity (b)
setting the natural limits of mosquito lifespan (c) suppressing
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
and killing pathogens as they traverse the midgut barrier and (d)
promoting the survival of infected mosquitoes via repair
mechanisms which help the mosquito to tolerate pathogen-
mediated damage. Understanding these dynamics in mosquitos
may allow us to develop interventions that will suppress
mosquito fecundity, raise barriers to systemic infection, and/or
abbreviate the survival of infected mosquitoes.
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Teleman, A. A., et al. (2020). Fitness trade-offs incurred by ovary-to-gut steroid
signalling in Drosophila. Nature 584, 415–419. doi: 10.1038/s41586-020-2462-y

Bai, H., Gelman, D. B., and Palli, S. R. (2010). Mode of action of methoprene in
affecting female reproduction in the African malaria mosquito, Anopheles
gambiae. Pest Manage. Sci. 66, 936–943. doi: 10.1002/ps.1962

Baton, L. A., and Ranford-Cartwright, L. C. (2007). Morphological evidence for
proliferative regeneration of the Anopheles stephensi midgut epithelium
following Plasmodium falciparum ookinete invasion. J. Invertebr. Pathol. 96,
244–254. doi: 10.1016/j.jip.2007.05.005

Behura, S. K., Gomez-Machorro, C., Harker, B. W., deBruyn, B., Lovin, D. D.,
Hemme, R. R., et al. (2011). Global cross-talk of genes of the mosquito Aedes
aegypti in response to dengue virus infection. PloS Negl. Trop. Dis. 5, e1385.
doi: 10.1371/journal.pntd.0001385

Billingsley, P. F. (1990). The midgut ultrastructure of hematophagous insects.
Annu. Rev. Entomol. 35, 219–248. doi: 10.1146/annurev.en.35.010190.001251

Biteau, B., Hochmuth, C. E., and Jasper, H. (2008). JNK Activity in Somatic Stem
Cells Causes Loss of Tissue Homeostasis in the Aging Drosophila Gut. Cell
Stem Cell 3, 442–455. doi: 10.1016/j.stem.2008.07.024

Bonfini, A., Liu, X., and Buchon, N. (2016). From pathogens to microbiota: How
Drosophila intestinal stem cells react to gut microbes. Dev. Comp. Immunol.
64, 22–38. doi: 10.1016/j.dci.2016.02.008

Brown, M. R., Raikhel, A. S., and Lea, A. O. (1985). Ultrastructure of midgut
endocrine cells in the adult mosquito, Aedes aegypti. Tissue Cell 17, 709–721.
doi: 10.1016/0040-8166(85)90006-0

Buchon, N., Broderick, N. A., Chakrabarti, S., and Lemaitre, B. (2009a). Invasive
and indigenous microbiota impact intestinal stem cell activity through multiple
pathways in Drosophila. Genes Dev. 23, 2333–2344. doi: 10.1101/gad.1827009

Buchon, N., Broderick, N. A., Poidevin, M., Pradervand, S., and Lemaitre, B.
(2009b). Drosophila intestinal response to bacterial infection: activation of host
defense and stem cell proliferation. Cell Host Microbe 5, 200–211. doi: 10.1016/
j.chom.2009.01.003

Buchon, N., Broderick, N. A., Kuraishi, T., and Lemaitre, B. (2010). Drosophila
EGFR pathway coordinates stem cell proliferation and gut remodeling
following infection. BMC Biol. 8, 152. doi: 10.1186/1741-7007-8-152

Cui, Y., and Franz, A. W. E. (2020). Heterogeneity of midgut cells and their
differential responses to blood meal ingestion by the mosquito, Aedes aegypti.
Insect Biochem. Mol. Biol. 127, 103496. doi: 10.1016/j.ibmb.2020.103496
Franz, A. W. E., Kantor, A. M., Passarelli, A. L., and Clem, R. J. (2015). Tissue Barriers
to Arbovirus Infection inMosquitoes.Viruses 7, 3741–3767. doi: 10.3390/v7072795

Ghosh, A., Edwards, M. J., and Jacobs-Lorena, M. (2000). The journey of the
malaria parasite in the mosquito: Hopes for the new century. Parasitol. Today
16, 196–201. doi: 10.1016/S0169-4758(99)01626-9

Gouagna, L. C., Gouagna, L. C., Mulder, B., Mulder, B., Noubissi, E., Noubissi, E.,
et al. (1998). The early sporogonic cycle of Plasmodium falciparum in
laboratory-infected Anopheles gambiae: an estimation of parasite efficacy.
Trop. Med. Int. Heal. 3, 21–28. doi: 10.1046/j.1365-3156.1998.00156.x

Gupta, L., Kumar, S., Han, Y. S., Pimenta, P. F. P., and Barillas-Mury, C. (2005).
Midgut epithelial responses of different mosquito-Plasmodium combinations:
the actin cone zipper repair mechanism in Aedes aegypti. Proc. Natl. Acad. Sci.
U. S. A. 102, 4010–4015. doi: 10.1073/pnas.0409642102

Han, Y. S., Thompson, J., Kafatos, F. C., and Barillas-Mury, C. (2000). Molecular
interactions between Anopheles stephensi midgut cells and Plasmodium
berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J.
19, 6030–6040. doi: 10.1093/emboj/19.22.6030

Hartenstein, A. Y., Rugendorff, A., Tepass, U., and Hartenstein, V. (1992). The
function of the neurogenic genes during epithelial development in the
Drosophila embryo. Development 116, 1203–1220.

Hecker, H. (1977). Structure and function of midgut epithelial cells in culicidae
mosquitoes (insecta, diptera). Cell Tissue Res. 184, 321–341. doi: 10.1007/
BF00219894
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