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Hormones control various metabolic traits comprising fat deposition or starvation
resistance. Here we show that two invertebrate neurohormones, octopamine (OA) and
tyramine (TA) as well as their associated receptors, had a major impact on these
metabolic traits. Animals devoid of the monoamine OA develop a severe obesity
phenotype. Using flies defective in the expression of receptors for OA and TA, we
aimed to decipher the contributions of single receptors for these metabolic phenotypes.
Whereas those animals impaired in octß1r, octß2r and tar1 share the obesity phenotype
of OA-deficient (tβh-deficient) animals, the octß1r, octß2r deficient flies showed reduced
insulin release, which is opposed to the situation found in tβh-deficient animals. On
the other hand, OAMB deficient flies were leaner than controls, implying that the
regulation of this phenotype is more complex than anticipated. Other phenotypes seen
in tβh-deficient animals, such as the reduced ability to perform complex movements
tasks can mainly be attributed to the octß2r. Tissue-specific RNAi experiments revealed
a very complex interorgan communication leading to the different metabolic phenotypes
observed in OA or OA and TA-deficient flies.
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INTRODUCTION

Hormones are known to have a major impact on various metabolic traits. Among these hormones
biogenic amines take a special position as they modulate these metabolic traits at different levels.
Two of these amines, octopamine (OA) and tyramine (TA) are specifically relevant in invertebrates
(Roeder, 1999, 2005). They act as functional equivalents of the vertebrate hormones/transmitters
epinephrine and norepinephrine; similar to their roles in vertebrates, in which epinephrine- or
norepinephrine-mediated signaling leads to a variety of metabolic changes (Debuyser et al., 1991;
Bachman et al., 2002), OA and TA appear to be similarly potent in order to control metabolic
traits in invertebrates (Lange, 2009; Li et al., 2016). Although TA and OA have been shown to act
as independent neuroactive compounds, they share a large number of similarities (Roeder et al.,
2003; Saraswati et al., 2004; Lange, 2009). Most importantly, OA producing cells always contain
TA, as the latter one serves as a biological precursor for OA (Roeder, 2002, 2005; Cole et al., 2005).
On the other hand, only very few neurons in the insect brain produce TA but no OA, making it hard

Frontiers in Systems Neuroscience | www.frontiersin.org 1 August 2017 | Volume 11 | Article 60

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
https://doi.org/10.3389/fnsys.2017.00060
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2017.00060&domain=pdf&date_stamp=2017-08-22
http://journal.frontiersin.org/article/10.3389/fnsys.2017.00060/abstract
http://journal.frontiersin.org/article/10.3389/fnsys.2017.00060/abstract
http://journal.frontiersin.org/article/10.3389/fnsys.2017.00060/abstract
http://journal.frontiersin.org/article/10.3389/fnsys.2017.00060/abstract
http://loop.frontiersin.org/people/447679/overview
http://loop.frontiersin.org/people/466300/overview
http://loop.frontiersin.org/people/447809/overview
http://loop.frontiersin.org/people/468098/overview
http://loop.frontiersin.org/people/30193/overview
https://creativecommons.org/licenses/by/4.0/
mailto:troeder@zoologie.uni-kiel.de
https://doi.org/10.3389/fnsys.2017.00060
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Li et al. OA and TA Receptors in Metabolic Control

to examine how the different actions of both compounds are
disentangled under physiological conditions (Monastirioti et al.,
1995; Busch et al., 2009; Selcho et al., 2014). Beside the countless
modulatory actions in invertebrates that can be attributed to
these monoamines (Roeder, 1999, 2002), they have also been
shown to regulate various metabolic traits. OA in particular
appears to take a central position in regulating metabolism
associated traits. It was shown that OA signaling is highly
relevant in controlling behaviors with a direct impact on energy
expenditure comprising the regulation of physical activity or the
timing of sleep. Moreover, it was shown recently that OA directly
affects the metabolic resting rate, therewith directly influencing
fat storage (Li et al., 2016).

Although this role of both monoamines has mainly been
studied in fruit flies, it appears also to apply to other insect and
even to other invertebrates such as nematodes (Suo et al., 2006).
As already mentioned, the vertebrate counterparts epinephrine
and norepinephrine act in very similar ways as OA and
TA do. In both systems, the corresponding hormones are
released in times of stress and act as major transducers that
orchestrate the organism’s stress reaction (Atgié et al., 1998;
Adamo and Baker, 2011; Even et al., 2012). Release of these
compounds should thus increase physical activity and resting
metabolic rates reducing body fat stores. Diminished release of
these compounds has exactly the opposite effects; it reduces
activity and the metabolic rate, which leads, long-term, to more
body fat.

Release of OA and TA modulates various behaviors and
metabolic traits in a well-coordinated manner in order to shift
the animal’s physiology to a high performance, high energy-
expenditure state (Li et al., 2016). Thus, they appear to take
a central position in the regulatory network responsible for
inter-organ communication (Rajan and Perrimon, 2011). This
comprises both types of behaviors, those that are associated
with energy intake as well as those associated with energy
expenditure. Food intake as the only energy source is also
under the control of OA-mediated signaling (Zhang et al., 2013).
Directly associated with this effects is the enhanced physical
activity that is seen during periods of starvation, which appears
to be devoted to enable efficient searches for novel food sources
(Yang et al., 2015). OA and TA control movement activity and
movement performance at different levels. In larval muscles,
both compounds act antagonistically to each other. Whereas OA
enhances the contraction properties of skeletal muscles, TA has
the opposite effect (Saraswati et al., 2004; Selcho et al., 2012;
Ormerod et al., 2013). Insect flight, which is the most energy-
demanding physical activity, is also tightly controlled by OA
signaling (Blau et al., 1991; Brembs et al., 2007), further showing
the central role of monoaminergic neurotransmission for energy-
demanding behaviors in general. Another behavior with a major
impact on the balance between energy intake and expenditure is
sleep, which thus takes a central position for energy homeostasis.
In Drosophila, it was shown that the amount of sleep is directly
correlated with starvation resistance (Slocumb et al., 2015).
OA acts as a wake-promoting agent and impairments in the
biosynthesis of OA are associated with enhanced daily sleep
(Crocker and Sehgal, 2008; Crocker et al., 2010). At least in part,

these effects of OA and/or TA are mediated through their
modulatory action on insulin release from insulin producing
neurons, which is thought to be mediated through the OAMB
receptor located on these cells (Erion et al., 2012; Luo et al.,
2014; Li et al., 2016). Recently, we could show that OA
has a direct impact on energy expenditure-related metabolic
traits, namely, it enhances the resting metabolic rate, thus
reducing body fat. Consequently, reduced OA signaling leads
to lowered metabolic rates and increased body fat with all
its downstream consequences such as reduced life span and
increased starvation resistance (Li et al., 2016). Reproduction,
which critically depends on matching metabolic parameters,
is also tightly controlled by OA signaling (Lee et al., 2003,
2009; Li et al., 2015), further demonstrating the role of
OA to orchestrate numerous physiological actions within the
organism.

Despite this body of information, we know little about the
molecular mechanisms that are responsible for transducing
the effects of either of these two monoamines into a suitable
physiological reaction. Most importantly, the specific roles
of the four OA and three TA receptors in this process
remains to be elucidated (El-Kholy et al., 2015). Thus, we
analyzed a set of transgenic animals impaired in expression
of one of these different receptors each and employed
RNAi experiments with the most relevant receptor genes
targeted to major metabolic organs (brain, fat body and
oenocytes).

MATERIALS AND METHODS

Fly Stocks and Maintenance
The fly stocks used in this study were as follows: TDC2Ro54 flies
were generously provided by Jay Hirsh (University of Virginia,
Charlottesville, VA, USA; Cole et al., 2005), TßHM18 flies were
generously provided by Henrike Scholz (University of Cologne,
Köln, Germany) and OAMB-defective flies by Kyung-An Han
(University of Texas, El Paso, TX, USA; Lee et al., 2003). The
PromE(800)-Gal4 (oenocyte-Gal4) line was obtained from Joel
Levine (University of Toronto, Toronto, ON, Canada; Billeter
et al., 2009). The octβ1Rf 02819, octβ2Rf 05679, octβ3RMB04794,
TAR1PL00408, TAR2MB03028 and TAR3MB09692 mutant lines used
in this study were generated by the Gene Disruption Project
(Bloomington Stock Center, Indiana, Bloomington, USA). The
UAS-dsRNAi lines of octβ1R (#47895), octβ2R (#104050),
octβ3R (#6099), TAR1 (#26876), TAR2 (#2857) were obtained
from the Vienna Drosophila Resource Center. Other transgenic
strains including nsyb-GAL4 (#51635), ppl-GAL4 (#58768),
were obtained from the Bloomington Drosophila Stock Center.
All flies, unless otherwise stated, were raised on standard
yeast/cornmeal/agar medium at 25◦C with about 50%–60%
relative humidity under a 12 h/12 h light/dark cycle as described
previously (Rahn et al., 2013; Li et al., 2015). RNAi-mediated
knockdown of OAR/TARs genes in different tissues was achieved
by crossing UAS-receptor RNAi line to the tissue-specific
promoter GAL4 line and the F1 generation flies were kept at 29◦C
to enhance the RNA interference, the parental lines crossed to
w1118 were used as controls.
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RT-PCR Analysis
Total RNA was extracted from the brains of 15 females kept
on normal food. RT-PCR was essentially performed following
recently described methods (Li et al., 2015). The following
primers were used: Rpl32 forward (5′-CCG CTT CAA GGG
ACA GTA TC-3′), Rpl32 reverse (5′-GAC AAT CTC CTT GCG
CTT CT-3′), Dilp2 forward (5′-CTG AGT ATG GTG TGC GAG
GA-3′), Dilp2 reverse (5′-ACA AAC TGC AGG GGA TTG
AG-3′), OAMB-F (5′-CGG TTA ACG CCA GCA AGT G-3′),
OAMB-R (5′-AAGCTGCACGAAATAGCTGC-3′),Octß1R-F
(5′-GGC AAC GAG TAA CGG TTT GG-3′), Octß1R-R (5′-TCA
TGG TAA TGG TCA CGG GC-3′), Octß2R-F (5′-TCC TGT
GGT ACA CAC TCT CCA-3′), Octß2R-R (5′-CCA CCA ATT
GCA GAA CAG GC-3′), Octß3R-F (5′-TGT GGT CAA CAA
GGC CTA CG-3′), Octß3R-R (5′-GTG TTC GGC GCT GTT
AAG GA-3′), TAR1-F (5′-AGA CGA GGT GCA AGG TGT
TG-3′), TAR1-R (5′-TTC CCC GAC TTC TTT GAC TGC-3′),
TAR2-F (5′-TGC AGT CTT TGC CAC CTT CA-3′), TAR2-R
(5′-GTT GCC ACG AGC CTA TGA GA-3′), TAR3-F (5′-GAA
CTT GGC CAT CAC CGA CT-3′), TAR3-R (5′-GTG ACG GCG
AGA TAC CTG TC-3′).

Starvation Resistance Assays
The starvation resistance assays were performed on constant
conditionsmentioned above. Four to five-day-old adult flies were
placed in vials containing 1% agar, and dead flies were recorded
every 2–3 h until all flies died. For each genotype, at least 100 flies
were used in this assay.

BODIPY Staining and Body Fat
Determination
The whole fly bodies were collected and fixed in 4%
paraformaldehyde for 30 min at room temperature. After
washing with phosphate-buffered saline, the flies were repeatedly
frozen in liquid nitrogen and thawed on ice three times, followed
by staining with a solution containing 1 µg/ml BODIPY dye
(Invitrogen, Darmstadt, Germany) for 1 h in the darkness before
observation by epifluorescencemicroscopy (Olympus, Hamburg,
Germany).

Total body triacylglycerols (TAGs) in flies were determined
using a coupled colorimetric assay method as described
previously (Hildebrandt et al., 2011; Hoffmann et al., 2013; Li
et al., 2016). Briefly, eight males (or five females) per group were
weighed and homogenized in 1 ml 0.05% Tween-20 using a Bead
Ruptor 24 (BioLab Products, Bebensee, Germany). Homogenates
were heat-inactivated for 5 min at 70◦C and incubated with
triglyceride solution (Fisher Scientific, Waltham, MA, USA) at
37◦C for 30 min with mild shaking. The absorbance was read at
562 nm and glyceryl trioleate served as a TAG standard.

Locomotor Activity Assay
For the negative geotaxis assay, groups of 20 flies were transferred
into a 20 cm-tall glass tube without CO2 anesthesia and allowed
to recover for 1 h. The tube was tapped three times to initiate
flies to the bottom and the climbing height was photographed
after 5 s. The average distance climbed in cm for each fly from
five replicates was measured.

Glucose and Trehalose Measurement
The hemolymph glucose and trehalose measurement were
performed using Glucose (HK) Assay Kit (Sigma, Steinheim,
Germany) with minor modifications as described previously (Li
et al., 2016). The hemolymph sample was pooled from 15 flies
per genotype and added to 50 µl of glucose assay reagent. After
incubation for 15 min at room temperature, the glucose levels
were calculated according to the standard curve established by
measuring absorbance at 340 nm. For trehalose measurement,
0.25 µl of porcine kidney trehalase (Sigma, Steinheim, Germany)
was added to convert trehalose to glucose. After incubation at
37◦C overnight, the absorbance was measured again, and the
amount of trehalose was calculated.

Immunohistochemistry for dILP2
Measurements
Immunohistochemistry was performed as previously described
(Li et al., 2016). The brains were dissected in Drosophila Ringer’s
solution and immediately fixed in 4% paraformaldehyde in PBS
for 30 min at room temperature. Subsequently, the samples were
washed with PBST (0.3% Triton X-100 in PBS) and blocked in
blocking-buffer (10% goat serum in PBST) for 30 min at room
temperature, followed by incubation with the primary antibody
(1:200 rabbit anti-dILP2, a gift from Eric Rulifson, UCSF, USA)
overnight at 4◦C with subsequent application of the secondary
antibody (1:500 donkey anti-rabbit IgG, Jackson ImmunoLabs,
Suffolk, UK) for 3 h at room temperature. After three washings,
the brains were mounted on slides and images were obtained
using a fluorescent microscope equipped with an apotome (Carl
Zeiss Image AxioVision, Göttingen, Germany). To facilitate the
quantification of dILP2 fluorescence intensities in the region
of pars intercerebralis, series of sections were gathered under
identical thickness, exposure time and all other relevant settings.
Fluorescence intensity was quantified using ImageJ (National
Institutes of Health, Bethesda, MD, USA).

Statistical Analyses
All statistical analyses were accomplished using GraphPad
Prism 5.0 (GraphPad Software, La Jolla, CA, USA). Starvation
survivorship was analyzed by log-rank (Mantel-Cox) assays.
Other parameters were evaluated using the unpaired two-tailed
Student’s t test and one-way ANOVA. All data were presented as
mean values± SD.

RESULTS

Although TA is the biological precursor of OA, both
monoamines act as independent neuroactive compounds in
a wide variety of behavioral paradigms. Recently, we could show
that differences between animals defective in tβh (TA, but no
OA) and tdc2 (no OA, no TA) could be observed regarding their
body fat storage (Li et al., 2016). We analyzed these phenotypic
peculiarities in more detail and could show in the current work
that other metabolically relevant traits also differ between both
types of animals. Whereas hemolymph carbohydrate levels
are lower in both sexes of the tβh-defective animals, we could
observe sex-specific differences in tdc2-defective animals where
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FIGURE 1 | Regulation of metabolic traits in flies without octopamine (OA) and
tyramine (TA; tdc2-deficient). Measurement of hemolymph carbohydrate levels
(glucose and trehalose) in adult male and female flies of the control (w1118) and
the TDC2Ro54 genotypes (A). Relative fluorescence of dILP2 immunoreactive
cells in the pars intercerebralis of control animals and TDC2Ro54 animals of
both sexes (B). Brains of female flies of control and TDC2Ro54 animals were
analyzed as in (B), but treated either with buffer, or with TA or OA prior to
immunohistochemistry (C) (Mean values ± SD; N ≥ 5, ∗p < 0.05,
∗∗∗p < 0.001).

males show the same phenotype as tβh-defective animals did,
whereas females show the opposite phenotype (Figure 1A). This
sex-specific discrepancy was also observed for food intake by
tdc2-deficient females, which show reduced food intake while
males did not show these alterations. Most impressive were
the differences in metabolic rates, where only OA-deficient
animals show a substantial reduction, while tdc2-deficient

ones have an unaltered metabolic resting rate (Li et al., 2016).
Regarding insulin secretion, tdc2-deficient animals showed a
slight reduction in the dILP2 content of the IPCs, which is
equivalent to the situation under OA deficiency (Figure 1B).
Feeding OA and TA to these animals led to a slight reduction in
dILP2 release (Figure 1C).

In order to learn more about their relevance for various
metabolic traits, we choose a series of Drosophila lines carrying
insertions in the respective genes coding for OA and TA
receptors that should effectively impair expression of functional
proteins. OA and TA transmit their effects via a total of seven
G-protein coupled receptors, with four being specifically tuned
to react to OA and three to TA. They can be further subgrouped
regarding their primary structures into a more alpha-adrenergic
subtype (OAMB), those sharing similarities with ß-adrenergic
receptors (Octß1R-Octß3R) and two classes of TA receptors
(Maqueira et al., 2005; El-Kholy et al., 2015). The TAR1 (also
known as TyrR, Oct/TyrR) and the other two TARs (TAR2,
also known as TyrR1 and TAR3) do not cluster together (El-
Kholy et al., 2015). A recent analysis utilizing promoter reporter

FIGURE 2 | Body fat content of flies deficient in different receptors receptive
for OA or TA. BODIPY staining of the octß2r-deficient animals (A, bottom) are
shown in comparison with labeling of matching controls (A, top). Quantitative
total body triacylglycerol (TAG) assay was performed with adult females of the
different genotypes (B) (Mean values ± SD; N ≥ 5, ∗p < 0.05, ∗∗p < 0.01).
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lines revealed the spatial distribution of the different receptors
in the different tissues of the fly. Flies without OA (tβh-
deficient animals) show an impressive metabolic phenotype,
they are obese with fat deposits increased by more than
30% compared with matching controls (Li et al., 2016). We
measured the triglyceride levels in different fly lines defective
in expression of the corresponding receptors and observed that
flies impaired in expression of the Octß1R, the Octß2R and
the TAR1 showed a significantly enhanced fat deposition as
observed by BODIPY staining of the corresponding animals,
while the OAMB-deficient ones had reduced fat levels. As an
example, we show the staining of the octβ2r-deficient flies
(Figure 2A). In order to quantify this effect, we measured
triglyceride levels of these animals and obtained a similar result
(Figure 2B). Results from this quantitative approach were almost
congruent with that obtained using the fat staining approach. As
the OAMB has already been described in greater detail (Erion
et al., 2012), we excluded the OAMB from all downstream
studies.

Differential fat deposition is assumed to directly influence
important metabolic traits such as starvation resistance
(Ballard et al., 2008). Thus, we analyzed starvation resistance
in these animals and identified significant differences
to matching control populations (Figure 3). Whereas

FIGURE 3 | Starvation resistance of flies defective in OA or TA receptor gene
expression. Those flies deficient in the expression of OA receptors (A) or TA
receptors (B) were starved and the number of dead flies counted every 2 h.
w1118 flies served as a control. N = 100, ∗∗p < 0.01, ∗∗∗p < 0.001.

the Octß1R, Octß2R and TAR1 (Figures 3A,B) show
statistically significantly increased starvation resistances,
the TAR2 had a lower resistance, whereas the resistances of
the Octß3R and TAR3 were not different from the controls
(Figures 3A,B).

One component that has a major effect on the fat
content of flies is the level of insulin release from cells
in the pars intercerebralis. We first analyzed which of the
corresponding receptors are expressed in this peculiar brain
region that contains different neurosecretory cells including
those that produce and release the most important insulins
in the fly (dilp2, dIlp3, dIlp5), but also those that produce,
e.g., DH44, DH31 or SIFamide. Thus, we isolated the pars
intercerebralis region manually and used the resulting material
as a template for RT-PCR. From the receptors tested, the
OAMB, the Octß1R, the Octß2R and the TAR1 showed specific
signals, which implied that they are indeed expressed in
neurosecretory cells of the brain (Figure 4A). We reanalyzed
some of the doubtful candidates genes using promotor-Gal4
lines and showed expression in lateral parts of the pars
intercerebralis for some of them, which implies that most
of the OA and TA receptors are present in the pars
intercerebralis, presumably to modulate hormone release from
the corresponding cells in this highly specialized brain region
(Figures 4B–E).

Based on this information, we analyzed the dILP2 content
in insulin-producing cells of the pars intercerebralis of female

FIGURE 4 | Expression analysis of OA and TA receptor genes in the pars
intercerebralis. RT-PCR analysis of manually isolated pars intercerebralis areas
with oligonucleotides specific for the listed genes (A), NTC, no template
control. Analysis of the expression patterns of fourth deficient different
promoter-Gal4 lines (B–E), specifically labeling cells positive for octβ2r (B),
octβ3r (C), tar1 (D), tar2 (E). Scale bars = 50 µm.

Frontiers in Systems Neuroscience | www.frontiersin.org 5 August 2017 | Volume 11 | Article 60

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Li et al. OA and TA Receptors in Metabolic Control

FIGURE 5 | Role of different OA and TA receptors for control of insulin release.
Relative dILP2 immunofluorescence was measured in pars intercerebalis
regions of adult female flies of the indicated genotypes (A). Hemolymph sugar
concentrations were measured in hemolymph samples from females of the
corresponding genotypes (B). Mean values ± SD; N ≥ 5, ∗p < 0.05,
∗∗p < 0.01.

FIGURE 6 | Movement ability in flies deficient in OAergic, TAergic signaling.
The ability to climb a vertical plane was quantified in animals with different
genotypes. The distance observed in control flies was set as 100%. Mean
values ± SD; N ≥ 10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

flies of the corresponding lines (Figure 5A). Only flies with
insertions in the octß1R or octß2R genes had statistically

FIGURE 7 | The effect of RNAi in different tissues on the fat body content.
RNAi experiments as well as matching controls were performed with a
neuronal driver (nsyb-Gal4, A), an oenocyte specific driver (B) and a fat body
specific driver (ppl, C). Mean values ± SD; N ≥ 5, ∗p < 0.05.

significantly different dILP2 levels in their insulin-producing
cells. Directly associated with the insulin release is usually the
hemolymph sugar level. We measured the combined sugar levels
(glucose + trehalose) in the hemolymph of the corresponding
flies and identified higher glucose levels for octß1R-insertion-
carrying flies (Figure 5B). The control of traits that are

Frontiers in Systems Neuroscience | www.frontiersin.org 6 August 2017 | Volume 11 | Article 60

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Li et al. OA and TA Receptors in Metabolic Control

directly associated with energy expenditure is obviously highly
relevant in this context. The ability to perform complex
movement tasks, such as climbing vertical planes, was addressed
(Pfeiffenberger et al., 2010; Li et al., 2016). For this, we used
a simple negative geotaxis assay. OA (tβh-defective) deficient
animals showed a massively reduced ability to perform this
task. While flies impaired in the tar2 receptor showed an
increased climbing activity, the tar1-defective lines showed
reduced abilities. Most impressive were the impairments seen in
lines with impaired octß2r expression, as they showed movement
impairments that almost matched those seen in animals devoid
of OA (Figure 6).

In order to elucidate the mechanisms underlying differential
fat contents of the different receptor-deficient lines, we
performed RNAi experiments with selected receptor lines.
Silencing expression in the CNS using the nsyb driver
line revealed slightly increase body fat especially for those
animals with reduced octß1r and tar1 expression in the
nervous system (Figure 7A). Targeting this intervention
to oenocytes led to slightly reduced body fat in octß2r-
deficient flies (Figure 7B). Silencing expression in the fat body

FIGURE 8 | Effects of RNAi in peripheral organs for the dILP2 level in insulin
producing cells. RNAi experiments as well as matching controls were
performed with an oenocyte specific driver (A) and a fat body specific driver
(ppl, B). Mean values ± SD; N ≥ 5, ∗p < 0.05, ∗∗p < 0.01.

(ppl-Gal4, Figure 7C) increased body fat only in case of tar1
silencing (Figure 7C). Moreover, we analyzed the effects
of RNAi-mediated silencing in the oenocytes (Figure 8A)
and the fat body (Figure 8B) on the release of dILP2 from
insulin-producing cells in the pars intercerebralis. If we
analyzed the dILP2 concentration in insulin producing
cells in response to RNAi-mediated gene-silencing of
the corresponding receptor genes, we observed no
changes in response to manipulation in the oenocytes
(Figure 8A), but a profound reduction in response to
manipulation in the fat body for octß1r, octß2r and tar1
(Figure 8B).

DISCUSSION

To allow for a suitable organismal reaction in response to
different internal or external situations, behavioral andmetabolic
traits have to be well-orchestrated. The monoamines OA and TA
are central mediators of this complex interorgan communication
system. Thus, they occupy the same position that epinephrine
and norepinephrine take in vertebrates. Consequently, impairing
their signaling properties incurs a great variety of metabolic
alterations. Among these modifications, those associated with
body fat stores are most conspicuous. Despite the structural
similarities between OA and TA, they obviously act differentially
in the regulation of major metabolic traits. Whereas animals
devoid of OA (tβh-deficient) are obese, those without OA and
TA (tdc2-deficient) are not, implying that the effects of both
monoamines on this major metabolic trait are opposed. In order
to learn more about the underlying mechanisms, we focused
on the corresponding receptors, as results obtained with those
animals defective in synthesis of either OA (TβH) or OA +
TA (TDC2) are not easy to interpret. Tβh-deficient animals
produce no OA, but contain higher amounts of TA, tdc2-
defective animals, on the other hand, have neither OA nor TA,
which complicates direct assignments of specific phenotypes to
either OA or TA.

It was our assumption that the major metabolic phenotype
of Tβh-deficient animals, the high fat content, is mediated
via interaction with only one specific receptor, which turned
out not to be the case. A total of two out of four different
line defective in OA receptors (Octß1R, Octß2R) and one
line defective in TA receptors (TAR1) showed an increased
body fat content, thus phenocopying OA-deficient animals
(see Table 1). Moreover, animals defective in expression of
the oamb receptor gene are leaner than matching controls
are. As expected, the increased body fat observed in some
of the flies came with enhanced starvation resistances. This
observation implies that mechanisms required to modulate
body fat content are more complex than anticipated, thus
mirroring the situation found in vertebrates, where regulation
of body fat is mediated by sets of α- and β-adrenergic
receptors rather than by only single representatives of this
family.

It is not completely understood how signaling through these
receptors controls body fat content. Different mechanisms have
to be taken into account, comprising behaviors that are directly
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TABLE 1 | Summary of the effects seen in fly lines defective in expression of the corresponding receptors.

OAMB Octß1R Octß2R Octß3R Tar1 Tar2 Tar3

Body fat down up up - up - -
Starvation resist n.a. up up - down down -
Insulin signaling n.a. up up - - - -
Glucose level n.a. - - - up - -
Movement n.a. - down - down up -

Significant changes in comparison to matching controls are listed as up or down. n.a. means not analyzed.

linked with energy intake or energy expenditure (Crocker and
Sehgal, 2008; Li et al., 2016). Moreover, controlling release rates
of neurohormones or conveying direct effects on peripheral
organs such as the fat body or skeletal muscles may also be
relevant in this context (Crocker et al., 2010; Nässel et al.,
2015). Regarding the expression profiles of the different OA
and TA receptors, all options listed above have to be taken
into account. Among these possible actions of OA and TA,
the control of insulin release is most interesting, as it would
add another mechanism to the list of almost identical functions
shared by OA/TA and epinephrine/norepinephrine. It has been
proposed that the OAMB receptor mediates the effects of OA
on insulin release via direct control of release rates (Luo et al.,
2014; Nässel et al., 2015). Apparently, the situation is more
complex, as the oamb-deficient flies are lean, although they
should convey OA’s action on the IPCs. Moreover, the body
fat phenotype observed in other receptor defective lines did not
correlate neither with insulin release rates nor with hemolymph
glucose levels. The anticipated role of OAMB as the major OA
receptor operative in IPCs is still not fully supported. On the
other hand, the other lines defective in expression of other
OA (Octß1R and Octß2R) receptors that show enhanced body
fat deposition, exhibit reduced insulin release rates, which is
counterintuitive (Luo et al., 2014; Nässel et al., 2015; Li et al.,
2016). The TAR1, which also is involved in body fat control
has no obvious effects on insulin release, which shows that
controlling insulin release by octopaminergic neurotransmission
is primarily (and eventually exclusively) mediated via OA
receptors.

If we take a look at the reduced ability to move in the
vertical direction, the substantially reduced ability apparent in
animals without OA (TβH-defective animals) was also observed
in animals defective in expression of the octß2r receptor gene.
Although some of the other lines defective in one of the various
OA and TA receptors showed also reduced abilities to perform
this behavioral task, this was in no case as severe as for the
OA deficient animals. This phenotype nicely correlates with
the massive expression of the octß2r receptor gene in skeletal
muscles of larval and adult Drosophila (El-Kholy et al., 2015),
which thus might be due to the peripheral actions of OA
for controlling movement activities mediated via the Octß2R
receptor.

A very complex inter-organ communication was revealed
through use of tissue-specific RNAi to analyze contributions
of specific OA and TA receptors for various metabolic traits.
Silencing expression of specific receptor genes in neurons only
(driven by nsyb-Gal4) revealed increased body fat only for
the oct1ßr gene, whereas the other were almost unaffected.

The lack of phenotypes observed in RNAi experiments
is not easy to explain, it can result from the lack of
relevance in the targeted tissue, but it can also be due to
insufficient silencing that permits to uncover these relevant
phenotypes.

Interestingly, silencing of some receptor genes in the fat
body revealed relatively strong effects on dILP2 levels in
the brain and therewith on insulin release properties. This
might be an effect of remote control of insulin release by
the fat body, which has already been shown to be operative
in this tissue (Géminard et al., 2009; Rajan and Perrimon,
2012). The three receptors under investigation (Octß1R, Octß2R
und TAR1) are all expressed in the fat body at low levels
(El-Kholy et al., 2015), which making a direct interaction
possible.

Taken together, we aimed to understand the various facets
of OAergic and TAergic control of metabolic traits in more
depth using animals with defective expression of peculiar OA
or TA receptors. It became apparent that a complex network
comprising different receptors in different tissues is responsible
for the control of metabolic traits such as body fat content.
Whereas some actions of OA and TA can be attributed to
specific receptor subtypes, this is not possible for others. The
reduced ability to perform complex movement tasks appears to
depend on OA signaling mediated via the Octß2R in skeletal
muscles. The regulation of other metabolic traits appear to
be much more complex and involve complex remote control
effects, which might have been expectable especially as OA as
well as TA are thought to take a central role in interorgan
communication.
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