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Machine learning analysis identifies
genes differentiating triple
negative breast cancers
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Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer (BC) with the
highest mortality due to high rate of relapse, resistance, and lack of an effective treatment. Various
molecular approaches have been used to target TNBC but with little success. Here, using machine
learning algorithms, we analyzed the available BC data from the Cancer Genome Atlas Network
(TCGA) and have identified two potential genes, TBC1D9 (TBC1 domain family member 9) and MFGE8
(Milk Fat Globule-EGF Factor 8 Protein), that could successfully differentiate TNBC from non-TNBC,
irrespective of their heterogeneity. TBC1D9 is under-expressed in TNBC as compared to non-TNBC
patients, while MFGE8 is over-expressed. Overexpression of TBC1D9 has a better prognosis whereas
overexpression of MFGES8 correlates with a poor prognosis. Protein—protein interaction analysis by
affinity purification mass spectrometry (AP-MS) and proximity biotinylation (BiolD) experiments
identified a role for TBC1D9 in maintaining cellular integrity, whereas MFGE8 would be involved in
various tumor survival processes. These promising genes could serve as biomarkers for TNBC and
deserve further investigation as they have the potential to be developed as therapeutic targets for
TNBC.

Triple negative breast cancer (TNBC) accounts for 10-20% of all breast cancers (BC). They are characterized by
lack of the hormonal receptors estrogen (ER) and progesterone (PR), and the overexpression of human epidermal
growth factor receptor 2 (HER2)". It is the most aggressive form of BC and is very heterogeneous?.

The complexity of TNBC increases due to its high risk of relapse, and poor progression-free survival (PES)
and overall survival (OS)®. The PFS for metastatic TNBC patients is 3-4 months after treatment failure*. The
5-year mortality rate for early stage TNBC after surgery is 37%, whereas half of them relapse®.

According to gene expression pattern, TNBC has been classified in 6 different molecular subtypes namely
Basal like (BL)1, BL2, Luminal androgen receptor (LAR), Immunomodulatory (IM), Mesenchymal (M) and
Mesenchymal stem like (MSL), with some that cannot be classified®. Lehmann et al., 2011, have shown that each
of these subgroups can be further divided into intrinsic subtypes of BC (Luminal A, Luminal B, HER2, normal
breast like, Basal like and unclassified) based on their gene expression®. This stipulates why TNBC has differ-
ent clinicopathological outcomes for different patients, rendering treatment arduous. On March 8, 2019, FDA
approved immunotherapy Atezolizumab (targeting PD-L1) in combination with chemotherapy (nab-paclitaxel)
for initial treatment of women with advanced TNBC positive for PD-L1 protein expression”®. Nevertheless, there
is no FDA approved target therapy for TNBC patients as a whole so far’. TNBC heterogeneity and aggressiveness
call for an unmet need to identify genes that could serve as biomarkers to differentiate TNBC from other BCs,
as well as serve as potential targets therapy irrespective of their heterogeneity.

Research groups have tried various approaches to identify biomarkers for TNBC using different techniques
to study gene expression!?. This has left us with a vast amount of data that needs to be thoroughly analyzed.
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Figure 1. Machine learning (ML) analysis pipeline. A dataset consisting of 877 patients was selected, which
comprises data from RNAseq, methylome and miRNA analysis. This dataset was divided into a training set (80%
patients) and a test set (20% patients). The training set (blue) was used to train three ML algorithms: decision
tree (DT), Random forest (RF) and Set-covering machine (SCM) to identify genes differently expressed in Triple
negative breast cancer (TNBC) or non-TNBC. The process was repeated 100 times (N =number of repeats),

to come up with the best learner model. This model was then applied to the test set (Red) to get the grouping

of genes according to TNBC/non-TNBC subtypes. This process was also repeated 100 times to validate our
findings. The output is a conjunction of rules for SCM and tree/(s) for DT/RE which led to 20 potential genes.

One way of extracting useful information is by machine learning. Machine learning (ML) is a computer-based
algorithm and statistical model which uses data as a training model, learns from the data pattern and inferences
and improves with experience (number of times it reads the data), without detailed programming to do the
desired task!!. Different algorithms can be used such as Decision tree (DT), Random forest (RF) and Set cover-
ing machine (SCM). A DT uses a tree-like graph that comprises decision models consisting of all the possible
outcomes'?. RF is a classification or regression method consisting of multiple DT, where the final output is the
modes (for classification) or means (for regression) of all the outputs clubbed together from every DT'%. SCM
is an algorithm whose goal is to learn a conjunction or a disjunction of rules. This is achieved by finding the
decision function depending on the smallest number of attributes'?.

In the present study, we have analyzed a dataset consisting of 877 BC patients from The Cancer Genome Atlas
Program (TCGA) by three different machine learning algorithms: DT, RF and SCM. The analysis identified 20
genes, out of which two genes were characterized further, namely TBC1 Domain Family Member 9 (TBCI1D9),
a GTPase activating protein, and Milk fat globule-EGF factor 8 (MFGES8), also known as lactadherin, which is a
membrane glycoprotein. These identified genes were able to differentiate TNBC from non-TNBGC, irrespective
of their heterogeneity. The protein-protein interaction analysis highlights their potential as therapeutic targets
for this highly aggressive subgroup of BC.

Results
Machine learning algorithms identify potential genes differentiating TNBC from
non-TNBC. Treatment of TNBC requires a gene or a gene set that can simply differentiate TNBC from all
other BC subgroups taking into consideration the complexity of its classification. With this goal, we analyzed the
TCGA-BRCA dataset from TCGA portal by three different ML algorithms, namely SCM, DT and RF (Fig. 1).
We analyzed the multiple data from 877 breast cancer patients available on TCGA. The dataset comprised
16% (140 samples) TNBC and 84% (737 samples) non-TNBC patients. In the non-TNBC subgroup, 63% were
Luminal A, 16% were Luminal B and 5% were HER2 over-expressing samples. The analysis led to 20 potential
genes that could differentiate TNBC from non-TNBC. From these 20 genes, 15 were down-regulated (TBC1D9,
GATA3, SLC16A6, ESR1, INPP4B, SLC44A4, ANXA9, AGR2, MCCC2, TSPAN1, STBD1, MLPH, CACNA2D2,
RARA, STARD3) and 5 were upregulated (PPPIR14C, SFRS13B, LDHB, MFGES, PSAT1) in TNBC as compared
to non-TNBC patients. We did not find any significant changes in methylation and miRNA data which could
differentiate TNBC from non-TNBC.

Selection of three potential genes based on BC patient’s survival outcome. The 20 genes iden-
tified by ML were further analyzed to come up with the most promising genes. We first analyzed the effect of
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these genes on survival outcome in 2,164 patients from 16 different datasets (Fig. 2A). The heatmap is based
on the meta z-score obtained when survival Z scores are collapsed by cancer/cancer subtype. We then selected
the top three genes with the best or the worst effect on survival outcome, and with the maximum repeats in ML
analyses. This led to the following three genes: TBC1D9 (TBC1 domain family number 9), SLC16A6 (Solute
Carrier Family 16 Member 6) and MFGE8 (Milk Fat Globule-EGF Factor 8 Protein). Expression of TBCID9
and SLC16A6 had better survival outcome among BC patients whereas expression of MFGES8 had poor survival
outcome (Fig. 2A).

We further investigated the outcome of these three genes on survival of BC patients for which we used the
online tool developed by Gyorffy et al., known as KM (Kaplan-meier) plotter (Fig. 2B)'*. The analysis showed that
BC patients with high expression of TBC1D9 had better survival outcome for distance metastasis free survival
(DMES) and post-progression survival (PPS), with a p-value of 0.0014 and 0.0088 respectively. SLCI16A6 also
showed similar results for both DMFS (p-value =0.072) and PPS (p-value=0.011), but the p-value for DMFS
was not significant. On the other hand, BC patients with high expression of MFGES8 had poor survival outcome
for both DMEFS (p-value=0.019) and PPS (p-value=0.031).

The three selected genes effectively differentiate TNBC from non-TNBC in different patient
cohorts. Using the TCGA provisional dataset from the cBioPortal for cancer genomics, the expression
pattern of the three selected genes in 1,101 patients was verified (Fig. 3A). Based on their expression pattern,
TBCIDY and SLC16A6 expression were higher in non-TNBC, whereas MFGE8 was more expressed in TNBC
patients.

The expression level of these genes was also verified in the original dataset consisting of 877 patients and the
same result was obtained (Fig. 3B). To validate our findings in an independent cohort, 13 TNBC and 12 non-
TNBC patients were selected from the tissue bank of Centre des Maladies du Sein (Hopital du St-Sacrement,
Quebec, Canada) with the aid of senior pathologists, and the expression of these three genes was verified by
qPCR in these samples. The expression pattern in these samples further confirmed our findings (Fig. 3B). For
MFGES expression, we obtained a p-value of 0.72 when comparing non-TNBC (Luminal A, Luminal B and
HER2) to TNBC. However, a p-value of 0.16 was obtained when the expression of MGFE8 was compared in the
non-TNBC (excluding HER2 subgroup) vs TNBC group.

Protein—protein interaction analysis highlights a role for TBC1D9 in maintaining cellular integ-
rity. The evidence of association of TBC1D9 expression with better survival of BC patients led us to explore
the role of this protein with regard to its interacting partners. Hence, AP-MS and BioID experiments were per-
formed to identify their interactors and in turn understand their role in biological processes. The data obtained
from AP-MS or BioID experiments were analyzed using SAINTexpress. Enforcing a SAINTexpress BFDR cutoff
of <0.01, 68 and 77 significant interactors were identified by AP-MS and BioID, respectively (Supplementary
Tables 1 and 2). These genes were further filtered for possible non-specific interactors utilizing the Crapome
portal yielding final datasets of 52 and 67 significant protein interactors by AP-MS and BioID, respectively (Sup-
plementary Table 3). Compared with the already known interactors from Biogrid (https://thebiogrid.org/) (Sup-
plementary Fig. 1A), four proteins were identified by AP-MS (MAPILC3B, ARL8A, CPT1A and SRSF2), one
with BioID (ABHD16A) and five with both AP-MS and BioID (PRPF38B, DDX41, YMEILI, SSB and SNRPE).
Out of them, only two proteins were significant according to our cut-off: ARL8A (BFDR=0) and ABHD16A
(BFDR=0.01) (Supplementary Tables 1 and 2).

The proteins identified by both methods were further analyzed using the metascape online tool to better
understand their roles. The circos plot in Fig. 4A depicts the comparison analysis of the data obtained with
AP-MS and BiolID. The red part of the circle represents the AP-MS data whereas the blue is for BioID data. The
inner circle (orange) represents each protein identified. The dark orange colour represents proteins that appear
in multiple lists. The proteins overlapping in different gene ontology (GO) terms are connected with the purple
line. To understand which pathways these proteins affect, a comprehensive protein—protein interaction (PPI)
network was generated by metascape involving both AP-MS and BioID data, based on this interaction network
(Fig. 4B). The unique PPI from metascape applies Molecular Complex Detection (MCODE) algorithm to the
resultant networks to identify tightly connected network cores. Then it analyzes each network component for
pathway enrichment and based on them, finally assigns biological functions. The analysis highlighted the enrich-
ment of pathways related to metabolism of lipids and organelle localization by both AP-MS and BioID (Fig. 4C).
The processes affected by metabolism of lipid pathway are metabolism of lipids (logP = - 5.6), glycerophospho-
lipid metabolic process (logP = —3.0), and glycerolipid metabolic process (logP =—2.3) (Supplementary Table 4).
For organelle localization the major processes affected are organelle localization (logP = - 3.8), microtubule-
based processes (logP =—3.5), loss of Nlp from mitotic centrosomes (logP =—3.4), AURKA activation by TPX2
(logP =—-3.4), centrosome maturation (logP =—3.2), regulation of PLK1 activity at G2/M transition (logP =-3.1),
and recruitment of NuMa to mitotic centrosome (logP =—2.9) ( Supplementary Table 4).

The pathways highlighted by AP-MS are response to estrogen (logP =—4.7), PID beta catenin NUC pathway
(logP =—4.6), response to ER stress (logP =—3.5), and the ones identified by BioID are inner mitochondrial
membrane organization (logP =-3.6), smoothened signaling pathway (logP = —3.3) and organelle biogenesis
and maintenance (logP =-4.9) ( Supplementary Table 4).

Protein—protein interaction analysis highlights a role for MFGE8 in many oncogenic pro-
cesses. AP-MS and BiolD experiments were performed for MFGES to explore its protein—protein inter-
action network to better understand the high expression of MFGES8 in TNBC and its correlation with poor
prognosis in breast cancer. The analysis of AP-MS and BioID were done in a similar way as TBC1D9. One
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Figure 2. Survival analysis. (A) Survival analysis was performed on the 20 genes from ML analysis, in 40
different cancers using Precog meta-Z analysis. Survival z-scores are collapsed by cancer/cancer subtype as

described

in Gentles/Newman et al.>*. False discovery rates corresponding to the meta-Z scores were calculated

by the method of Storey and Tibshirani*. The data in breast cancer is highlighted in red, which is from 16

different datasets consisting of 2,164 patients. Green = Better survival; Red=Poor survival. (B) Kaplan-Meier
plots depicting the effect of the three selected genes (TBCI1D9, SLC16A6 and MFGES) on distance metastasis
free survival (DMFS) and post progression survival (PPS). The graph was prepared by splitting patients by upper
tertile. The expression of genes was determined by gene chip in kmplotter. DMFS analysis was performed in
1746 patients and PPs was performed in 414 patients.
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Figure 3. Analysis of the potential of the three selected genes to differentiate TNBC from non-TNBC based

on their expression pattern. (A) The TCGA provisional dataset (tcga_rnaseqV2_brca_v2.0_gene_sample)
consisting of 1,101 patients and 1,108 samples was analyzed in cbioportal to see the difference in the expression
level of the three selected genes (TBC1D9, SLC16A6 and MFGES) in TNBC and non-TNBC patients. (B) mRNA
expression of the selected genes in TNBC and non-TNBC patients. The first row shows the data from 877
patients from the dataset TCGA-BRCA (nationwidechildrens.org_clinical_patient_brca.txt), which consists of
140 TNBC and 737 non-TNBC patients. The second row is the expression in patients from our tissue repository
(TNBC=13; non-TNBC=12). The statistical analysis score is the distribution of Wilcoxon rank sum test.

0% = p value <0.0001.
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Figure 4. Protein-Protein interaction (PPI) network based on AP-MS and BioID data in TBC1D9. (A) The
Circos plot shows how genes identified in AP-MS and BioID overlap. On the outside, each arc represents the
identity of each gene list, Red = AP-MS; Blue =BioID. On the inside, each arc represents a gene list, where each
gene has a spot on the arc. Dark orange color represents the genes that appear in multiple lists and the light
orange color represents genes that are unique to that gene list. Purple lines link the same genes that are shared by
multiple gene lists. The greater the number of purple links and the longer the dark orange arcs are, imply greater
overlap among the input gene lists. (B) All input gene lists were merged into one list and resulted in a PPI
network. Network nodes are displayed as pies. Color code for pie sector represents a gene list (AP-MS/BiolD).
(C) Pathways affected by TBC1D9; pathways identified by AP-MS, BiolID or both. AP-MS = Affinity purification
coupled to mass spectrometry; BiolD = Proximity-dependent biotinylation assay.

hundred and thirty-eight (138) significant interactors (BFDR <0.01) were obtained by AP-MS, and 12 by BioID
(Supplementary Tables 5 and 6). These interactors were further filtered by Crapome data, which led to 123
interactors by AP-MS, and 9 interactors by BioID (Supplementary Table 7). When compared with the known
interactors from Biogrid (Supplementary Fig. 1B), one protein by AP-MS (ABCE1) was found, two proteins
by BioID (YTHDEF2 and MTDH) and one was found by both (FUS), but none fell in the cutoff of BFDR<0.01
(Supplementary Tables 5 and 6).

Protein interactors for MFGES were also analyzed by metascape online tool to identify the biological processes
MEFGES is involved into. Not many significant interactors were found by BioID which is depicted in circos plot
Fig. 5A, where red part is AP-MS and blue is BioID. Few protein interactors sharing the GO terms were found,
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Figure 5. Protein—Protein interaction (PPI) network based on AP-MS and BioID data in MFGES. (A) The
Circos plot shows how genes identified in AP-MS and BioID overlap. On the outside, each arc represents the
identity of each gene list, Red = AP-MS; Blue =BioID. On the inside, each arc represents a gene list, where each
gene has a spot on the arc. Dark orange color represents the genes that appear in multiple lists and the light
orange color represents genes that are unique to that gene list. Purple lines link the same genes that are shared by
multiple gene lists. The greater the number of purple links and the longer the dark orange arcs are, imply greater
overlap among the input gene lists. (B) All input gene lists were merged into one list and resulted in a PPI
network. Network nodes are displayed as pies. Color code for pie sector represents a gene list (AP-MS/BioID).
(C) Pathways affected by MFGES; pathways identified by AP-MS, BioID or both. AP-MS = Affinity purified mass

spectrometry; BioID = Biotin identification.
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which is represented by purple colour lines in the circos plot. A PPI network was prepared to identify biological
functions (Fig. 5B). According to the interactors identified by AP-MS, an enrichment of protein deglycosylation
(logP =-9.8), carbohydrate derivative biosynthetic process (logP = —9.4), mitochondrial tRNA aminoacylation
(logP =—5.4), protein quality control for misfolded or incompletely synthesized proteins (logP =—4.9), cofactor
metabolic process (logP =—4.9) and lysosome organization (logP =—4.8) (Fig. 5C) were identified. For BiolD,
an enrichment of small molecule catabolic process was obtained (logP =—3.3) (Fig. 5C, Supplementary Table 8).
Besides, few proteins by BioID involved in cofactor catabolic process (ALDH1L2, DXDR), protein deglycosyla-
tion (TRIM13, DAD1) and carbohydrate derivative catabolic process (TRIM13, DAD1 and DXDR) were also
identified (Fig. 5C).

Discussion

TNBC, the most heterogeneous and aggressive BC, lacks any effective therapy to date. TNBC response to neoad-
juvant therapy looks promising on first look, and accounts for a pathological complete response (pCR) of around
30-40% at the time of surgery>'®. Yet, any traces of the residual disease after neoadjuvant therapy results into a
6 times higher risk of relapse and a more than 12 times risk of metastasis>'®. Moreover, the mean survival time
for patients who relapsed is less than 13 months'’. Additionally, response to chemotherapy further varies with
different subtypes of TNBC. According to Masuda et al., BL1 has the highest pCR rate (52%), whereas BL2 and
LAR subgroups show the lowest pCR rate (0% and 10% respectively)'®. If the intrasubtype variation is added, it
further complicates the outcomes of treatments. Many studies have been reported to understand the molecular
traits of TNBC to come up with potential therapeutic targets'®!?. Many of these targets are under clinical trials
and target growth factor receptors (EGFR, cMET, VEGFR), downstream signalling (PI3K/mTOR pathway, SRC,
WNT signaling), cell cycle checkpoints (CHK1/2), PARP inhibitors, the androgen receptor and so on (Clinical-
Trials.gov). Most are effective only for a subgroup of breast cancer and yet have not been very promising due to
many other underlying factors. In this study, we have identified genes that could differentiate TNBC from other
BC, irrespective of their heterogeneity.

In this study, we have taken advantage of the vast amount of available data stored in TCGA. We selected a
dataset consisting of 63% Luminal A, 16% Luminal B, 5% HER2+ and 16% TNBC, representative of the BC
prevalence. The analysis of the dataset by ML led to 20 potential genes differentiating TNBC from non-TNBC.
We identified 15 downregulated and 5 upregulated genes in TNBC as compared to non-TNBC. Of most signifi-
cant importance is the identification of ESR1 (estrogen receptor) which was downregulated in TNBC, further
confirming the efficacy of ML analysis. These genes were further evaluated for their survival outcome across 40
different cancers. Most strikingly, the identified genes gave a trend of better or poor survival outcome only in BC
patient samples based on their expression pattern (Fig. 2A). Further analysis of the three selected genes (based
on survival outcome and number of repeats by ML analysis), TBC1D9, SLC16A6 and MFGES, showed that each
has an effect on DMSF and PPS (Fig. 2B), where the expression of the first two genes (TBCID9 and SLCI6A6)
have better survival outcome. On the opposite, MFGES8 displays poor survival outcome. Since TNBC is the most
aggressive form of BC and the chances of metastasis and relapse are very high, this finding suggests that these
genes might be playing an utmost important role in the TNBC recurrence and spread.

The analysis of TCGA-BRCA RNAseq dataset confirmed that these genes are indeed able to differentiate
TNBC from non-TNBC patients (Fig. 3A). The expression of these three genes was further validated in tissue
samples. The same expression pattern as in the ML analysis, i.e. TBCID9 and SLC16A6 were downregulated in
TNBC, whereas MFGES was upregulated, was obtained (Fig. 3B), particularly after exclusion of HER2 subtype
samples, although statistical significance was not reached because the sample size was too small. These results are
not surprising since the expression of several genes was found to be highly correlated with HER2 status measured
at the RNA levels (TCGA analysis), but less correlated at the protein levels (samples analysis)®.

TBC1D?9 is a GTPase activation protein whose expression has been shown to be linked to low mortality and
recurrence in breast cancer?’. SLC16A6 is a transporter for monocarboxylates across the plasma membrane.
Polymorphisms in SLC16A6 gene have been reported in breast cancer’?. MFGES, also known as lactadherin, is
known to promote phagocytosis of apoptotic cells and has been shown to induce the tumorigenic potential of
mammary epithelial cells®.

We further investigated the two promising genes TBC1D9 and MFGES to uncover their role in TNBC. The
interactors of TBC1D9 showed that it has a role in organelle localization, metabolism of lipids and organelle
biogenesis and maintenance. The most important interactor of TBC1D9, ARL8A (ADP Ribosylation Factor Like
GTPase 8A, fold change =30), which has been also identified as an interactor of TBC1D9 by AP-MS (Biogrid
data), is a GTPase known to bind to lysosome and therefore recruiting lysosome to the microtubule for its traf-
ficking to periphery, resulting in cell migration®. Lysosome trafficking leading to exocytosis helps in extracel-
lular matrix remodelling and membrane repair during cancer”. Nugues et al., have suggested that exocytosis by
lysosome has an important role in mitosis®. It has been shown that upon binding of ARLS to the lysosome, the
lysosome is recruited to the cytoplasm where it internalizes circulating triacylglycerides and cholesterol esters
to release fatty acids and glycerol, leading to continuous production of ATP required for rapid proliferation
in cancer cells”’. TBC1D9, which is a GTPase activating protein, acts on ARL8A (a GTPase) by inactivating
this protein, therefore regulating proliferation, migration, membrane repair, extracellular matrix remodelling
and mitosis (Fig. 6A). We have also identified PLK1 (polo-like kinase 1, fold change =155) as an interactor of
TBC1D9, which has a role in microtubule nucleation resulting in microtubule formation?®%, therefore affecting
trafficking of lysosome. Active PLK1 enters nucleus where it plays an important role in mitosis***!. It might be
possible that TBC1D9 inhibits the activation of PLK1, and therefore regulating these processes, but this will
need to be further evaluated.
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As for MFGES, it is known to interact with the phosphatidylserine (PS)-enriched surfaces, mostly labeling
the apoptotic cells. After interacting with PS, it binds to integrin on the macrophage leading to M2 polarization
by activation of STAT3 signalling resulting in tumor promotion and pro-oncogenic inflammatory response™
(Fig. 6B). Vallabhapurapu et al., have shown that many viable cancer cells express PS on its surface, which is
recognized by macrophages resulting in immunity to antitumor drugs®. Furthermore, these tumor associated
macrophages secrete MFGES8**, which has been shown to increase epithelial to mesenchymal transition (EMT),
invasion and mitosis by activating Twist 1 (Twist-related protein 1)*, and survival and resistance to stress by
activating PI3k/AKT (Phosphoinositide 3-kinase/Protein kinase B) pathway®®. Our data have highlighted a
role for MFGES in mitochondrial tRNA aminoacylation, through its interactions with many aminoacyl t-RNA
synthetases which could result in regulating tRNA maturation and proofreading, RNA splicing, amino-acid edit-
ing, and tmRNA aminoacylation protein synthesis®, resulting in regulating the shift from oxidative to glycolytic
metabolism, prominent in cancer cells via activation of the PI3BK-PTEN-AKT pathway*. We have also found
that MFGES interacts with OS9 (Osteosarcoma Amplified 9, Endoplasmic Reticulum Lectin). OS9 interacts
with HIF1a (Hypoxia Inducible Factor 1 Subunit Alpha) and leads to the degradation of HIF1a™. In a cancer
hypoxic condition, MFGE8 might interact with OS9 and therefore releasing HIF1a, resulting in tumor growth
and metastasis. However, this concept will need further evaluation. On the other hand, MFGES also interacts with
SELIL (Suppressor of Lin-12-Like Protein 1), whose role is in protein glycosylation. Protein glycosylation is an
important event in cancer progression, as incorrect glycosylation can lead to cancer progression and metastasis®®.

The search to identify genes differentiating TNBC from non-TNBC has led to the identification of two
potential genes, i.e. TBC1D9 and MFGES. The bioinformatics results show that TBC1D9 might have a role in
maintaining cellular integrity and therefore its expression is related to better survival outcome, whereas MFGE8
has a role in several oncogenic processes resulting in poor survival outcome in BC patients.

The major problem in treating TNBC is its heterogeneity. Even the 6 molecularly classified (or after refinement
four classes) TNBC subgroups display gene expression resembling other BC. As each patient shows different
characteristics, the genes identified in this study serve the long desiring aim of finding common patterns across all
TNBC patients, as these could be further developed as potential therapeutic targets. Targeting MFGE8 in TNBC
would be possible as it is overexpressed in TNBC. Hence it could be downregulated by using MFGES specific
inhibitors. Moreover, effector molecules of MFGES could also be targeted. However, TBC1D9 is downregulated
in TNBC. Therefore the question arises as to how to appropriately target a gene which is downregulated in a
disease. This could be performed with various approaches such as targeting its regulators, by gene therapy, a
vaccine approach, or by inhibiting the activated pathways (in this case ARL8A) due to inhibition of TBC1D9.
These approaches are currently being investigated for various tumor suppressor genes and are of great utility*>*.

The approach described in this study combines multiple disciplines linking clinical information, -omics data,
machine learning algorithms and bioinformatics tools, and has proved to be useful and adequate to provide
candidate genes that deserve to be pursued further.

Material and methods

Materials. Constructs for the genes of interest were generated via Gateway cloning into pDEST 3' 3xFLAG-
pcDNAS5-FRT-TO or pDEST 3’ BirA*-FLAG-pcDNAS5-FRT-TO according to Lambert et al. for TBCID9 and
MFGES8*. The pDEST-TBC1D9-BirA*-FLAG or 3xFLAG vectors were cloned from pENTR223-TBC1D9-open
vector (HsCD00379273) obtained from PlasmID DF/HCC DNA Resource Core at Harvard Medical School.
pSTV2-MFGES-BirA*FLAG or 3*FLAG vectors were cloned from pLX304-MFGES8-V5. This vector was kindly
provided by Prof. Mathieu Laplante, TIUCPQ, Québec, Canada. The anti-FLAG M2 Magnetic beads and strepta-
vidin sepharose beads were purchased from SIGMA (M8823) and GE Healthcare (17-5113-01), respectively.
Anti-FLAG antibody was purchased from SIGMA (1:5,000; F1804). PMSF and DTT were purchased from Bio
Basic INC (PB0425) and protease inhibitor cocktail from SIGMA (P8340, 1:500).

Dataset used. We used the dataset TCGA BRCA (nationwidechildrens.org_clinical_patient_brca.txt) con-
sisting of 877 patients; 140 TNBC and 737 non-TNBC. TNBC status was determined by the gene expression of
ER, PR and HER2. The non-TNBC group consisted of Luminal A (ER+ and/or PR+, HER2-), Luminal B (ER+
and/or PR+, HER2+), and HER2 (ER-, PR—, HER2+). The features space size was 98,026 attributes. For the
RNA expression there are two types of information available: Gene expression (about 20,500 genes) and their
isoforms (different versions of the genes). We selected the isoforms version (73,599 attributes). The miRNA
expression contains 1,046 attributes. For the methylation dataset we built a view called methyl_fusion (23,381
attributes) based on the HumanMethylation450 and HumanMethylation27 BeadChip Kits. The fusion view was
built by merging the information available in the previous two techniques. The N/A data in the methylation
dataset were replaced by a special mean value: a mean based on the positive examples values and another one
based on the negative examples were built. The N/A values were filled based on their labels.

Machine learning analysis. Three different algorithms were utilized to analyze the TCGA dataset: DT*2,
RF*and SCM". In the supervised ML settings, we assume that the data are available as a setS i {(xi, y) YLy ~ D™
where x; € X is a training example, y; € Y the associated label or phenotype, D is a data generating distribution
and m the size of the dataset. We focus here on the binary classification problem i.e. y € {—1, 1} or y € {0, 1}.
The goal of every learning algorithm is to obtain a predictor h : X — Y such that h(x) = y¥(x, y) ~ D. Origi-
nally introduced by Marchand et al., the SCM is a greedy algorithm whose goal is to learn a conjunction or a
disjunction of rules'. This is achieved by finding the decision function depending on the smallest number of
attributes. Lets P be the subset of positive examples and N be the subset of negative examplesi.e S = PUN. A
function h is said to be consistent with an example if it correctly classifies that example. Lets then define Nj, the
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<Figure 6. Schematic representation of the possible roles of TBC1D9 (A) and MFGES (B). (A) TBC1D9, a
GTPase activating protein, inactivates ARL8. When active, ARL8 localizes on the lysosomal membrane and
regulates the lysosomal positioning on microtubules that leads to trafficking of lysosome to periphery, therefore
resulting in cell migration. ARLS is essential for membrane repair and extracellular matrix remodelling
by controlling the exocytosis of lysosome?. ARL8 bound lysosomes are also recruited to the circulating
triacylglycerides and cholesterol esters, which are internalized by lysosomes and broken down into fatty acids
and glycerol, respectively, leading to continuous ATP production essential for cell proliferation. A study have
also shown that lysosomal exocytosis is essential for correct mitosis?®. PLK1 has a role in microtubule nucleation
and mitosis. In the present study, a PLK1 interaction with TBC1D9 has been identified, which could possibly
lead to inactive PLK1 by controlling its disassociation from its partners. This hypothesis however needs to be
verified. (B) MFGES is known to interact with phosphatidylserine which is expressed in the apoptotic cells.
After interaction, the complex binds to the integrin on the macrophages. This binding results in more secretion
of MFGE8. MFGES activates effrocytosis of apoptotic cells. The process of effrocytosis and MFGES itself
activates STAT3, leading to M2 polarization, tumor promotion and cancer stem cell activation. The apoptotic
signaling also induces ER stress, resulting in tolerogenic phagocytosis, which also secretes MFGES. This leads
to EMT, invasion, mitosis by twist induction or survival and resistance to death by activation of the PI3K/AKT
pathway. Upon ER stress induction, HIF1a is induced. This might be due to the interaction of secreted MFGE8
with HIF1a inhibitor OS9, therefore releasing HIF1a, resulting in tumor growth and metastasis. MFGES also
binds to SEL1L, whose increased expression has been seen in metastasis and cancer stem cell activation. The
mechanism by which MFGE8 might regulate SEL1L is an open question.

subset of examples in N for which A are consistent. Lets also define Py, the subset of examples in P for which h
Igh . The

SCM has 2 hyper-parameters: the penalty p and the early stopping point s. They are the two model-selection
parameters that give the user the ability to control the proper trade off between the training accuracy and the size
of the function. The SCM performs efficiently in the classification framework problem with focus on interpret-
able and sparse models. A decision tree is a tree where each node represents a feature (attribute), each link
(branch) represents a decision (rule) and each leaf represents an outcome (categorical or continues value). For
instability purpose, we also use the RF algorithm which is essentially a bunch of DTs with majority vote.

For the analysis the main matrices used were accuracy, precision and F1-score. These matrices present how
well the algorithm performs on the negative and positive example simultaneously. Since the dataset is unbal-
anced, we focused our attention on the F1-Score, because if the F1-score is high, that means our algorithm is
performing well and vice versa

make mistakes. The SCM utility function provides the predictor / that maximises U, = |Nj| — p %

TP+ TN . TP
Accuracy = Precision = ——
TP + TN 4 FN + FP TP + FP
TP Precision * Recall
Recall = ———— FI score = 2 %

TP + FN Precision + Recall

where, TP =true positive, TN = true negative, FN =false negative, FP =false positive.

In order to avoid any chances of randomness, we repeated the learning experiences 100 times and presented
the result of all the repeats. From these results, we retrieved the ten best models after the 100 repetitions. In the
case of the SCM, it is straight forward since all the models were conjunctions type. For the DTs and the RE, we
make the assumptions for the model to consider only the first three features and then do the count with these
features. The detailed flow chart of ML analysis is presented in Fig. 1.

Survival analysis. The ML analysis provided 20 potential genes for which their effect on survival was ana-
lyzed in 16 different datasets consisting of 2,164 patients using PREdiction of Clinical Outcomes from Genomic
Profiles (Precog). Based on the most pronounced effect on survival outcome, and the maximum time a gene
was coming up in ML analysis repeats, three genes were selected: TBCID9, SLC16A6 and MFGES. Further, we
looked at their effect on survival outcome of BC patients in another dataset using Kaplan Meier plotter (https://
kmplot.com/analysis/). The DMFS was analyzed on 1746 patients and PPS was analyzed on 414 patients.

Analysis of selected genes differentiating TNBC from non-TNBC. The expression of selected genes were analyzed
in TCGA provincial dataset in cBioPortal (https://www.cbioportal.org/). The dataset consisted of 1,101 patients.
The difference was analyzed according to their RNA expression (tcga_rnaseqv2-brca-v2.0_gene sample). Fur-
thermore, expression was checked in the original dataset TCGA BRCA to see if they could differentiate TNBC
from non-TNBC. A similar analysis was done by validating the mRNA expression level of these genes in patients
from the tissue bank of Centre des Maladies du Sein (Hopital du St-Sacrement, Quebec, Canada). The patient
samples consisted of 13 TNBC and 12 non-TNBC based on clinical biomarkers (ER, PR, HER2) measured by
immunohistochemistry. The non-TNBC subgroup consisted of four samples of each Luminal A, Luminal B and
HER?2 subgroups.

RNA isolation. Total RNA from breast tissue samples were isolated by Qiagen RNeasy Mini Kit (Qiagen,
Hilden, Germany). Preparation for whole-genome expression analysis was performed using the SensationPlus™
FFPE Amplification Kit.
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Quantitative real-time PCR (q-PCR) analysis. Quantitative PCR was performed using SyBr Green
technology as described previously**. Briefly, oligo-primer pairs that allow the amplification of ~ 200 base pairs
(bp) of the indicated specific mRNA were designed by GeneTools software and their specificity was verified by
blasting the GenBank database. The sequence of primers is indicated in Supplementary Table 9. Second-deriva-
tive and double-correction method were used for data calculation and normalization®, with three housekeeping
genes (ATP50, HPRT1 and GAPDH). The mRNA levels were expressed as number of copies/pg of total RNA cal-
culated using corresponding standard curves. The qPCR result was analysed using the Wilcoxon rank sum test.

Affinity-purification (AP). HEK293 Flp-In T-REx cells stably expressing tetracycline-inducible pDEST-
TBC1D9/MFGES8 3xFLAG were generated as per Lambert et al.*!. Untagged parental cells were used as controls.
These cells were grown in 15 cm plates at 75% confluency, two plates per replicate, induced with 1 pug/pL of
tetracycline and incubated at 37 °C for 24 h. After 24 h, cells were washed with fresh 1X PBS, pelleted in 2 ml
tubes and lysed with 1.5 ml of AP lysis buffer. AP lysis buffer: 0.1% (v/v) NP-40, 50 mM HEPES-NaOH pH 8.0,
100 mM KCl, 2 mM EDTA, 10% (v/v) Glycerol; supplemented with 1 mM DTT, 1 mM PMSF and 1X protease
inhibitor cocktail (SIGMA, P8340) prior utilization. Chromatin shearing was done by sonication (for 30 s at
power ~ 4 using Sonic Dismembrator 60 equipped with 1/8” probe) while storing on ice. Then, 250 units of tur-
bonuclease (SIGMA, T4330) was added and incubated on rotator for 1 h at 4 °C. The samples were centrifuged
at 14,000 rpm for 20 min at 4 °C, and the supernatant was collected in a new tube.

Anti-FLAG immunoprecipitation. 'The anti-FLAG M2 Magnetic beads were prepared by washing them three
times in cold 1XPBS and used 25 pL/sample. Supernatant containing the proteins from the cells was added to the
tubes containing 25 uL of anti-FLAG magnetic beads. The mixture was incubated at 4 °C for 2 h on rotator. The
beads were pelleted by centrifugation for 1 min at 1,000 rpm and were placed on an ice-cold magnetic rack to
remove the supernatant. The beads were resuspended in 1 mL of cold lysis buffer and transferred to a new 1.5 mL
tube. They were then pelleted by centrifugation and washed again with 1 mL of 20 mM Tris-HCl pH 8.0, 2 mM
CaCl,. After the last wash, a quick centrifugation was done (10 s at 1,000 rpm) and the samples were placed on
magnetic rack on ice to remove extra liquid.

Proximity biotinylation assay (BiolD). Tetracycline-inducible HEK293 Flp-In T-REx cells stably
expressing BirA*-FLAG-TBC1D9/MFGES fusion protein were grown in 15 cm plates to 75% confluence, two
plates per replicate. Negative controls samples for BioID experiments were parental Flp-In T-REx HEK293 stable
cells expressing BirA*-FLAG fused either to a green fluorescent protein (GFP), to a nuclear localization sequence
(NLS) or by itself as previously done*'. The cells were treated with 1 pg/uL of tetracycline and 50 pM biotin
simultaneously and were incubated at 37 °C for 24 h. After 24 h, cells were washed with fresh 1X PBS and were
lysed in 1.5 mL of RIPA lysis Buffer on ice. RIPA lysis buffer: 1% (v/v) NP-40, 0.1% SDS, 50 mM Tris-HCl pH7.4,
150 mM NaCl, 0.5% (w/v) Sodium Deoxycholate, 1 mM EDTA; supplemented with 1 mM DTT, 1 mM PMSF
(Bio Basic INC, PB0425) and 1X protease inhibitor cocktail (SIGMA, P8340) prior utilization. Samples were
sonicated to shear the chromatin (30 s at power ~4 using Sonic Dismembrator 60 equipped with 1/8" probe)
on ice. Further, 250 units of turbonuclease were added and incubated on rotator for 1 h at 4 °C. The sample was
centrifuged at 14,000 rpm for 20 min at 4 °C.

Streptavidin-based affinity capture of biotinylated proteins. ~ The Streptavidin Sepharose beads were washed twice
in 1 mL of lysis buffer (60 pL of slurry per sample). The beads were pelleted by centrifugation after each washing
and were then incubated with samples at 4 °C on rotator for 3 h. The bound beads were pelleted by centrifuga-
tion and were washed twice with 1 mL of RIPA lysis buffer (without protease inhibitors) and transferred to a new
1.5 mL Eppendorf tube to minimize background contaminants. Tubes were centrifuged and the supernatants
were discarded. The beads were washed three times with 1 mL of 50 mM Ammonium bicarbonate (ABC).

Sample preparation for LC-MS/MS analysis. On-beads trypsin digestion. For BiolD, the beads were
resuspended in 100 pL of 50 mM ABC with 1 pg of trypsin (resuspend in Tris-HCI pH 8.0). The samples were
incubated overnight (~ 15 h) at 37 °C with shaking with an extra 1 pg of trypsin added subsequently for 2-4 h
to insure complete digestion. Samples were gently centrifuged, and the supernatant transferred in new tubes.
The beads were rinsed twice and the supernatant pooled. For AP, the washed bound beads were resuspended in
750 ng of trypsin and were incubated overnight at 37 °C with gentle lateral agitation. After overnight incubation,
samples were magnetized, and supernatants were collected in new tubes. Another 250 ng of trypsin was added to
the beads and incubated 3-4 h without agitation. The supernatants were then transferred to new tubes.

Peptides recovery and desalting. 'The peptide digestion was stopped by adding formic acid (from a 50% stock
solution) to a final concentration of 2%. Samples were dried in a Speed-Vac vacuum concentrator without heat.
The samples were desalted with C,4 Stage Tips and sent for MS processing. The C,4 StageTips were prepared
according to the published protocol by Rappsilber et al.*®. Conditioning: The disks were made wet by passing
20 pL of 100% methanol through the StageTip. Then, 20 pL of buffer B (0.5% formic acid, 80% acetonitrile
in water) was added to the StageTip and centrifuged (3,000 rpm, 30 s). Further, 20 pL of buffer A (0.5% for-
mic acid in water) was added to the StageTip and centrifuged (3,000 rpm, 30 s). The samples prepared for AP
were directly loaded to the C 4-StageTips. For BiolID, the dried samples were resuspended in 20 uL of buffer A
before loading to the C 4-StageTips. The tips were centrifuged at 3,000 rpm for 3 min. The C,-StageTips were
washed twice with 20 uL of buffer A at 3,000 rpm for 3 min each time. The samples were eluted by placing the
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C,g-StageTips in a fresh tube and adding 20 uL of buffer B. The tubes were centrifuged at 3,000 rpm for 30 s. The
process was repeated three times. The elute was dried using SpeedVac and sent for LC-MS/MS analysis.

Proteins identification by mass spectrometry. The analyses were performed at the proteomic plat-
form of the Quebec Genomics Center. Peptide samples were separated by online reversed-phase (RP) nanoscale
capillary liquid chromatography (nanoLC) and analyzed by electrospray mass spectrometry (ESI MS/MS). The
experiments were performed with a Dionex UltiMate 3,000 nanoRSLC chromatography system (Thermo Fisher
Scientific) connected to an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) equipped with a
nanoelectrospray ion source. Peptides were trapped at 20 pL/min in loading solvent (2% acetonitrile, 0.05%
TFA) on a 5 mm x 300 um C, pepmap cartridge pre-column (Thermo Fisher Scientific) for 5 min. Then, the pre-
column was switched online with a self-made 50 cm x 75 pm internal diameter separation column packed with
ReproSil-Pur C4-AQ 3-um resin (Dr. Maisch HPLC) and the peptides were eluted with a linear gradient from 5
to 40% solvent B (A: 0,1% formic acid, B: 80% acetonitrile, 0.1% formic acid) in 90 min, at 300 nL/min*’. Mass
spectra were acquired using a data dependent acquisition mode using Thermo XCalibur software version 3.0.63.
Full scan mass spectra (350-1,800 m/z) were acquired in the orbitrap using an AGC target of 4e5, a maximum
injection time of 50 ms and a resolution of 120,000. Internal calibration using lock mass on the m/z 445.12003
siloxane ion was used. Each MS scan was followed by acquisition of fragmentation spectra of the most intense
ions for a total cycle time of 3 s (top speed mode). The selected ions were isolated using the quadrupole analyzer
in a window of 1.6 m/z and fragmented by Higher energy Collision-induced Dissociation (HCD) with 35% of
collision energy. The detection of resulting fragments was done by the linear ion trap with an AGC target of 1E4
in rapid scan rate and a maximum injection time of 50 ms. Dynamic exclusion of previously fragmented pep-
tides was set for a period of 20 s and a tolerance of 10 ppm*s.

Data dependent acquisition MS analysis. Mass spectrometry data was stored, searched and analyzed
using the ProHits laboratory information management system (LIMS) platform*. Thermo Fisher scientific
RAW mass spectrometry files were converted to mzML and mzXML using ProteoWizard (3.0.4468)%. The
mzML and mzXML files were then searched using Mascot (v2.3.02) and Comet (v2012.02 rev.0). The spectra
were searched with the RefSeq database (version 57, January 30th, 2013) acquired from NCBI against a total of
72,482 human and adenovirus sequences supplemented with “common contaminants” from the Max Planck
Institute (https://141.61.102.106:8080/share.cgi?ssid=0f2gfuB) and the Global Proteome Machine (GPM; https
:/[www.thegpm.org/crap/index.html). Charges +2, + 3 and +4 were allowed and the parent mass tolerance was
set at 12 ppm while the fragment bin tolerance was set at 0.6 amu. Deamidated asparagine and glutamine and
oxidized methionine were allowed as variable modifications. The results from each search engine were analyzed
through TPP (the Trans-Proteomic Pipeline (v4.6 OCCUPY rev 3)*! via the iProphet pipeline®.

MS data archiving. All MS files used in this study were deposited at MassIVE (https://massive.ucsd.edu)
and at ProteomeXchange (https://www.proteomexchange.org/). They were assigned the identifiers MassIVE
MSV000084743 and PXD016934 and can be accessed at https://doi.org/10.25345/C5C39C and ftp://MSV00
0084743@massive.ucsd.edu.

Statistical analysis of AP-MS and BiolD data. The MS data generated by AP or BiolD were analyzed
using SAINTexpress™. For AP-MS data, four uncompressed untagged controls were used while for BiolD sam-
ples, 24 control samples were compressed to 12. Significant protein interactors were those found to have a Bayes-
ian False Discovery Rate (BFDR) <0.01. Significant interaction partners were further refined using the Crapome
online tool (https://crapome.org/) to remove proteins commonly co-purified in FLAG tag pulldown. For this,
a cut-off of 0-20 was enforced (i.e. proteins which have been identified 0-20 times with FLAG-tag out of 411
experiments). The resulting dataset was used for subsequent analysis with Metascape software (https://metas
cape.org/).

Ethical approval. All patients provided written informed consent. Ethical approval of the study was
obtained from the Research Ethics Committee of the Centre de Recherche du CHU de Québec, Canada.

Consent for publication.  The study was carried out in accordance with the relevant guidelines and regula-
tions.

Data availability

All MS files used in this study were deposited at MassIVE (https://massive.ucsd.edu) and at ProteomeX-
change (https://www.proteomexchange.org/). They were assigned the identifiers MassIVE MSV 000084743 and
PXD016934 and can be accessed at https://doi.org/10.25345/C5C39C and ftp://MSV000084743@massive.ucsd.
edu. The password to access these files until publication is “TNBC”.
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