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A B S T R A C T   

Purpose: During the emerging COVID-19 pandemic, radiology departments faced a substantial increase in chest 
CT admissions coupled with the novel demand for quantification of pulmonary opacities. This article describes 
how our clinic implemented an automated software solution for this purpose into an established software 
platform in 10 days. The underlying hypothesis was that modern academic centers in radiology are capable of 
developing and implementing such tools by their own efforts and fast enough to meet the rapidly increasing 
clinical needs in the wake of a pandemic. 
Method: Deep convolutional neural network algorithms for lung segmentation and opacity quantification on 
chest CTs were trained using semi-automatically and manually created ground-truth (Ntotal = 172). The perfor
mance of the in-house method was compared to an externally developed algorithm on a separate test subset 
(N = 66). 
Results: The final algorithm was available at day 10 and achieved human-like performance (Dice coeffi
cient = 0.97). For opacity quantification, a slight underestimation was seen both for the in-house (1.8 %) and for 
the external algorithm (0.9 %). In contrast to the external reference, the underestimation for the in-house al
gorithm showed no dependency on total opacity load, making it more suitable for follow-up. 
Conclusions: The combination of machine learning and a clinically embedded software development platform 
enabled time-efficient development, instant deployment, and rapid adoption in clinical routine. The algorithm 
for fully automated lung segmentation and opacity quantification that we developed in the midst of the COVID- 
19 pandemic was ready for clinical use within just 10 days and achieved human-level performance even in 
complex cases.  

Abbreviations: CT, computed tomography; COVID-19, Coronavirus disease 2019; DCNN, deep convolutional neural network; FTE, full-time equivalent; HU, 
Hounsfield unit; PCR, polymerase chain reaction; POL, percentual opacity load; AI, artificial intelligence; A1-A3, altorithms 1-3. 
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1. Introduction 

Despite knowledge of the spread of the disease in Asia, Europe was 
overwhelmed by the dynamic of the new coronavirus disease (COVID- 
19) outbreak in spring 2020. Initial attempts to prevent its spread by 
geographically confined lockdowns failed and western countries became 
alerted by the exponential increase of new infections in Italy, which by 
the end of March had exceeded those reported by China. In mid-March, 
the European countries gradually entered a systemic lockdown and ur
gently prepared their healthcare systems for the challenges to come. 

Driven by initial reports from China that indicated a higher sensi
tivity of chest computed tomography (CT) compared to polymerase 
chain reaction (PCR) in epidemic areas [1,2] imaging was recognized as 
an important additional diagnostic tool in the wake of the pandemic [3, 
4]. As a consequence, not only emergency and intensive care units but 
also radiology departments in Europe had to quickly adapt to the new 
reality, following recommendations from their colleagues in Asia [5]. 

In our department, a substantial increase in chest CT admissions for 
COVID-19 was seen soon after the initial cases were diagnosed in our 
hospital by the end of February. At first, CT was used for differential 
diagnosis of flu-like symptoms that had been advocated by early reports 
from China [6,7]. Soon, however, when the number of patients on the 
dedicated medical wards increased, our department received inquiries 
for a standardized method allowing quantification and follow-up of 
disease burden for supporting both triage towards intensive care and 
therapy decisions. 

At the time of the initiation of this study, only little evidence was 
available on the evolution of lung tissue alterations in the course of the 
disease [8,9] and methodological proposals for quantification of these 
changes were at a very early stage [10,11]. Meanwhile the steadily 
growing literature on this topic is complemented by several other pub
lications, including recent reports on visual scoring systems [12,13], 
first quantitative and deep convolutional neural network (DCNN) ap
proaches [14–16] and a multicenter initiative for automated diagnosis 
and quantitative analysis of COVID-19 on imaging has been set up 
(https://imagingcovid19ai.eu). 

This article describes the process from a prototypical development of 
automated artificial intelligence (AI) based software for lung segmen
tation and quantification of lung opacities in CTs of COVID-19 patients 
in a Research and Development environment to its clinical imple
mentation within ten days. We discuss major strengths and weaknesses 
of our approach and set our results into the context of the current 
literature. 

The underlying hypothesis was that modern academic centers in 
radiology are capable of developing and implementing a clinically useful 
AI based software for quantification of pulmonary opacities in COVID- 
19 by their own efforts and with sufficient speed to meet the rapidly 
increasing clinical needs in the wake of a pandemic. 

2. Material and methods 

2.1. Hospital and involved personnel 

Our hospital is an academic hospital supplying maximum-care to a 
metropolitan area of 600.000 inhabitants. For this study, the Depart
ment of Radiology was supported by the Department of Research and 
Analysis, a team of 15 researchers with skills in image processing, data 
pipelines, deep learning applications and statistics. In the framework of 
this project, 3 members of latter department joined the newly created 
study team of 8 physicians, including 6 residents and 2 staff physicians 
specialized in cardio-thoracic imaging. The total work force dedicated to 
the project during the time frame of 10 days added up to approximately 
2 full-time equivalent (FTE) for the scientists and 4 FTE for the 
physicians. 

2.2. Patients and datasets 

The prospective collection and evaluation of data from subjects with 
COVID-19 for this project was approved by the local ethics committee 
(approval number 2020-00566) as part of a study registered on Clin
icalTrials.gov on 04/29/2020 (Identifier: NCT04366765). Data from 
patients actively denying consent for further research use were 
excluded. Finally, 152 datasets of COVID-19 patients with positive PCR 
were included (belonging to 146 patients), 23 performed with and 129 
without iodine contrast administration, respectively. CT scans were 
performed in our institution on six scanners of four different types 
(Somatom Force, Edge, Definition Flash, and Definition AS+, all 
Siemens, Forchheim, Germany). Iterative image reconstruction 
(ADMIRE/SAPHIRE, Siemens Healthineers, Erlangen, Germany) with 
soft tissue kernel (I26f) was used. 

Fig. 1 shows the increase in the cumulative number of patients from 
the beginning of March until the end of April 2020 (N = 272). For the 
training of the two algorithms A1 and A2 as defined below, 45 and 86 
datasets were included, respectively, whereby the individual numbers 
depended on the availability of pre-processed datasets at the time of the 
training: 

• Subset 1 consisting of 45 semi-automatically generated lung seg
mentations from the early phase of the project (until 03/27/2020) 
built the basis for training of a preliminary DCNN (A1).  

• The second Subset of 86 manually edited segmentations of COVID-19 
patients, including manual segmentations on Subset 1 scans 
(collectively named Subset 2C, acquired until 03/30/2020) and ac
counting for half of the training subset for the final DCNN (A2). 

Final testing was performed on a subset of 66 manually-edited seg
mentations on scans of COVID-19 patients acquired between 03/31/ 

Fig. 1. Milestones of our project and cumulative sum of chest CT scans performed in patients with COVID-19 at our department plotted against time in the early 
pandemic period (day 1 to day 50). 
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2020 and 04/14/2020 (Subset 2T). 
In addition to the data of COVID-19 patients, 141 CT datasets of 

patients with different medical history other than COVID-19 were 
included. These were:  

• Eighty-six chest CT datasets (including 16 follow-up examinations) 
that had been performed for assessment or exclusion of pulmonary 
infection during the second half of 2019 (Subset 2NC). These were 
used together with the 86 scans of Subset 2c in the training of algo
rithm A2.  

• Fifty-five chest CT datasets from 2020 with different acquisition 
protocols (with and without intravenous contrast), used for vali
dating the quantification of pulmonary opacities (see Appendix E1 
for further details). 

The processing of this training and validation subsets was also 
approved by the local ethics committee (approval number 2020-00595). 

Patient characteristics for the included datasets are given in Table S1 
of Appendix E1. 

2.3. Development pathway 

The technical development, refinement and testing of methods fol
lowed a stepwise approach as listed below and visualized in Fig. 1. 

2.3.1. Starting point – provisional, semi-automated assessment 
First, evaluation with a semi-automated software package was 

introduced as an interim solution to provide ad hoc quantification of 
pulmonary opacities identified on CT ([10], CT Pulmo 3D, Syngo.via, 
VB30A, Siemens Healthineers, Erlangen, Germany). Originally designed 
for quantification of emphysema, this tool delineates lung contours with 
restricted options for manual correction. Ten equally spaced 
threshold-based subranges of negative Hounsfield units (HU) were 
formed. Based on previous reports on density distribution in acute res
piratory distress syndrome [17], the percentage of voxels with HU 
values between –600 and 0 relative to the entire lung was calculated and 
considered during radiological reporting. The CT-scans from this initial 
evaluation step processed until 03/26/2020 (N = 45) are in the 
following referred to as Subset 1. 

2.3.2. Step 1 – training of baseline in-house segmentation method 
The 3D segmentations of Subset 1 were exported as binary masks 

without further manual intervention. For the training of deep learning 
algorithm 1 (A1), a framework for DCNN semantic segmentation with a 
U-Net architecture was used [18]. The data was processed with two 
convolutions in three spatial dimensions (3 × 3 × 3 convolution ker
nels). The principle of the network was based on the 3D U-Net without 
batch normalization [19] but we implemented it with only three reso
lution layers formed by two pooling and upsampling layers to reduce the 
model complexity and facilitate training. The number of channels per 
layer were the same as in the first three resolution levels in [19]. The 
training was performed on TensorFlow with NiftyNet (https://niftynet. 
io) on a consumer-grade graphics processor unit. 

2.3.3. Step 2 – refinement of model by training with manual reference 
segmentations 

The manually refined 3D segmentations from this step (n = 238) are 
in total referred to as Subset 2, which consists of the previously 
described Subsets 2C (N = 86), 2NC (N = 86), and 2T (N = 66). Manually 
segmented reference standards of lung borders were generated in a 
medical image viewing/processing and software development platform 
Nora (www.nora-imaging.com). After discussing the segmentation 
strategy, three radiologists in training (T.W., L.S, C.B.) segmented the 
lung borders in each axial slice of the chest CT dataset using a threshold- 
based annotation pencil and avoiding inclusion of hilar vessels. From the 
Subset 2T, 10 cases were randomly selected for inter-rater comparisons 

of independent segmentations by all three raters, from which a single 
estimated ground truth segmentation was computed, as in [16]. 

The same network architecture as for A1 (Step 1) was used for 
training of algorithm A2, trained with Subset 2C and Subset 2NC (total 
N = 172). 

2.3.4. Step 3 – implementation of a third-party lung segmentation algorithm 
On 04/04/2020 an independent research group released “COVID-19 

Web” on the GitHub platform, which to our knowledge was the first 
open-source lung segmentation algorithm specifically trained with 
COVID-19 chest CT datasets (https://github.com/JoHof/lungmask) 
[15]. Similar to A1 and A2, it is based on the U-Net architecture and had 
been trained on 40 and 238 datasets from patients with and without 
COVID-19, respectively (1–6 ratio). We implemented version 0.2.2 
(downloaded on April 7th, in the following referred to as A3) in step 3 as 
an external reference for our own algorithms A1 and A2. 

2.4. Data evaluation and statistical analysis 

The inference of lung borders was followed by a simple post
processing step for all three algorithms, during which spurious remote 
segmentations were excluded, while keeping the largest connected 
components. Algorithms A1− 3 were tested and compared on Subset 2T. 

2.4.1. Segmentation performance 
Descriptive statistics were used to compare established performance 

metrics comparing inter-rater and human/deep learning whole-lung 
segmentations:  

• The Dice similarity coefficient ranging from 0 to 1, as the number of 
common voxels times two, divided by the sum of voxels from each 
segmentation  

• The maximal Hausdorff distance in mm, as the maximum distance 
between two segmentation contours 

The Dice coefficient was additionally evaluated for the upper and 
lower 20 % of the lungs (Appendix E1, Data Supplement S3). 

2.4.2. Threshold-based quantification 
We estimated the percentual opacity load (POL) in both lungs by 

thresholding between -600 and 0 HU: 

POL− 600 =
∑n

s=1

Os

Ls
× 100  

where O voxel count of lung mask with -600≤HU≤0 and L voxel count of 
lung mask in slice s, respectively. 

POL− 600 derived from each of the algorithms were separately 
compared to manual POL− 600 in Subset 2T with Bland-Altman analyses 
in R (v 3.6.3) [20]. 

Additionally, quantification was computed in 55 non-COVID-19 
cases in varying acquisition phases after administration of intravenous 
iodine contrast (Appendix E1, Data Supplement S4). 

2.5. Implementation and availability 

After the pathway development, a data pipeline was set up to navi
gate acquired images from the scanner to Nora, where the proposed 
algorithm (A2) was implemented. This locally hosted software is avail
able to the radiologist during reporting through a web browser. Upon 
arrival of the image dataset, a segmentation and quantification process 
are operated automatically or can be triggered by mouse-click. In veri
fied COVID-19 cases or in patients with a high pretest probability, the 
results are exported to the clinical PACS in the form of a visual report 
and included into the radiological report at the decision of the radiol
ogist and are thus accessible to the attending physicians (see video). 
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3. Results 

3.1. Development pathway 

The technical development steps 1 through 3 were successfully 
completed within a period of 10 days: At day 1 and 2, segmentations 
generated by the semi-automated approach were exported and con
verted to a suitable format for the training of algorithm A1. The pre- 
processing, training of A1 and subsequent processing took place on 
day 3− 4. Data preparation for the training of algorithm A2 including 
thorough manual segmentation was performed on days 5–8, followed by 
training of A2. The preliminary results of the deep learning segmenta
tion A2 were available and discussed on day 9. As a side note, the total 
number of chest CT scans acquired for COVID-19 at our institution had 
in the meantime exceeded 200. On day 10 we finalized the threshold- 
based quantification and the complete pipeline was uploaded to our 
clinically embedded software development platform Nora. Fig. 2 shows 
a comparison of the output of the automated approach of algorithms A1- 
A3. The detailed timeline of the development pathway is given in Table 
S2 of Appendix E1. 

3.2. Segmentation performance for whole-lung 

The performance metrics are given in Fig. 3 and Table 1. The pre
cision of the deep learning lung tissue segmentation in Subset 2T was 
excellent for A2 and A3 with mean Dice coefficients of 0.97, while A1 
showed a slightly lower mean Dice coefficient of 0.95. The maximal 
Hausdorff-distance showed a mean of 25, 17 and 28 mm for A1, A2 and 
A3, respectively. Isolated outliers were observed above the upper 

quartile, mainly for the preliminary (A1) and the third-party (A3) al
gorithm, corresponding to the unexpected inclusion of pneumothorax or 
pleural effusion in the lung segmentation (for an example see Fig. 2). 
Inter-rater segmentation comparison on the 10 cases was excellent with 
mean Dice coefficients of 0.99 for all comparisons (Table 1). 

3.3. Performance in opacity quantification 

The results of the threshold-based quantification analysis are dis
played in Fig. 4 and Table 2. Lung opacities were diagnosed in forty-four 
out of sixty-six scans (66 %) from the test dataset 2T. POL− 600 of the 
manually lung segmentations ranged from 5 to 55%. The algorithms 
showed mean underestimations of 3.0 %, 1.8 % and 0.9 % for A1, A2 and 
A3 in Subset 2T, respectively. For A1 and A3, there was a proportional 
bias in POL− 600 towards higher opacity loads (0.35 % and -0.4 % for each 
10 % increase in POL− 600, respectively), while for A2 the slope of the 
bias was almost zero (Fig. 4). 

3.4. Implementation and availability 

Implementation has been accomplished during the pandemic in April 
2020. In the first 6 weeks after implementation, almost 500 chest CTs 
admitted to our department were processed automatically. These scans 
were in part from patients with COVID-19 (N≈100) and in part from 
patients with other diseases from the later period of the COVID-19 
pandemic. Processing time per individual is approximately 5 min. The 
quantification results stored in the PACS are used by the attending 
physicians as a risk stratification tool, particularly as an indicator of 
deterioration urging transfer to intensive care. 

Fig. 2. Segmentation examples of algorithms A1-A3: left basal lung (transversal slice) in an atypical case of COVID-19 (a) with ground-glass opacities (orange arrow), 
consolidations (green arrow) and a pleural effusion (black line). (b): lung borders, including ground-glass opacity but not consolidation, are segmented with al
gorithm A1. (c): lung border segmentation including both the ground-glass opacity and the consolidation with algorithm A2. (d): pleural effusion is unexpectedly 
included in the lung border segmentation with the third-party algorithm A3. 

Fig. 3. Boxplots of Dice coefficient (a) and maximal Hausdorff distance (b) for the three algorithms (blue: algorithm A1, orange: algorithm A2 and green: algorithm 
A3), compared to the manual ground truth (GT) on the test subset. The lowest outlier in the Dice coefficient of all three algorithms occurred in one case with a one- 
sided pneumothorax. 
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4. Discussion 

In this work, the steps required for the development of a deep 
learning algorithm for quantification of opacities on chest CT and its 
clinical integration are outlined. Within just 10 days, two deep neural 
network segmentation algorithms with different sizes of training data
sets were trained and a threshold-based quantification approach esti
mating lung opacity load was implemented into the clinical workflow in 
the midst of the pandemic. The results were compared to manually 
processed results and a lung segmentation algorithm developed and 
released in the same time period by an independent research group. 

The successful and timely implementation of the described pipeline 
was partially owed to the prior experience of our team in the imple
mentation of deep learning pipelines and the close collaboration be
tween developers and clinical stakeholders. In contrast to academic 
benchmark challenges in image processing, where usually a minimum of 
three months is provided for fine-tuning of the model, an end-to-end 
machine learning pipeline with incremental steps and sanity checks 
was applied, in fact a well-established practice in the tech industry [21]. 
Additionally, the seamless implementation of the third-party algorithm 
in the software development platform Nora allowed us a head-to-head 
comparison in real-time and is an additional strength of this study. 
The availability of open-source algorithms is vital for the field, espe
cially in time-critical occasions, therefore our proposed method was
made available on an open-source platform. 

The first deep learning algorithm A1 was deployed as early as 4 days 
after project initiation. Forty-five chest CTs from patients with COVID- 
19 available at that time were utilized for its training. Even without 
prior manual refinement of the segmentations, A1 provided a satisfac
tory overall segmentation performance. Nevertheless, a significant 
progress from the preliminary results of A1 to the second algorithm A2 
was seen. This latter deep learning algorithm, trained with the fourfold 
amount of chest CT datasets and after manual refinement of the refer
ence standard, showed a considerable improvement in segmentation 
performance on the test subset, consisting of chest CTs with a wide 
spectrum of COVID-19 related opacities. Although comparable to the 
third-party algorithm (A3), A2 showed in average lower maximal 
Hausdorff distances, pointing at a better agreement with the reference 
standard segmentation. This might be in part attributed to the fact that 
the reference standard of training and test subsets were created by the 
same human raters [22], but is also reflected by higher segmentation 
accuracy in specific cases with coexisting pneumothorax or massive 
pleural effusion. 

The deep learning segmentation was interlinked with a subsequent 
opacity quantification step, based on a HU-thresholding method, 

established at our site for COVID-19 related opacities before the deep 
learning segmentations were introduced. Quantification based on 
thresholding has been previously used for differentiation of normal lung 
tissue from opacities, such as ground-glass or consolidations [17] and 
the lower cut-off of -600 HU implemented here reflects the counterpart 
of the “well-aerated” lung, which has been correlated to the severity of 
the disease and clinical outcome in patients with COVID-19 [14]. The 
average underestimation of automated quantification was minor for the 
proposed A2 and the third-party algorithm, whereas the latter showed a 
negative bias slope towards higher opacity loads. In contrary, quantifi
cation bias with A2 did not manifest a dependency on opacity load, thus 
making the estimation of error from automated quantification more 
predictable when comparing baseline and follow-up scans. 

The approach proposed in this article quantifies but does not classify 
lung opacities, as recently shown by an automated differentiation of 
lung opacities in chest CTs caused by COVID-19 and acquired pneu
monia [16]. Direct segmentation of affected lung areas has also been 
proposed as an alternative to approaches using thresholding after seg
mentation, although the voxel misclassifications reported there might 
eventually result in a similar degree of opacity underestimation [23]. 
Factors influencing the distribution of HU values in lung tissue such as 
inflation depth and prior contrast administration were identified in a 
small sample with no lung opacities (Appendix E1 only). The role of 
these and other factors, such as partial volume effects from vessels and 
bronchi, common CT artifacts or coexisting lung disease, have to be 
evaluated in more detail. 

The presented pragmatic approach also harbors some limitations. 
The first is the selection and curation of datasets that was strongly 
dominated by the question of availability of pre-processed data from the 
provisional, semi-automated pipeline in the wake of the pandemic. The 
data that was used for this project does therefore neither represent a 
complete, consecutively acquired sample of the COVID-19 cohort at our 
hospital nor is it a fully random sample. In addition, the reference 
standard subset of COVID-19 chest CT for the training of A2 was 
extended by an equally sized subset of relatively homogeneous scans 
performed for exclusion of pulmonary infection with and without iv 
contrast. Taken together, these inconsistencies in data selection may 
limit the performance of the algorithm in cases of advanced COVID-19, 
although for the training subset of the third-party A3 algorithm this 
portion of chest CTs performed for other reasons than COVID-19 was 
even lower. On the other hand, this augmentation of the training subset 
might reduce the selection bias and represents a more diverse sample 
[24]. An additional limitation is the use of empirical HU-thresholds for 
disease quantification, since clear-cut thresholding, especially the upper 
threshold of 0, might fail to include dense lung consolidations or might 

Table 1 
Descriptive statistics for performance metrics Dice coefficient and maximum Hausdorff distance, on the left for comparisons between each algorithm and the human 
reference standards and on the right for the inter-rater comparisons.   

GT vs algorithm comparison Inter-rater comparison  

Dice coefficient max. Hausdorff distance  Dice coefficient max. Hausdorff distance 

Mean 
GT vs A1 0.95 25.5 r1 vs r2 0.99 17.0 
GT vs A2 0.97 17.4 r1 vs r3 0.99 22.0 
GT vs A3 0.97 28.4 r2 vs r3 0.99 23.7 

SD 
GT vs A1 0.03 14.2 r1 vs r2 0.01 8.7 
GT vs A2 0.02 15.2 r1 vs r3 0.01 20.8 
GT vs A3 0.02 24.7 r2 vs r3 0.01 21.4 

Minimum 
GT vs A1 0.78 10.8 r1 vs r2 0.97 7.5 
GT vs A2 0.86 6.3 r1 vs r3 0.97 7.5 
GT vs A3 0.86 10.0 r2 vs r3 0.97 4.9 

Median 
GT vs A1 0.96 21.5 r1 vs r2 0.99 14.6 
GT vs A2 0.98 11.8 r1 vs r3 0.99 15.6 
GT vs A3 0.97 17.4 r2 vs r3 0.99 17.5 

maximum 
GT vs A1 0.97 80.1 r1 vs r2 1 34.7 
GT vs A2 0.98 71.9 r1 vs r3 1 78.3 
GT vs A3 0.98 111.0 r1 vs r2 1 78.3 

Abbreviations: GT: ground truth, SD: standard deviation, A1-A3: algorithms 1–3, r1-r3: rater1–3. 
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erroneously include small vessels due to partial volume effects. Finally, 
future contributions to the deep learning algorithm have to take into 
account coexisting abnormalities and potentially include more datasets 
from a wider spectrum of diseases in the training and test subsets in a 
controlled fashion. 

5. Conclusion 

Rapid development of reliable lung segmentation for COVID-19 is 
feasible with DCNN. Clinically acceptable results can be achieved in only 
few days and with less than 50 cases available for training, while by 
fourfold increasing of the number of datasets human-level performance 
was achieved. With this technique, fully automated quantification of 
pulmonary involvement in COVID-19 is possible even in the presence of 
advanced disease with extensive consolidations. This demonstrates the 
potential of including machine learning to assist clinical processes to 
manage the current pandemic and beyond. 
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Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.ejrad.2020.109233. 

The algorithm and reporting tool can be downloaded from following 
link: doi:https://doi.org/10.5281/zenodo.4012205. 
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